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Abstract 
Allan and collaborators recently proposed to apply signal detection theory (SDT) to 

the analysis of contingency judgment tasks. When exposed to a flow of stimuli, participants 

are asked to judge whether there is a contingent relation between a cue and an outcome, that 

is, whether the subjective cue-outcome contingency exceeds a decision threshold. In this 

context, we tested the following hypotheses regarding the relation between objective and 

subjective cue-outcome contingency: (a) the underlying distributions of subjective cue-

outcome contingency are Gaussian; (b) the mean distribution of subjective contingency is a 

linear function of objective cue-outcome contingency; (c) the variance in the distribution of 

subjective contingency is constant. The hypotheses were tested by combining a streamed-trial 

contingency assessment task with a confidence rating procedure. Participants were exposed 

to rapid flows of stimuli at the end of which they had to judge whether an outcome was more 

(Experiment 1) or less (Experiment 2) likely to appear following a cue and how sure they 

were of their judgment. We found that while hypothesis (a) seems reasonable, hypotheses (b) 

and (c) were not. Regarding hypothesis (b), participants were more sensitive to positive than 

to negative contingencies. Regarding hypothesis (c), the perceived cue-outcome contingency 

became more variable when the contingency became more positive or negative, but only to a 

slight extent. 

Keywords: Associative learning, contingency judgment, psychophysics, signal 

detection theory, streamed-trial procedure. 
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Psychophysics of Associative Learning: Quantitative Properties of Subjective Contingency 

In a contingency judgment task, participants exposed to flows of stimuli are asked to 

assess whether a specific stimulus (the outcome) is more or less likely to appear in the 

presence of another one (the cue). Contingency judgments in such tasks are a function of the 

objective cue-outcome contingency, as measured by the ∆P index, which is the difference 

between the probability of the outcome in the presence of the cue and its probability in the 

absence of the cue (Allan, 1993; Schanks, 2007; Rescorla, 1967). When ∆P = 0 (null 

contingency), participants are less likely to expect the outcome in the presence of the cue 

than if ∆P is positive (positive contingency), but are otherwise more likely to do so than if ∆P 

is negative (negative contingency). Theories of associative learning explain such results by 

the building up of some internal quantity, e.g. the strength of the association between the cue 

and the outcome (i.e. Rescorla & Wagner, 1972; Mackintosh, 1975; Miller & Matzel, 1988; 

Pearce & Hall, 1980; Wagner, 1980), even though non-associative accounts have also been 

proposed (i.e. Gallistel & Gibbon, 2000). We refer to this quantity as “subjective 

contingency” throughout this paper. 

Besides subjective contingency, contingency judgments are also affected by other 

variables, notably response bias (Allan, Hannah, Crump, & Siegel, 2008; Perales, Catena, 

Schanks, & Gonzales, 2005), making them an imperfect indicator of learning. For this reason, 

Allan and collaborators (Allan et al., 2008; Alan, Siegel, & Tangen, 2005; Siegel, Crump & 

Allan, 2009. See also Laux, Goedert, & Markman, 2010 and Perales et al., 2005) proposed 

applying signal detection theory (SDT) (Wickens, 2002) to contingency judgment tasks. In 

this view, subjective contingency would be a random variable x. If its value exceeds a 

threshold 𝜆, the subject reports perceiving a contingency between the cue and the outcome. 

Variables such as response bias are assumed to affect only 𝜆. As SDT can be used to 
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disentangle the contributions of x and 𝜆 to performance, it provides a bias-free assessment of 

learning (Wickens, 2002).  

In this context, the present paper aims to test three hypotheses regarding the 

quantitative properties of x: (a) subjective contingency x is drawn from a Gaussian 

distribution with mean 𝜇 and standard deviation 𝜎; (b) 𝜇 is a linear function of ∆P; (c) 𝜎 is 

constant. Hypotheses (a) and (c) are often assumed by default when applying SDT to data 

because they simplify the computation needed to retrieve the parameters of the SDT model. 

Indeed, they subsume the thinking of Allan et al. Hypothesis (b) stems from the Rescorla-

Wagner (1972) model in which the associative strength between the cue and the outcome 

converges on ∆P at the asymptote (Danks, 2003).  

When the variance of the distribution is allowed to vary in a Gaussian SDT model, the 

decision criterion 𝜆 has to be manipulated in order to retrieve the parameters of the model 

from the data (see Wickens, 2002 for the basic theory). Though the criterion can be 

manipulated explicitly, e.g. by using differential payoffs for each response, it is more often 

manipulated implicitly by using the confidence rating technique. Participants are asked how 

confident they are about their choice after categorizing a stimulus. The idea is that each 

confidence rating corresponds to its own decision criterion. A change in 𝜆 can then be 

simulated through the confidence rating data (see Wickens, 2002 for more details). 

 The present study applies the confidence rating procedure to a contingency 

assessment task. Participants were exposed to various cue-outcome contingencies ranging 

from strongly negative to strongly positive. After each ∆P condition, they had to decide 

whether the outcome was contingent upon the cue (“yes” vs. “no” responses) and how sure 

they were of their judgment (“very sure” vs. “sure” vs. “not sure” responses).  Because the 

confidence rating technique requires accurate estimates of the probability of responding for 

each combination of response category, confidence level and stimulus condition, each ∆P 



Psychophysics of Associative Learning 5	

condition has to be presented as many times as possible. This led us to use a streamed-trial 

procedure in which cues and outcomes lasted only for a few hundreds of milliseconds, 

allowing for the maximal exposure of the participants to the stimulus conditions in a 

relatively short time. This procedure was designed by Allan et al. (Crump, Hannah, Allan, & 

Hord, 2007; Hannah, Crump, Allan, & Siegel, 2009; Siegel et al., 2009) specifically to allow 

the SDT analysis of contingency learning. 

Experiment 1 

Method 

Participants and apparatus 

Seventeen participants (8 males, 9 females) aged from 18 to 41 years old (mean: 

25.88) were recruited for this experiment. All experimental tasks were conducted on an IBM 

compatible notebook PC. All stimuli were displayed on a 15.6-inch HD TFT monitor screen 

(pixel resolution: 1366 x 768). Participants sat about 50 cm from the screen. A customized 

program written in Visual Basics controlled all experimental events and recorded the results. 

Procedure 

The experiment was composed of two experimental sessions. The first session started 

with three pretesting phases the goal of which was to familiarize participants with the 

procedure and to show them examples of strong positive and negative contingencies. This 

was followed by the first testing phase. The second session started right away with the second 

testing phase and was identical to the previous testing phase. The testing was split in two 

phases to avoid having an experimental session which would be too long for the participants.  

 Pretesting I: After reading the instructions informing them of the task they had to 

perform, the participants were presented with two successive streams of stimuli. The first 

stream started with a 1-s black screen with a fixation cross in its center. The cross remained 

visible until the end of the stream. This was followed by 20 trials. Each trial lasted for 200 ms 
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and comprised two phases: (a) the cue phase lasting 100 ms in which a yellow triangle 

(stimulus A) was always displayed in the upper right-hand corner of the screen, marking the 

beginning of a trial. On some trials, a green circle (target cue X) was displayed in the upper 

left-hand corner of the screen; (b) the outcome phase lasting 100 ms. In some trials, a red 

square (outcome O) was presented in the lower central part of the screen. All stimuli 

measured 501 by 499 pixels. Trials were separated by a 100-ms inter-trial interval (ITI) 

during which only the fixation cross was displayed.  

 At the end of a stream, a dialog box appeared in the center of the screen with the 

question: "Is the red square more likely to appear following the green circle?". The 

participants used the mouse to answer (the pointer always appeared centrally between the two 

response buttons) by clicking either on the "Yes" or on the "No" button displayed below the 

question. Once they clicked on one of the buttons, the dialog box disappeared and another 

one appeared with the question “How sure are you of your decision?” with three buttons, 

“Not sure”, “Sure”, and “Very sure”, appearing below the question. Once the participant 

answered this question, the dialog box disappeared and a new stream started, except if this 

was the end of a phase, in which case a debriefing screen was shown. 

 Overall, a stream was composed of four types of trials: (a) AX+ trials in which both A 

and X were shown during the cue phase, the outcome being shown during the outcome phase; 

(b) AX- trials in which both A and X were shown during the cue phase, the outcome not 

being shown during the outcome phase; (c) A+ trials in which only A was shown during the 

cue phase, the outcome being shown during the outcome phase; (d) A- trials in which only A 

was shown during the cue phase, the not being shown during the outcome phase. 

Manipulating the proportion of these four types of trials within a stream induced different ∆P 

values between the target cue X and the outcome.  

 During the first phase of training, each stream was composed of 10 AX+ and 10 A- 
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trials (∆P = 1). The order of presentation of the trials within a stream was determined 

randomly. Once the participants had been through the two stimulus streams, they were 

presented with a debriefing instruction explaining to them why they should have answered 

“Yes” to the contingency question. 

Pretesting II: The second phase of pretesting started immediately after the participants 

had completed the first phase of training. It was identical to the previous phase of pretesting 

except that a stream was now composed of 10 AX- trials and 10 A+ trials (∆P = -1). At the 

end of the phase, a debriefing instruction explained to the participants why they should have 

answered “No” to the contingency question.  

Pretesting III: The third phase of pretesting started immediately after completion of the 

second phase of training. Participants were exposed to two streams. One of them was 

composed of 10 AX+ trials and 10 A- trials (∆P = 1), while the other was composed of 10 

AX- trials and 10 A+ trials (∆P = -1). The order of presentation of the streams was 

determined randomly. The participants were expected to answer "Yes" when asked about the 

relation between X and O following the ∆P = 1 stream, and to answer "No" following the ∆P 

= -1 stream. If they failed to do so for at least one stream, the two streams were presented 

over again until they reached this learning criterion or until an upper limit of 10 repetitions 

was reached. At the end of the phase, a debriefing instruction informed them that testing was 

about to start. The instruction also indicated that discriminating between the positive and 

negative contingencies would be more difficult during testing than during training and that 

the contingencies between the cue and the outcome would vary randomly from stream to 

stream. 

First testing phase: Testing began as soon as the pretesting was over. Participants 

were exposed to streams with a ∆P between the cue and the outcome of either -0.8, -0.4, 0, 

0.4 or 0.8. The composition of the trials for each of these streams is shown in Table 1. Each 
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∆P condition was presented 30 times to a participant. The order of presentation of each ∆P 

condition as well as the order of each trial type within a stream was determined randomly. 

 As shown in Table 1, both components of ∆P (P(O|AX), the probability of the 

outcome following the cue, and P(O|A), the probability of the outcome to be presented 

without the cue), varied together from one ∆P condition to the next. This was done to ensure 

that P(O), the overall probability of the outcome (sometimes called the outcome density) 

remained constant across streams (Table 1). Allan et al. (2005) argued that the outcome 

density affects the decision criterion 𝜆. If this is correct and if the outcome density had been 

different between streams, we could not have used the confidence rating technique as it 

assumes that the decision criteria remain constant across stimulus conditions. Moreover, if 

the outcome density had changed between streams, the participants could have used that 

information to discriminate between ∆P conditions. By keeping it constant, we made sure that 

they engaged in a form of associative learning. The drawback is that it is impossible to know 

whether the performance of a participant relies on P(O|AX), on P(O|A) or on a combination 

of the two. As this was never the goal of this study, we deemed that the advantages of 

keeping P(O) constant outweighed its disadvantages. Note that other variables which have 

been suggested as a potential determinants of the decision criterion 𝜆 (the frequency of the 

cue within a stream: Perales et al., 2005; the contingency between the alternative cue A and 

the outcome: Laux et al., 2010; Hannah & Allan, 2011 Siegel et al., 2009) were also kept 

constant across streams. 

Second testing phase: The second testing phase was identical to the first one. It took 

place later the same day or at most the day after, depending on the availability of the 

participants. 

Data analysis 

For each participant, the 15 parameters of the SDT model (the mean and standard 
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deviation of the five subjective contingency distributions corresponding to the five ∆P values 

plus the  Yes/No response threshold and the four confidence rating criteria) were retrieved 

from the confidence rating data using an iterative maximum-likelihood algorithm (MLA), as 

recommended by Wickens (2002) and Macmillan & Creelman (2005). We used the MLA 

implemented by Harvey’s (2013) RscorePlus program. The program “uses singular value 

decomposition, combined with a variation of the Marquardt method for nonlinear least-

squares regression (Marquardt, 1963; Press, Teukolsky, Vetterling, & Flannery, 2002, 2007), 

to find the maximum likelihood fit of the multiple distribution, a variable-criterion signal 

detection model to confidence rating-scale data” (Harvey, 2013). Parameters of an SDT 

model are always expressed relative to a reference condition the mean of which is set to 0 and 

standard deviation to 1. We chose the ∆P = 0 condition to be that reference. As ratings with a 

frequency of 0 could prevent the MLA from converging on a solution, a loglinear correction 

was used, where 1/m (m being the number of possible responses given by the participant, in 

our case, m = 6) is added to all the data (See Hautus & Lee, 1998). 

 Based on the likelihood computed by the program that the data could have been 

generated by the SDT model, a 𝜒% (with 12 degrees of freedom) was computed to quantify 

the fit between the model and the data. A significant 𝜒% at the conventional threshold of 0.05 

was interpreted as indicating a potential discrepancy between the model and the data.  

 In the following, we focus on the estimates of the mean and standard deviation of the 

subjective contingency. We do not report the decision and confidence thresholds as they were 

of no particular interest to us. 

 The analysis below fits a second-order polynomial equation to the function mapping 

∆P onto either the mean of the subjective contingency distribution or its standard deviation. 

To allow for a meaningful interpretation of the parameters of the polynomial equation, each 

∆P value was divided by 0.8, creating new recoded ∆P values ranging from -1 to 1. These 
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recoded values were used to perform the polynomial regression. This recoding made the 

quadratic and the linear terms of the polynomial equation independent from each other. In 

these conditions, the linear term corresponds to the slope of the least-mean square linear 

equation that could have been fitted to the data while the quadratic term reflect the deviation 

from that straight line (Pagès, 2010).  

All parameters based on an averaging of individual performance are reported along 

with their 95% confidence interval (CI), computed using Student’s t distribution. All numbers 

are rounded to the nearest second decimal. Averages for the percentage of variance explained 

by a regression (𝑟%)	and their 95% CI were computed based on the Fisher transform of the 

individual 𝑟%. The inverse of the Fisher transform was then used to express them in terms of 

percentage of variance explained. 

Results 

Psychometric curves 

The average proportion of trials in which a positive contingency was detected is 

shown in Figure 1 as a function of ∆P. It increased monotonically with ∆P according to a 

sigmoid-like function.  

Is the subjective contingency drawn from a Gaussian distribution?  

The 𝜒% measuring the fit between the SDT model and the data was significant for 4 

participants. The average proportion of trials on which a positive contingency was detected as 

a function of ∆P is shown for these 4 participants in Figure 2. Each curve and associated set 

of points show what the psychometric function would have looked like if the response 

criterion had been located at the corresponding confidence criterion.  

 P8 failed to discriminate between the various contingencies condition. For P1, the 

significant 𝜒% seems to have been caused by the model under-predicting the probability to 

detect a positive contingency for the ∆P = 0.8 condition on two of the response criteria (No-
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not sure vs. Yes-not sure and Yes-not sure vs. Yes-sure). Otherwise, the predictions of the 

model seem quite accurate so we decided to keep this participant in the analysis. There are 

clear quantitative discrepancies between the model and the data for participants P12 and P14, 

in the case of one response criterion for P12 (No-not sure vs. Yes-not sure) and of two in the 

case of P14 (No-not sure vs. Yes-not sure and Yes-not sure vs. Yes-sure). On the other hand, 

the deviations from the model from the data are not systematic and the model captures the 

overall trend in the data quite well, especially in the case of P12. Hence, in this case, we 

decided to reject P14 but to include P12 in the analysis. 

Is the mean of the subjective contingency distribution a linear function of ∆P? 

Figure 3 shows the mean of the subjective contingency distribution as a function of 

the recoded ∆P averaged across the 15 participants included in the analysis. Also shown is 

the best-fitting second-degree polynomial (𝑦 = 0.30𝑥% + 0.99𝑥 + 0.01, 𝑟% = 0.99). As 

indicated by its quadratic term, there is a slight yet undeniable curvature in the function.  

It is not an artefact of averaging as it can also be observed in the individual data. 

Table 2 shows for each participant the parameter of the second-degree polynomial equation 

𝑦 = 𝑎𝑥% + 𝑏𝑥 + 𝑐 fitted to the function mapping the (recoded) ∆P onto the mean of the 

subjective contingency distribution, along with the resulting percentage of variance explained 

by the regression (𝑟%). The fit of the second-degree polynomial is exceptionally good. With 

the exception of P7, 𝑟% never falls below 0.95 while the average 𝑟% is equal to 0.99, 95% CI 

[0.97, 1.00]. Otherwise, the conclusions that can be drawn from Table 2 are the same as the 

one that can be drawn from Figure 3: The quadratic term of the polynomial equation is 

positive for all but one participant and the center of the distribution of quadratic terms is 

clearly above 0 (0.26, 95% CI [0.14, 0.38]).  

Is the standard deviation of the subjective contingency distribution constant across ∆P 

values? 
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Figure 4 shows the standard deviation of the subjective contingency distribution as a 

function of (recoded) ∆P averaged across the 15 participants included in the analysis. Also 

shown is the best-fitting second-order polynomial (𝑦 = 0.12𝑥% + 0.02𝑥 + 1.00, 𝑟% = 0.92). 

While the value of the standard deviation for the reference ∆P = 0 condition remains within 

the 95% CI of most of the other standard deviations, it falls outside of it for ∆P = -0.8, 

suggesting that variability in that condition was higher than in the reference condition. The 

non-zero quadratic term of the polynomial equation points in the same direction. 

 Table III shows the parameters and percentage of variance explained by the 

polynomial equation 𝑦 = 𝑎𝑥% + 𝑏𝑥 + 𝑐 which, for each participant, was fitted to the function 

mapping the recoded ∆P onto the standard deviation of the subjective contingency 

distribution. The average proportion of variance explained by the regression remains good 

(0.72, 95% CI [0.51, 0.85]), though clearly below the one observed for the means (Table II), 

with a wider range of variation across participants. The proportion of variance explained 

ranges from 0.04 to 0.98. At the qualitative level, the participants vary also much more than 

they did in the case of the mean. Almost all participants showed some quadratic and linear 

trends in Table 2. In Table 3, some participants show both trends (for instance, P5), one of 

them but not the other (P1: linear trend but no quadratic trend; P2: quadratic trend but no 

linear trend) or none of them (P10). Overall, however, the data point in the same direction as 

Figure 4. There seems to be a quadratic trend, though possibly a small one (average quadratic 

term: 0.12, 95% CI [0.02, 0.22]) and no linear trend (average linear term: 0.03, 95% CI [-

0.05,0.10]).  

Discussion 

The aim of this study was to test the three hypotheses regarding the application of 

SDT to contingency assessment tasks: (a) the subjective contingency is drawn from a 

Gaussian distribution; (b) the mean of the subjective contingency distribution is a linear 
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function of ∆P; (c) its standard deviation is constant. Based on a 𝜒% adjustment test, the SDT 

model provides a good account of the data of 13 out of 17 participants and provides at least a 

good qualitative account of 3 of the remaining participants (the fourth one failed to 

discriminate between the conditions). Overall, there is no strong evidence that hypothesis (a) 

is false. 

 Concerning hypothesis (b), the relation between ∆P and the mean of the subjective 

contingency distribution is clearly not linear. It is best fitted by a second-degree polynomial 

with a positive quadratic term, a fact that can be seen both in the average data and in the 

individual performances. From a psychological point of view, the interpretation of this 

positive curvature is that the participants were more sensitive to changes in the positive 

contingencies than in the negative ones.  

Finally, concerning hypothesis (c), the data suggest the existence of a quadratic trend 

in the function mapping ∆P onto the standard deviation of the subjective contingency 

distribution. The variability of the perceived cue-outcome contingency increases as it 

becomes more positive or negative, though one could reasonably argue that the data provide 

only weak support for this conclusion. 

Experiment 2 

The higher sensitivity to the positive contingencies observed in Experiment 1 could be 

due to the fact that we asked the participants whether the outcome was more frequent 

following the cue. This could have biased them toward detecting positive contingencies (see 

Vadillo, Miller & Matute, 2005 for evidence of the effect of the contingency question). 

Hence, we carried out a new experiment aimed at assessing the impact of the contingency 

question. Experiment 2 was identical to Experiment 1 except that the participants were asked 

to judge whether the outcome was less frequent following the cue. If the higher sensitivity of 

the participants to positive contingencies observed in Experiment 1 was due to the 
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contingency question, we should observe a higher sensitivity to negative contingencies in 

Experiment 2. If, on the other hand, the higher sensitivity to positive contingencies observed 

in Experiment 1 was a feature of the human contingency assessment system, we should 

observe it again in Experiment 2.  

Method 

Participants and apparatus 

Seventeen participants (2 males, 15 females) aged from 19 to 29 years old (mean: 

22.00) were recruited for this experiment. The apparatus was identical to the one used in 

Experiment 1. 

Procedure and data analysis 

The procedure was identical to the one used in Experiment 1, except that at the end of 

a stream, participants were asked whether the outcome was less frequent following the target 

cue X. The instructions were modified accordingly. Data were analyzed the same way as in 

Experiment 1, except that what was the “yes” response in the current experiment was treated 

as the “no” response in the previous one and vice-versa. 

Results 

Psychometric curves 

The average proportion of trials in which a negative contingency was detected is 

shown in Figure 5 as a function of ∆P. It decreases monotonically with ∆P according to a 

sigmoid-like function.  

Is the subjective contingency drawn from a Gaussian distribution?  

The 𝜒% measuring the fit of the SDT model to the data was not significant for any 

participants. Nevertheless, we decided to exclude one participant (P2) from the analysis. In 

the ∆P = 0.8 condition, this participant always answered “Yes – very sure”, leading to an 

estimate of 15.98 for the mean of the ∆P = 0.8 distribution. This value was so extreme 
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compared to the others (the maximum value for that mean in Experiment 1 is 2.84 while the 

largest value in Experiment 2 besides P2 was 2.28) that its inclusion would have distorted the 

averages.  

Is the mean subjective contingency a linear function of ∆P? 

Figure 6 shows the mean of the subjective contingency distribution as a function of 

the recoded ∆P averaged across the 16 participants included in the analysis. The best-fitting 

second-degree polynomial (𝑦 = 0.30𝑥% + 0.74𝑥 + 0.03, 𝑟% = 1.00) is also shown. The 

function has a clearly positive curve.  

 The individual data show the same finding. Table 4 shows the parameters and  𝑟% 

values for the second-degree polynomial equation 𝑦 = 𝑎𝑥% + 𝑏𝑥 + 𝑐 used for each 

participant to predict the mean of the subjective contingency distribution on the basis of the 

(recoded) ∆P values. The polynomial equation accounts on average for a high proportion of 

the variance (0.97, 95% CI [0.93, 0.99]). Its quadratic parameter is positive for all but one 

participant (mean: 0.30, 95% CI [0.19, 0.41]). 

Is the standard deviation of the subjective contingency distribution constant across ∆P 

values? 

Figure 7 shows the standard deviation of the subjective contingency distributions as a 

function of the recoded ∆P averaged across the 16 participants included in the analysis. The 

best-fitting second-degree polynomial (𝑦 = 0.09𝑥% − 0.04𝑥 + 1.00, 𝑟% = 1.00) is also 

shown. The curve shows a weak quadratic trend though, based on the 95% CI, only the 

standard deviation for ∆P = -0.8 is significantly different from that of the reference ∆P = 0 

condition. 

 The same conclusion can be drawn from the individual data. Table 5 shows the 

parameters and  𝑟% values for the second-degree polynomial equation 𝑦 = 𝑎𝑥% + 𝑏𝑥 + 𝑐 used 

for each participant to predict the standard deviation of the subjective contingency 
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distribution on the basis of the (recoded) ∆P values. The polynomial equation accounts on 

average for a large proportion of the variance (0.56, 95% CI [0.30, 0.75]) but there is a wide 

range of variations between participants, with the proportion of variance ranging from 0.05 to 

0.98. The individual differences in the pattern of variation of the standard deviation as a 

function of ∆P are as large as in Experiment 1, but taken as a whole, the data point to the 

existence of a small quadratic term in the relation existing between ∆P and the standard 

deviation of the subjective contingency distribution (mean quadratic term: 0.11, 95% CI 

[0.02, 0.14]), while ruling out a linear trend (mean linear term: 0.04, 95% CI [-0.08, 0.01]). 

Discussion 

The rationale behind Experiment 2 was that if the positive curvature observed in 

Experiment 1 in the function mapping ∆P onto the mean of the subjective contingency 

distribution was caused by our asking the participants whether the outcome was more 

frequent following the cue, the function should display a negative curvature in Experiment 2 

in which we asked the participants whether the outcome was less frequent following the cue. 

The answer provided by the data is unambiguous. Whether the conclusions are based on the 

average means (Figure 6) or on the individual polynomial fit (Table 4), not only is the 

function mapping ∆P onto the mean of the subjective contingency distribution positively 

curved, but the degree of curvature seems identical to that observed in Experiment 1. The 

quadratic term of the second-degree polynomial fitted to the average data in Figure 3 is 0.29 

vs. 0.30 in Figure 6. The average quadratic term is 0.30, 95% CI [0.19, 0.40] in Table 2 vs. 

0.30, 95% CI [0.19, 0.41] in Table 4. In conclusion, Experiment 2 replicates our finding from 

Experiment 1, i.e. the participants were less sensitive to the negative contingencies than to the 

positive ones. 

 The results of Experiment 2 are strikingly like those of Experiment 1. The 95% CI of 

all the polynomial parameters and even of the 𝑟% values in Table 2 and 3 fall well within the 
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range of their counterparts in Table 4 and 5. Comparing Figure 3 to Figure 6 and Figure 4 to 

Figure 7, one can see that the parameters of the polynomial fitted to the data are also very 

similar. The linear term of the polynomial equation in Figure 6 is lower than that in Figure 3 

but the comparison of the 95% CI in Table 2 and 4, to which more attention should be paid 

because of the strong link between ∆P and the mean of the subjective contingency 

distribution, does not support this conclusion. Hence, the change in the contingency question 

did not have any effect, so for practical purposes Experiment 2 can be considered as an 

independent replication of Experiment 1. This means that the results of both experiments can 

be compared to reach more definitive conclusions. 

 On this basis, it seems that the following conclusions can be reached with some level 

of certainty. The first is obvious: the participants were sensitive to the cue-outcome 

contingency, as indicated by Figures 1 and 5, Figures 3 and 4 and the positive value of the 

linear terms of the polynomial regression in Tables 2 and 4 (average linear parameter over 

Tables 2 and 4: 0.86, 95% CI [0.64, 1.07]).  

Second, the hypothesis that the subjective contingency is drawn from a Gaussian 

distribution seems highly plausible given that, out of the 34 participants in both Experiments 

1 and 2, a case could be made for a failure of the SDT model in only 5 participants.  

 Third, the mean of the subjective contingency distribution varies much more 

systematically with ∆P than its standard deviation. ∆P is almost the sole contributor to the 

variance of the mean (average 𝑟% over Table 2 and 4: 0.98, 95% CI [0.96, 0.99]). ∆P remains 

a main contributor to the variance of the standard deviation (average 𝑟% over Tables 3 and 5: 

0.64, 95% CI [0.49, 0.76]) but other sources of variations clearly play a role.  

 The fourth conclusion is the one discussed above concerning the positive curvature of 

the function mapping ∆P onto the mean of the subjective contingency distribution. For 

reference, if the data from Tables 2 and 4 are grouped together, the average value of the 



Psychophysics of Associative Learning 18	

quadratic term is 0.29, 95% CI [0.22, 0.37].   

The fifth conclusion is where discussing both experiments together is the most 

informative as it concerns the variation in the standard deviation of the subjective 

contingency distribution as a function of ∆P. Taken apart, each experiment provides only 

weak support for the existence of a quadratic trend in the relation between ∆P and the 

standard deviation. That claim becomes much stronger once the two experiments are put 

together as Experiment 2 replicates the finding of Experiment 1. The quadratic term for the 

polynomial regression once Tables 3 and 5 have been combined is 0.10, 95% CI [0.04, 0.15]. 

Figure 8 shows the standard deviation of the subjective mean distribution as a function of 

(recoded) ∆P as well as the best-fitting polynomial equation (𝑦 = 0.10𝑥% − 0.01𝑥 +

1.00, 𝑟% = 0.96) once the data from Figures 4 and 7 have been combined. The conclusion in 

both cases is the same: though weak in amplitude, the quadratic trend is clearly present. On 

the other hand, it seems unlikely that there is a linear trend in the relation between ∆P and the 

standard deviation. The average linear term for the polynomial regression once Tables 3 and 

5 have been combined is -0.01, 95% CI [-0.05, 0.04], which can be compared to the linear 

term of -0.01 shown in the polynomial equation fitted to the data in Figure 10. 

General discussion 

In this study, participants were exposed to flow of stimuli (i.e., a target cue and an 

outcome) and had to judge whether an outcome was more (Experiment 1) or less (Experiment 

2) likely to appear following a cue. Our goal was to test three hypotheses one could make 

when applying SDT to contingency assessment: (a) the subjective contingency is drawn from 

a Gaussian distribution; (b) the mean of the distribution is a linear function of ∆P; (c) its 

standard deviation is constant.  

We found that the data could be accounted for by a SDT Gaussian model. On the 

other hand, the assumption that the mean of the subjective contingency distribution is linearly 
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related to ∆P does not seem to hold. In both experiments, the participants were more sensitive 

to positive contingencies than to negative ones.  Finally, the assumption that the standard 

deviation of the subjective contingency distribution remains constant over the ∆P value also 

needs qualification. The perception of the cue-outcome contingency becomes more variable 

as the contingency becomes more negative or positive, though only slightly. For practical 

purposes, if the SDT model is used only to measure how sensitive a participant is to 

variations in ∆P, the quadratic trend in the relation between ∆P and the standard deviation of 

the subjective contingency distribution can probably be ignored, especially if the comparison 

does not involve extremely positive or negative contingencies. However, any theoretical 

account of the variability of the subjective contingency must take it into account since, albeit 

small, it is no less real. 

We reached these conclusions using the streamed-trial procedure, a new experimental 

paradigm created by Allan et al. specifically to allow the application of SDT to associative 

learning. The version Allan et al. used (with the notable exception of Experiment 1b in Allan 

et al, 2008) involved a simultaneous conditioning procedure, with the cue and outcome both 

shown at the same time, while we used a delay conditioning paradigm with the outcome 

following the cue. Despite this difference, we were able to replicate the effect of ∆P 

demonstrated by Allan et al. This strengthens the generality of the streamed-trial procedure as 

a tool for studying human contingency learning. 

Though the categorical dependent variable we used in this study might seem 

inappropriate in regard to the quantitative goal we set ourselves, the results show that rich 

quantitative information can be derived from it once it is analyzed through SDT. 

Nevertheless, one may wonder whether the same conclusion would have been reached or not 

using more traditional techniques. For instance, we could have used a 6-point Likert scale 

ranging from -3 to +3 or have recorded contingency judgement by having participants pick a 
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location on a continuous line ranging from -100 to +100. 

Our dependent measure is equivalent in fact to a 6-point Likert scale, except that it is 

labeled from “No – Very Sure” to “Yes – Very Sure” rather than from -3 to +3. No matter 

how it is labeled, it remains an ordinal measure of performance and SDT is one appropriate 

way to analyze it. This only requires commitment to the assumptions underlying SDT, i.e. 

performance is based on an internal continuous decision variable whose comparison to 

decision thresholds determines the response, both of which are explicit, minimal and quite 

plausible when applied to situations like the one studied here. 

 By contrast, the standard practice of analyzing Likert scale data as if they were 

numerical variables relies on a set of implicit and quite improbable assumptions. It is bound 

to introduce distortions in the conclusions which make it inappropriate for quantitative 

investigations. As a case in point, we reanalyzed the data from Experiment 1 as if we had 

used a Likert scale ranging from -3 to +3. By treating these data as if they were numerical 

variables, we were able to compute the equivalent of the psychometric function in Figure 3, 

showing how the average Likert scale rating varies with the recoded ∆P (Figure 9). This 

function (well-fitted by 𝑦 = 1.20𝑥% + 1.06𝑥 − 0.60, 𝑟% = 0.94) over-estimates the quadratic 

trend and would have led to us to conclude wrongly that the participants were insensitive to 

the negative contingencies. 

Using a continuous scale to assess contingency learning has the advantage over a 

Likert scale that the dependent variable is genuinely numerical. However, it comes with its 

own set of implicit assumptions which make it inappropriate for the kind of quantitative 

investigations we conducted in the present study. Let I be the objective stimulus intensity, X 

the subjective stimulus intensity and Y the point on the continuous line selected by the 

participant. X and I are related by a function F so that X = F(I). Y and X are related by a 

function S so that Y = S(X) = S[F(I)] = R(I). The goal of this study was to reveal the 
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properties of F. Unfortunately, from the observation of the Y = R(I) relation, it is impossible 

to infer valuable information about function F without making assumptions about function S. 

There are no theoretical guidelines to constrain these assumptions which reflect the fact that 

the very process by which the participants were able to map the subjective intensity of the 

stimulus onto a point on the continuous scale remains mysterious and was not properly 

investigated. 

 In conclusion, we consider that neither a Likert scale treated as a numerical variable 

nor the use of a continuous scale provides a substitute for SDT. Only the latter is grounded in 

theoretical principles sound enough to guarantee the validity of the quantitative conclusions 

derived from it. 

 A surprising outcome of the present investigation is the discovery that the participants 

were less sensitive to negative contingencies than to positive ones. There are some 

corroborations for this finding in the literature. In an operant task, Wasserman, Elek, 

Chatlosh & Baker (1993) reported that the rating of the contingency relation between the cue 

(a key-tapping response) and the outcome (a flash of light) was more sensitive to the 

probability of the outcome following the cue than of the outcome in the absence of the cue. 

Data from Mutter & Williams (2004) collected in another operant procedure shows that the 

participants, especially the older ones, were less sensitive to change in the negative 

contingencies than in the positive ones. Finally, using a streamed-trial procedure, Allan et al. 

(2008) asked participants to judge how strong the relation between a cue and an outcome 

was. They found that, for a given absolute value of ∆P, participants judged that the relation 

between the cue and the outcome was stronger when the contingency was positive rather than 

when it was negative. They interpreted this result as reflecting an effect on the decision 

criterion 𝜆 rather than on the sensitivity to the contingencies. The present study shows that 

this explanation is not sufficient: the psychometric curves in Figures 3 and 5 are free of any 
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influence from the decision criterion yet still display an asymmetry between positive and 

negative contingencies.  

Moreover, the analysis conducted by Allan et al. (2008) was based on the fit of a 

Gaussian cumulative function to psychometric curves similar to the one displayed in Figure 

1, whose parameters are then analyzed within the framework of a Gaussian SDT model with 

constant variance. This is not enough to distinguish between an account assuming a change in 

the decision criterion but not in the underlying subjective contingency distributions, one 

account assuming the reverse and the other assuming both. Suppose, for instance, that in a 

given condition, the probability for the participant to detect a contingency between the cue 

and the outcome is equal to p1. In that condition, the subjective contingency is drawn from a 

Gaussian distribution with mean 𝜇; and standard deviation 𝜎. If the subjective contingency 

falls above a criterion 𝜆;, the participant perceives a positive contingency. The stimulus 

condition is changed and the probability to detect a positive contingency falls to p2. This 

could be explained either by assuming that the criterion moved from  𝜆; to 𝜆% (with 𝜆% −

𝜆; = 𝑘) so that  

𝑝2 = 𝜙 ?−
𝜆% − 𝜇;
𝜎 @

= 𝜙 ?−
𝜆; + 𝑘 − 𝜇;

𝜎 @
 

or that 𝜇; has moved to 𝜇% (𝜇; − 𝜇% = 𝑘) so that  

𝑝2 = 𝜙 ?−
𝜆% − 𝜇;
𝜎 @

= 𝜙 ?−
𝜆; + 𝑘 − 𝜇;

𝜎 @
 

Between these two extremes, we can build an infinity of mathematically equivalent models 

assuming a change in both the decision criterion and the mean of the distribution.  

 The same problem undermines the conclusion of Siegel et al. (2009) that cue 

competition effects in the streamed-trial procedure reflect a performance deficit, i.e. a change 
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in the decision criterion, rather than a learning deficit, i.e. a change in the subjective 

contingency distribution. A study by Laux et al. (2010) seems to provide stronger evidence 

for this conclusion. Using a streamed-trial procedure, they manipulated the contingency 

between a target cue and the outcome, which could be null or positive, and between a 

competing cue and the outcome, which could also be null (weak alternative condition) or 

positive (strong alternative condition). Participants were more likely to detect the positive 

contingency between the target cue and the outcome in the weak alternative condition than in 

the strong alternative condition. Laux et al. (2010) applied a Gaussian SDT model with 

constant variance to their data, making the usual assumptions. In the null (respectively 

positive) contingency condition, the subjective contingency was drawn from a Gaussian 

distribution with mean 𝜇; (respectively 𝜇%) and standard deviation 𝜎; if the subjective 

contingency was above a threshold 𝜆, the subject perceived a contingency between the target 

cue and the outcome, otherwise he did not. Laux et al. (2010) showed that d’, the distance 

between 𝜇; and 𝜇%, was roughly the same in the weak alternative and in the strong alternative 

condition, while 𝜆 was much higher in the latter condition than in the former one. However, 

as all the parameters in an SDT model are expressed relative to a reference condition (in this 

case,  𝜇;) an alternative explanation, assuming that 𝜇; and 𝜇% changed while 𝜆 remained 

constant, is possible as long as the distance between 𝜇; and 𝜇% remains the same. This latter 

requirement is not as far-fetched as it might seem as simulations of the procedure of Laux et 

al. using the Rescorla-Wagner simulator developed by Mondragon, Alonso, Fernández, & 

Gray (2013) show that this is exactly what the Rescorla-Wagner model predicts. The 

associative strength of a contingent and of a non-contingent cue are lower in the strong 

alternative condition than in the weak alternative one but the distance between the two 

associative strengths remains the same. 

 On the other hand, the claim by Allan et al. (2005) that the outcome density affects 
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the decision criterion 𝜆 and not the underlying subjective contingency distribution as well as 

the conclusion by Perales et al. (2005) that this is also the case for the cue frequency are not 

susceptible to the arguments we used against Siegel et al. (2009) and Laux et al. (2010). As 

such, they seem to be based on more solid grounds.  

Overall, this paper complements previous work by Allan et al. in showing the value of 

SDT for contingency learning, and beyond that, of a psychophysical approach to associative 

learning. Psychophysics is concerned with how objective stimulus intensity maps onto 

subjective stimulus intensity. If we consider that the objective contingency between two 

stimuli can be measured objectively with ∆P, asking how the objective contingency maps 

onto the subjective one is an obvious question if associative learning is approached from a 

psychophysical perspective. This issue has, on the other hand, attracted very little attention in 

traditional modeling of associative learning. Another issue central to psychophysics is the one 

of noise. An important aim of most psychophysical models is to characterize the noise in the 

stimulus representation. By contrast, most models of associative learning are purely 

deterministic and have never considered possible sources of noise in associative learning nor 

the impact it could have on performance. 

By tackling directly the issue of the mapping of objective contingency onto subjective 

contingency and the question of noise in subjective contingency, studies such as this one pave 

the way for a new type of model of associative learning rooted in psychophysics. 

Nevertheless, further research is needed to bring more empirical grist to the theoretical mill 

of such yet-to-be models. For instance, at this point, we have no explanation for the higher 

sensitivity to positive contingencies or the increase in the variability of the perceived cue-

outcome contingency as the contingency becomes more positive or negative. This requires 

further investigation.  

Intuitively, the higher sensitivity to positive contingencies could be explained by 
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assuming that the participants were more sensitive to things happening (in this case, the 

outcome being presented following the cue) than to things not happening (the outcome not 

being presented following the cue). In support of this hypothesis, one could point out that the 

error-correction signal identified in the midbrain dopamine neurons is stronger and more 

graded when an unexpected reward occurs than when an expected reward is omitted (for 

instance, see Fiorillo, Tobler, & Schuttz, 2003 or Stauffer, Lak, & Schultz, 2014). But it is 

very unlikely that the dopamine system is involved in the present study given that the stimuli 

used in the procedure lacked any rewarding properties. Moreover, the idea that the 

participants are differentially sensitive to the occurrence or non-occurrence of an event runs 

against Gallistel and Gibbon’s (2000) claim that, at least in pigeon autoshaping, extinction 

proceeds at the same speed, if not faster, than acquisition. At this point, the only conclusion 

that can be reached without any doubt is that the higher sensitivity of the participants to the 

positive contingency does not fit with the Rescorla-Wagner model which predicts a linear 

relation between ∆P and the subjective contingency (Rescorla & Wagner, 1972; Danks, 

2003).  

Many other questions remain unanswered. For instance, ∆P has two components: the 

probability of the outcome in the presence (or just following) the cue, which corresponds to 

the number of pairings between the cue and the outcome, and the probability of the outcome 

in the absence of the cue, i.e. the number of unpaired presentations of the outcome. In the 

present study, both probabilities changed when we manipulated ∆P in order to keep the 

outcome density constant between streams for reasons already discussed above. However, 

that means that we cannot know how much either of the components of ∆P (number of cue-

outcome pairing and unpaired presentation of the outcome) contributed to the subjective 

contingency. Did they both contribute and if so, in which proportion? Or did only one 

contribute and if so, which one? This is certainly a question worth investigating. 
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The considerable individual differences observed in the data is another issue that 

deserves further study. The linear term of the polynomial equation shown in Tables 2 and 3 

captures the sensitivity of participants to a change in the cue-outcome contingency. As can be 

seen, it varied greatly among them. We already highlighted the individual differences shown 

in Tables 3 and 5 in the pattern of variation of the standard deviation as a function of ∆P. 

Future research could investigate whether these differences can be predicted based on some 

characteristics of participants and whether they are themselves predictors of their 

performance in specific situations. For instance, one would expect that participants with a 

higher sensitivity to the contingencies would be more responsive to extinction treatment than 

those with a lower sensitivity to the contingencies.  

Finally, it would be fundamental to study the impact of several variables critical for 

associative learning in the SDT model, such as the amount of training, or temporal variables 

(duration of stimuli, time interval between them and between trials, etc.). Would these 

variables have an impact on the mean of the distribution, on their standard deviation, or on 

both? Furthermore, it would be interesting to know whether, keeping ∆P and its component 

probabilities constant, the performance of the participants varies with the number of trials in a 

stream, whether it changes with further exposure to the task or whether sensitivity to the 

contingencies can be improved by providing participants with feedback about their 

performance. We mention all these issues not merely to point out the obvious limitations of 

the current study but to show the exciting new pathways that can be trodden within a 

psychophysical approach to associative learning and which could lead us to a deeper and 

more fundamental understanding of associative learning in both men and animals.  
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Appendix A 

Average proportion of responses per response category (yes/no answer + confidence level) 

as a function of ∆P in Experiment 1. Numbers in parenthesis are the uncorrected standard 

deviations.  

      NO                       YES 

                         -----------------------------------------           ------------------------------------------ 

∆P/category     Very Sure         Sure        Not Sure            Not Sure        Sure          Not Sure 

-0.8  0.17 (0.22)   0.34 (0.19)   0.25 (0.20)        0.10 (0.08)   0.12 (0.12)   0.02 (0.05) 

-0.4  0.09 (0.13)   0.35 (0.20)   0.27 (0.19)        0.13 (0.09)   0.14 (0.12)   0.02 (0.05) 

0  0.05 (0.06)   0.25 (0.14)   0.28 (0.17)        0.21 (0.10)   0.19 (0.13)   0.03 (0.05) 

0.4  0.02 (0.03)   0.13 (0.07)   0.18 (0.08)        0.29 (0.16)   0.32 (0.11)   0.07 (0.08) 

0.8  0.00 (0.01)   0.05 (0.05)   0.09 (0.06)        0.25 (0.20)   0.40 (0.16)   0.21 (0.22) 
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Appendix B 

Average proportion of responses per response category (yes/no answer + confidence level) 

as a function of ∆P in Experiment 2. Numbers in parenthesis are the uncorrected standard 

deviations.  

      YES                       NO 

                         -----------------------------------------           ------------------------------------------ 

∆P/category     Very Sure         Sure        Not Sure            Not Sure        Sure          Not Sure 

-0.8  0.15 (0.20)   0.35 (0.18)   0.17 (0.13)        0.15 (0.09)   0.16 (0.12)   0.02 (0.02) 

-0.4  0.10 (0.20)   0.30 (0.18)   0.23 (0.13)        0.19 (0.09)   0.17 (0.12)   0.01 (0.05) 

0  0.04 (0.12)   0.25 (0.15)   0.23 (0.14)        0.23 (0.11)   0.21 (0.11)   0.03 (0.02) 

0.4  0.02 (0.03)   0.13 (0.10)   0.17 (0.09)        0.26 (0.16)   0.33 (0.15)   0.09 (0.18) 

0.8  0.00 (0.01)   0.08 (0.10)   0.10 (0.08)        0.20 (0.19)   0.39 (0.20)   0.22 (0.28) 
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Table 1 

Number of trials as a function of trial type and ∆P condition along with resulting 

probabilities  

∆P    AX+    AX-  A+  A-    P(O|AX)    P(O|A)          P(O)     P(X)         

-0.8      1          9        9          1              0.10         0.90                 0.5        0.5                   

-0.4      3          7        7          3              0.30         0.70                 0.5        0.5                   

 0      5          5        5          5              0.50         0.50                 0.5        0.5                   

 0.4      7          3        3          7              0.70         0.30                 0.5        0.5                   

 0.8      9          1        1          9              0.90         0.10                 0.5        0.5           

Note - AX+ cue and outcome (O) are presented. AX- cue is presented but not outcome. A+ 

outcome is presented but not cue. A- Neither cue nor outcome are presented.   
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Table 2 

Parameters of second-degree polynomial 𝑎𝑥% + 𝑏𝑥 + 𝑐 that, for each participant in 

Experiment 1, was fitted to function mapping (recoded) ∆P value over mean of subjective 

contingency distribution. 

Participants/Parameters  a     b      c                 𝑟% 
P1    0.44   1.47     0.01     1.00 
P2    0.17   0.54    - 0.05     0.95 
P3    0.52   2.32    - 0.10     0.99 
P4    0.30   0.45     0.03     0.99 
P5    0.41   1.86     -0.06     1.00 
P6    0.14   0.42     -0.01     1.00 
P7    0.14   0.21     0.13     0.65 
P9    0.28   1.49     0.02     0.99 
P10    0.15   0.57     -0.03     1.00 
P11    -0.06   0.60     0.07     0.94 
P12    0.41   1.11     0.02     1.00 
P13    0.15   0.39     0.08     0.97 
P15    0.61   0.99    - 0.07     0.98 
P16    0.59   0.97     0.14     0.95 
P17    0.19   1.49     0.03     0.99 
Mean    0.30   0.99     0.01     0.99 
95% CI            [0.19, 0.40]      [0.65, 1.34]       [-0.03, 0.05]     [0.97, 1.00] 
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Table 3 

Parameters of second-degree polynomial 𝑎𝑥% + 𝑏𝑥 + 𝑐 that, for each participant in 

Experiment 1, was fitted to function mapping (recoded) ∆P value over standard deviation of 

subjective contingency distribution. 

Participants/Parameters  a     b      c                 𝑟% 
P1    0.02   0.11     0.95     0.74 
P2    0.20   0.04     0.89     0.57 
P3    0.43   -0.02     1.04     0.74 
P4    -0.06   -0.08     0.94     0.31 
P5    0.41   0.28     1.06     0.97 
P6    -0.03   0.00     0.97     0.05 
P7    0.05   -0.23     0.99     0.98 
P9    0.02   0.00     1.03     0.04 
P10    -0.07   -0.08     1.06     0.74 
P11    -0.02   -0.07     1.06     0.28 
P12    0.04   0.26     1.15     0.79 
P13    0.02   -0.14     0.92     0.77 
P15    0.26   0.17     0.87     0.64 
P16    0.39   0.07     1.04     0.78 
P17    0.17   0.08     1.03     0.65 
Mean    0.12   0.03     1.00     0.72   
95% CI            [0.02, 0.22]      [-0.05, 0.10]       [0.96, 1.04]    [0.51, 0.85]    
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Table 4 

Parameters of second-degree polynomial 𝑎𝑥% + 𝑏𝑥 + 𝑐 that, for each participant in 

Experiment 2, was fitted to function mapping (recoded) ∆P value over mean of subjective 

contingency distribution. 

Participants/Parameters  a     b      c                 𝑟% 
P1    -0.02   1.71     0.05     1.00 
P3    0.33   1.85     0.09     1.00 
P4    0.33   0.34    - 0.06     0.98 
P5    0.39   0.25     -0.07     0.99 
P6    0.08   0.59     0.04     0.95 
P7    0.67   1.07     -0.01     0.99 
P8    0.30   0.38     0.21     0.83 
P9    0.16   0.34     -0.13     0.90 
P10    0.14   0.77     0.21     0.93 
P11    0.46   0.83     0.08     0.99 
P12    0.58   0.74     0.06     0.97 
P13    0.38   0.37     0.03     0.87 
P14    0.07   0.14     0.02     0.79 
P15    0.61   1.69     -0.10     0.99 
P16    0.03   0.06     0.06     0.46 
P17    0.31   0.64     0.13     0.97  
Mean    0.30   0.74     0.04     0.97 
95% CI            [0.19, 0.41]      [0.43, 1.04]       [-0.01, 0.09]     [0.93, 0.99] 
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Table 5 

Parameters of second-degree polynomial 𝑎𝑥% + 𝑏𝑥 + 𝑐 that, for each participant in 

Experiment 2, was fitted to function mapping (recoded) ∆P value over standard deviation of 

subjective contingency distribution. 

Participants/Parameters  a     b      c                 𝑟% 
P1    0.17   -0.03     1.04     0.87 
P3    -0.06   -0.07     1.36     0.03 
P4    -0.04   -0.01     1.01     0.07 
P5    0.09   -0.01     0.96     0.14 
P6    0.18   -0.17     0.97     0.71 
P7    0.11   0.20     0.94     0.84 
P8    -0.03   -0.01     0.93     0.07 
P9    0.14   -0.06     1.05     0.75 
P10    0.12   -0.02     0.96     0.21 
P11    0.12   -0.12     1.10     0.35 
P12    0.04   -0.01     0.93     0.05 
P13    -0.13   -0.09     0.93     0.76 
P14    0.04   -0.06     0.95     0.63 
P15    0.06   0.00     1.01     0.07 
P16    0.35   -0.02     0.98     0.98 
P17    0.11  -0.14     0.90     0.69  
Mean    0.08   -0.04     1.00     0.56   
95% CI            [0.02, 0.14]      [-0.08, 0.01]       [0.94, 1.06]    [0.30, 0.75]       
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Figure 1. Average proportion of trials on which positive contingency was detected as a 

function of ∆P in Experiments 1. Error bars are 95% CI. 
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Figure 2. Proportion of trials, as a function of ∆P, on which a positive contingency would 

have been detected had the decision threshold been located at one of the various confidence 

thresholds for four participants in Experiment 1. Points are actual data while curves are 

predictions of SDT model. A 𝜒% adjustment test indicated that performance of these 

participants deviated significantly from SDT model. 
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Figure 3. Average mean of subjective contingency distribution as a function of (recoded) ∆P 

in Experiment 1. Error bars are 95% CI. The best-fitting second-order polynomial (𝑦 =

0.30𝑥% + 0.99𝑥 + 0.01, 𝑟% = 1.00) is also shown. 
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Figure 4. Average standard deviation of subjective contingency distribution as a function of 

(recoded) ∆P in Experiment 1. Error bars are 95% CI. The best-fitting second-order 

polynomial (𝑦 = 0.12𝑥% + 0.02𝑥 + 1.00, 𝑟% = 0.92) is also shown. 
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Figure 5. Average proportion of trials on which a negative contingency was detected as a 

function of ∆P in Experiments 2. Error bars are 95% CI. 
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Figure 6. Average mean of subjective contingency distribution as a function of (recoded) ∆P 

in Experiment 2. Error bars are 95% CI. The best-fitting second-order polynomial (𝑦 =

0.30𝑥% + 0.74𝑥 + 0.03, 𝑟% = 1.00) is also shown.  
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Figure 7. Average standard deviation of subjective contingency distribution as a function of 

(recoded) ∆P in Experiment 2. Error bars are 95% CI. The best-fitting second-order 

polynomial (𝑦 = 0.09𝑥% − 0.04𝑥 + 1.00, 𝑟% = 1.00) is also shown. 
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Figure 8. Average standard deviation of subjective contingency distribution as a function of 

(recoded) ∆P in Experiments 1 and 2 combined. Error bars are 95% CI. The best-fitting 

second-order polynomial (𝑦 = 0.10𝑥% − 0.01𝑥 + 1.00, 𝑟% = 0.96) is also shown. 

  

 0.9

 1

 1.1

 1.2

 1.3

-1 -0.5  0  0.5  1

Standard deviation of the subjective contingency distribution

Recoded 6P



Psychophysics of Associative Learning 47	

 
Figure 9. Average Likert scale rating as a function of (recoded) ∆P in Experiment 1. Error 

bars are 95% CI. The best-fitting second-order polynomial (𝑦 = 1.20𝑥% + 1.06𝑥 −

0.60, 𝑟% = 0.94) is also shown.  
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