D. K. Blumenthal and J. T. Stull, Activation of skeletal muscle myosin light chain kinase by calcium(2+) and calmodulin, Biochemistry, vol.19, pp.5608-5614, 1980.

C. Bozzo, L. Stevens, L. Toniolo, Y. Mounier, and C. Reggiani, Increased phosphorylation of myosin light chain associated with slow-to-fast transition in rat soleus, Am J Physiol Cell Physiol, vol.285, pp.575-583, 2003.

C. Butkinaree, W. D. Cheung, S. Park, K. Park, M. Barber et al., Characterization of beta-N-acetylglucosaminidase cleavage by caspase-3 during apoptosis, J Biol Chem, vol.283, pp.23557-23566, 2008.

W. D. Cheung and G. W. Hart, AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation, J Biol Chem, vol.283, pp.13009-13020, 2008.

W. D. Cheung, K. Sakabe, M. P. Housley, W. B. Dias, and G. W. Hart, O-linked beta-Nacetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins, J Biol Chem, vol.283, pp.33935-33941, 2008.

C. Cieniewski-bernard, B. Bastide, T. Lefebvre, J. Lemoine, Y. Mounier et al., Identification of O-linked N-acetylglucosamine proteins in rat skeletal muscle using twodimensional gel electrophoresis and mass spectrometry, Mol Cell Proteomics, vol.3, pp.577-585, 2004.

C. Cieniewski-bernard, V. Montel, S. Berthoin, and B. Bastide, Increasing O-GlcNAcylation Level on Organ Culture of Soleus Modulates the Calcium Activation Parameters of Muscle Fibers, PLoS One, vol.7, p.48218, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01406895

C. Cieniewski-bernard, V. Montel, L. Stevens, and B. Bastide, O-GlcNAcylation, an original modulator of contractile activity in striated muscle, J Muscle Res Cell Motil, vol.30, pp.281-287, 2009.

C. Cieniewski-bernard, Y. Mounier, J. C. Michalski, and B. Bastide, O-GlcNAc level variations are associated with the development of skeletal muscle atrophy, J Appl Physiol, vol.100, pp.1499-1505, 2006.

R. J. Copeland, J. W. Bullen, and G. W. Hart, Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity, Am J Physiol Endocrinol Metab, vol.295, pp.17-28, 2008.

D. L. Dong and G. W. Hart, Purification and characterization of an O-GlcNAc selective Nacetyl-beta-D-glucosaminidase from rat spleen cytosol, J Biol Chem, vol.269, pp.19321-19330, 1994.

D. Frank, C. Kuhn, H. A. Katus, and N. Frey, The sarcomeric Z-disc: a nodal point in signalling and disease, J Mol Med (Berl), vol.84, pp.446-468, 2006.

J. Gannon, L. Staunton, O. Connell, K. Doran, P. Ohlendieck et al., Phosphoproteomic analysis of aged skeletal muscle, Int J Mol Med, vol.22, pp.33-42, 2008.

R. S. Haltiwanger, G. D. Holt, and G. W. Hart, Identification of a uridine diphospho-N-acetylglucosamine:peptide beta-Nacetylglucosaminyltransferase, J Biol Chem, vol.265, pp.2563-2568, 1990.

J. A. Hanover, S. Yu, W. B. Lubas, S. H. Shin, M. Ragano-caracciola et al., Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene, Arch Biochem Biophys, vol.409, pp.287-297, 2003.

G. W. Hart, M. P. Housley, and C. Slawson, Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins, Nature, vol.446, pp.1017-1022, 2007.

G. W. Hart, C. Slawson, G. Ramirez-correa, and O. Lagerlof, Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease, Annu Rev Biochem, vol.80, pp.825-858, 2011.

J. Hedou, C. Cieniewski-bernard, Y. Leroy, J. C. Michalski, Y. Mounier et al., O-linked N-acetylglucosaminylation is involved in the Ca2+ activation properties of rat skeletal muscle, J Biol Chem, vol.282, pp.10360-10369, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00250067

P. Huang, S. R. Ho, K. Wang, B. C. Roessler, F. Zhang et al., Muscle-specific overexpression of NCOATGK, splice variant of O-GlcNAcase, induces skeletal muscle atrophy, Am J Physiol Cell Physiol, vol.300, pp.456-465, 2011.

T. Issad, E. Masson, and P. Pagesy, O-GlcNAc modification, insulin signaling and diabetic complications, Diabetes Metab, vol.36, pp.423-435, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00681383

S. P. Iyer and G. W. Hart, Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity, J Biol Chem, vol.278, pp.24608-24616, 2003.

K. E. Kamm and J. T. Stull, Signaling to myosin regulatory light chain in sarcomeres, J Biol Chem, vol.286, pp.9941-9947, 2011.

R. Knoll, B. Buyandelger, and M. Lab, The sarcomeric Z-disc and Z-discopathies, J Biomed Biotechnol, p.569628, 2011.

B. D. Lazarus, D. C. Love, and J. A. Hanover, O-GlcNAc cycling: implications for neurodegenerative disorders, Int J Biochem Cell Biol, vol.41, pp.2134-2146, 2009.

T. Lefebvre, V. Dehennaut, C. Guinez, S. Olivier, L. Drougat et al., Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer's disease, Biochim Biophys Acta, vol.1800, pp.67-79, 2010.

I. G. Lunde, J. M. Aronsen, H. Kvaloy, E. Qvigstad, I. Sjaastad et al., Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure, Physiol Genomics, vol.44, pp.162-172, 2012.

B. R. Macintosh, Role of calcium sensitivity modulation in skeletal muscle performance, News Physiol Sci, vol.18, pp.222-225, 2003.

S. A. Marsh, P. C. Powell, L. J. Dell'italia, and J. C. Chatham, Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart, Life Sci, vol.92, pp.648-656, 2013.

G. Moorhead, D. Johnson, N. Morrice, and P. Cohen, The major myosin phosphatase in skeletal muscle is a complex between the beta-isoform of protein phosphatase 1 and the MYPT2 gene product, FEBS Lett, vol.438, pp.141-144, 1998.

E. R. Morey, E. E. Sabelman, R. T. Turner, and D. J. Baylink, A new rat model simulating some aspects of space flight, Physiologist, vol.22, pp.23-24, 1979.

E. R. Morey-holton and G. Rk, Hindlimb unloading rodent model: technical aspects, J Appl Physiol, vol.92, pp.1367-1377, 2002.

S. Nakamura, S. Nakano, M. Nishii, S. Kaneko, and H. Kusaka, Localization of O-GlcNAcmodified proteins in neuromuscular diseases, Med Mol Morphol, vol.45, pp.86-90, 2012.

R. Okamoto, T. Kato, A. Mizoguchi, N. Takahashi, T. Nakakuki et al., Characterization and function of MYPT2, a target subunit of myosin phosphatase in heart, Cell Signal, vol.18, pp.1408-1416, 2006.

A. Persechini, J. T. Stull, and R. Cooke, The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers, J Biol Chem, vol.260, pp.7951-7954, 1985.

G. A. Ramirez-correa, J. W. Wang, Z. Zhong, X. Gao, W. D. Dias et al., O-linked GlcNAc modification of cardiac myofilament proteins: a novel regulator of myocardial contractile function, Circ Res, vol.103, pp.1354-1358, 2008.

C. Ricart-firinga, L. Stevens, M. H. Canu, T. L. Nemirovskaya, and Y. Mounier, Effects of beta(2)-agonist clenbuterol on biochemical and contractile properties of unloaded soleus fibers of rat, Am J Physiol Cell Physiol, vol.278, pp.582-588, 2000.

J. M. Sanger and J. W. Sanger, The dynamic Z bands of striated muscle cells, Sci Signal, vol.1, p.37, 2008.

C. Slawson, T. Lakshmanan, S. Knapp, and G. W. Hart, A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin, Mol Biol Cell, vol.19, pp.4130-4140, 2008.

L. Stevens, C. Firinga, B. Gohlsch, B. Bastide, Y. Mounier et al., Effects of unweighting and clenbuterol on myosin light and heavy chains in fast and slow muscles of rat, Am J Physiol Cell Physiol, vol.279, pp.1558-1563, 2000.

J. T. Stull, K. E. Kamm, and R. Vandenboom, Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle, Arch Biochem Biophys, vol.510, pp.120-128, 2011.

H. L. Sweeney, B. F. Bowman, and J. T. Stull, Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function, Am J Physiol, vol.264, pp.1085-1095, 1993.

D. Szczesna, J. Zhao, M. Jones, G. Zhi, J. Stull et al., Phosphorylation of the regulatory light chains of myosin affects Ca2+ sensitivity of skeletal muscle contraction, J Appl Physiol, vol.92, pp.1661-1670, 2002.

S. Takashima, Phosphorylation of myosin regulatory light chain by myosin light chain kinase, and muscle contraction, Circ J, vol.73, pp.208-213, 2009.

C. R. Torres and G. W. Hart, Topography and polypeptide distribution of terminal Nacetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc, J Biol Chem, vol.259, pp.3308-3317, 1984.

L. Wells, Y. Gao, J. A. Mahoney, K. Vosseller, C. Chen et al., Dynamic Oglycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase, J Biol Chem, vol.277, pp.1755-1761, 2002.

L. Wells, L. K. Kreppel, F. I. Comer, B. E. Wadzinski, and G. W. Hart, O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits, J Biol Chem, vol.279, pp.38466-38470, 2004.

T. R. Whisenhunt, X. Yang, D. B. Bowe, A. J. Paterson, B. A. Van-tine et al., Disrupting the enzyme complex regulating O-GlcNAcylation blocks signaling and development, Glycobiology, vol.16, pp.551-563, 2006.

X. Yin, F. Cuello, U. Mayr, Z. Hao, M. Hornshaw et al., Proteomics analysis of the cardiac myofilament subproteome reveals dynamic alterations in phosphatase subunit distribution, Mol Cell Proteomics, vol.9, pp.497-509, 2010.

V. Zinchuk and O. Grossenbacher-zinchuk, Recent advances in quantitative colocalization analysis: focus on neuroscience, Prog Histochem Cytochem, vol.44, pp.125-172, 2009.