G. D. Holt and G. W. Hart, The subcellular distribution of terminal Nacetylglucosamine moieties, J Biol Chem, vol.261, pp.8049-57, 1986.

C. R. Torres and G. W. Hart, Topography and polypeptide distribution of terminal Nacetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc, J Biol Chem, vol.259, pp.3308-3325, 1984.

C. Butkinaree, K. Park, and G. W. Hart, O-linked beta-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress, Biochim Biophys Acta, vol.1800, pp.96-106, 2010.

G. W. Hart, C. Slawson, G. Ramirez-correa, and O. Lagerlof, Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease, Annu Rev Biochem, vol.80, pp.825-58, 2011.

J. Ma and G. W. Hart, O-GlcNAc profiling: from proteins to proteomes, Clin Proteomics, 2014.

M. R. Bond and J. A. Hanover, O-GlcNAc cycling: a link between metabolism and chronic disease, Annu Rev Nutr, vol.33, pp.205-234, 2013.

T. Lefebvre, V. Dehennaut, C. Guinez, S. Olivier, L. Drougat et al., Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer's disease, Biochim Biophys Acta, vol.1800, pp.67-79, 2010.

Z. Ma and K. Vosseller, O-GlcNAc in cancer biology, Amino Acids, vol.45, pp.719-752, 2013.

C. Slawson, R. J. Copeland, and G. W. Hart, O-GlcNAc signaling: a metabolic link between diabetes and cancer?, Trends Biochem Sci, vol.35, pp.547-55, 2010.

N. E. Zachara, K. Vosseller, and G. W. Hart, Detection and analysis of proteins modified by O-linked N-acetylglucosamine, Curr Protoc Protein Sci, vol.12, 2011.

P. Hu, S. Shimoji, and G. W. Hart, Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation, FEBS Lett, vol.584, pp.2526-2564, 2010.

S. Mishra, S. R. Ande, and N. W. Salter, O-GlcNAc modification: why so intimately associated with phosphorylation?, Cell Commun Signal, vol.9, p.1, 2011.

Q. Zeidan and G. W. Hart, The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways, J Cell Sci, vol.123, pp.13-22, 2010.

C. Cieniewski-bernard, E. Dupont, E. Richard, and B. Bastide, Phospho-GlcNAc modulation of slow MLC2 during soleus atrophy through a multienzymatic and sarcomeric complex, Pflugers Arch, vol.466, pp.2139-51, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02539468

T. Rabilloud, Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains, Proteomics, vol.2, pp.3-10, 2002.

A. Rogowska-wrzesinska, L. Bihan, M. C. Thaysen-andersen, M. Roepstorff, and P. , 2D gels still have a niche in proteomics, J Proteomics, vol.88, pp.4-13, 2013.

V. Champattanachai, P. Netsirisawan, P. Chaiyawat, T. Phueaouan, R. Charoenwattanasatien et al., Proteomic analysis and abrogated expression of O-GlcNAcylated proteins associated with primary breast cancer, Proteomics, vol.13, pp.2088-99, 2013.

C. Cieniewski-bernard, B. Bastide, T. Lefebvre, J. Lemoine, Y. Mounier et al., Identification of O-linked N-acetylglucosamine proteins in rat skeletal muscle using two-dimensional gel electrophoresis and mass spectrometry, Mol Cell Proteomics, vol.3, pp.577-85, 2004.

L. Drougat, S. S. Olivier-van, M. Mortuaire, F. Foulquier, A. S. Lacoste et al., Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition, Biochim Biophys Acta, vol.1820, pp.1839-1887, 2012.

J. Park, H. Kwon, Y. Kang, and Y. Kim, Proteomic analysis of O-GlcNAc modifications derived from streptozotocin and glucosamine induced beta-cell apoptosis, J Biochem Mol Biol, vol.40, pp.1058-68, 2007.

Y. Gu, S. R. Ande, and S. Mishra, Altered O-GlcNAc modification and phosphorylation of mitochondrial proteins in myoblast cells exposed to high glucose, Arch Biochem Biophys, vol.505, pp.98-104, 2011.

D. R. Graham, M. J. Mitsak, S. T. Elliott, D. Chen, S. A. Whelan et al., Two-dimensional gel-based approaches for the assessment of N-Linked and O-GlcNAc glycosylation in human and simian immunodeficiency viruses, vol.8, pp.4919-4949, 2008.

J. Wu, N. J. Lenchik, M. J. Pabst, S. S. Solomon, J. Shull et al., Functional characterization of two-dimensional gel-separated proteins using sequential staining, Electrophoresis, vol.26, pp.225-262, 2005.

E. Dubois, V. Richard, P. Mulder, N. Lamblin, H. Drobecq et al., Decreased serine207 phosphorylation of troponin T as a biomarker for left ventricular remodelling after myocardial infarction, Eur Heart J, vol.32, pp.115-138, 2011.

J. Liu, Y. Cai, J. Wang, Q. Zhou, B. Yang et al., Phosphoproteome profile of human liver chang's cell based on 2-DE with fluorescence staining and MALDI-TOF/TOF-MS, Electrophoresis, vol.28, pp.4348-58, 2007.

T. H. Steinberg, B. J. Agnew, K. R. Gee, W. Y. Leung, T. Goodman et al., Global quantitative phosphoprotein analysis using multiplexed proteomics technology, Proteomics, vol.3, pp.1128-1172, 2003.

X. Yin, F. Cuello, U. Mayr, Z. Hao, M. Hornshaw et al., Proteomics analysis of the cardiac myofilament subproteome reveals dynamic alterations in phosphatase subunit distribution, Mol Cell Proteomics, vol.9, pp.497-509, 2010.

H. Hahne, N. Sobotzki, T. Nyberg, D. Helm, V. S. Borodkin et al., Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry, J Proteome Res, vol.12, pp.927-963, 2013.

J. Sasse and S. R. Gallagher, Staining proteins in gels, Curr Protoc Mol Biol, vol.10, 2009.

, Electrophoresis: from protein maps to genomes. proceedings of the international meeting, siena, Electrophoresis, vol.16, issue.7, pp.1077-322, 1994.

S. J. Fey and P. M. Larsen, 2D or not 2D. Two-dimensional gel electrophoresis, Curr Opin Chem Biol, vol.5, pp.26-33, 2001.

A. Gorg, O. Drews, C. Luck, F. Weiland, and W. Weiss, 2-DE with IPGs, Electrophoresis, vol.30, pp.122-154, 2009.

T. Rabilloud, M. Chevallet, S. Luche, and C. Lelong, Two-dimensional gel electrophoresis in proteomics: Past, present and future, J Proteomics, vol.73, pp.2064-77, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00509715

W. F. Patton, Detection technologies in proteome analysis, J Chromatogr B Analyt Technol Biomed Life Sci, vol.771, pp.3-31, 2002.

C. Marondedze, K. Lilley, and L. Thomas, Comparative gel-based phosphoproteomics in response to signaling molecules, Methods Mol Biol, vol.1016, pp.139-54, 2013.

E. Saxon and C. R. Bertozzi, Cell surface engineering by a modified Staudinger reaction, Science, vol.287, pp.2007-2017, 2000.

B. W. Zaro, H. C. Hang, and M. R. Pratt, Incorporation of unnatural sugars for the identification of glycoproteins, Methods Mol Biol, vol.951, pp.57-67, 2013.

P. M. Clark, J. F. Dweck, D. E. Mason, C. R. Hart, S. B. Buck et al., Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins, J Am Chem Soc, vol.130, pp.11576-11583, 2008.

Z. Wang, K. Park, F. Comer, L. C. Hsieh-wilson, C. D. Saudek et al., Site-specific GlcNAcylation of human erythrocyte proteins: potential biomarker(s) for diabetes, Diabetes, vol.58, pp.309-326, 2009.