I. Ahmad, D. C. Hoessli, E. Walker-nasir, M. I. Choudhary, S. M. Rafik et al., Phosphorylation and glycosylation interplay: protein modifications at hydroxy amino acids and prediction of signaling functions of the human beta3 integrin family, J. Cell. Biochem, vol.99, pp.706-718, 2006.

H. Aoki, J. Sadoshima, and S. Izumo, Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro, Nat. Med, vol.6, pp.183-188, 2000.

E. B. Arias and G. D. Cartee, Relationship between protein Olinked glycosylation and insulin-stimulated glucose transport in rat skeletal muscle following calorie restriction or exposure to O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate, 2005.

, Acta Physiol. Scand, vol.183, pp.281-289

K. M. Baldwin, T. P. White, S. B. Arnaud, V. R. Edgerton, W. J. Kraemer et al., Musculoskeletal adaptations to weightlessness and development of effective countermeasures, Med. Sci. Sports Exerc, vol.28, pp.1247-1253, 1996.

D. K. Blumenthal and J. T. Stull, Activation of skeletal muscle myosin light chain kinase by calcium (2+) and calmodulin, Biochemistry, vol.19, pp.5608-5614, 1980.

M. R. Bond and J. A. Hanover, O-GlcNAc cycling: a link between metabolism and chronic disease, Annu. Rev. Nutr, vol.33, pp.205-229, 2013.

C. Bozzo, B. Spolaore, L. Toniolo, L. Stevens, B. Bastide et al., Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles, FEBS J, vol.272, pp.5771-5785, 2005.

C. Bozzo, L. Stevens, L. Toniolo, Y. Mounier, and C. Reggiani, Increased phosphorylation of myosin light chain associated with slow-to-fast transition in rat soleus, Am. J. Physiol. Cell Physiol, vol.285, pp.575-583, 2003.

M. G. Buse, K. A. Robinson, B. A. Marshall, and M. Mueckler, Differential effects of GLUT1 and GLUT4 overexpression on hexosamine biosynthesis by muscles of transgenic mice, J. Biol. Chem, vol.271, pp.23197-23202, 1996.

W. Cao, J. Cao, J. Huang, J. Yao, G. Yan et al., Discovery and confirmation of O-GlcNAcylated proteins in rat liver mitochondria by combination of mass spectrometry and immunological methods, PLoS ONE, vol.8, p.76399, 2013.

W. D. Cheung and G. W. Hart, AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation, J. Biol. Chem, vol.283, pp.13009-13020, 2008.

W. D. Cheung, K. Sakabe, M. P. Housley, W. B. Dias, and G. W. Hart, Olinked beta-N-acetylglucosaminyltransferase substrate specificity is regulated by myosin phosphatase targeting and other interacting proteins, J. Biol. Chem, vol.283, pp.33935-33941, 2008.

C. Cieniewski-bernard, B. Bastide, T. Lefebvre, J. Lemoine, Y. Mounier et al., Identification of O-linked N-acetylglucosamine proteins in rat skeletal muscle using two-dimensional gel electrophoresis and mass spectrometry, Mol. Cell. Proteomics, vol.3, pp.577-585, 2004.

C. Cieniewski-bernard, E. Dupont, E. Richard, B. Bastide, C. Cieniewski-bernard et al., Increasing O-GlcNAcylation level on organ culture of soleus modulates the calcium activation parameters of muscle fibers, Pflugers Arch, vol.7, p.48218, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02375641

C. Cieniewski-bernard, V. Montel, L. Stevens, and B. Bastide, O-GlcNAcylation, an original modulator of contractile activity in striated muscle, J. Muscle Res. Cell Motil, vol.30, pp.281-287, 2009.

C. Cieniewski-bernard, Y. Mounier, J. C. Michalski, and B. Bastide, O-GlcNAc level variations are associated with the development of skeletal muscle atrophy, J. Appl. Physiol, vol.100, pp.1499-1505, 2006.

D. L. Dong and G. W. Hart, Purification and characterization of an O-GlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol, J. Biol. Chem, vol.269, pp.19321-19330, 1994.

H. Eshima, Y. Tanaka, T. Sonobe, T. Inagaki, T. Nakajima et al., In vivo imaging of intracellular Ca 2+ after muscle contractions and direct Ca 2+ injection in rat skeletal muscle in diabetes, Am. J. Physiol, vol.305, pp.610-618, 2013.

A. M. Farah and D. S. Galileo, O-GlcNAc modification of radial glial vimentin filaments in the developing chick brain, Brain Cell Biol, vol.36, pp.191-202, 2008.

R. H. Fitts, D. R. Riley, and J. J. Widrick, Physiology of a microgravity environment invited review: microgravity and skeletal muscle, J. Appl. Physiol, vol.89, pp.823-839, 2000.

M. Fluck and H. Hoppeler, Molecular basis of skeletal muscle plasticityfrom gene to form and function, Rev. Physiol. Biochem. Pharmacol, vol.146, pp.159-216, 2003.

S. Förster, A. S. Welleford, J. C. Triplett, R. Sultana, B. Schmitz et al., Increased O-GlcNAc levels correlate with decreased O-GlcNAcase levels in Alzheimer disease brain, Biochim. Biophys. Acta, vol.1842, pp.1333-1339, 2014.

J. Gannon, L. Staunton, K. O'connell, P. Doran, and K. Ohlendieck, Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age, Int. J. Mol. Med, vol.22, pp.33-42, 2008.

Y. Gao, L. Wells, F. I. Comer, G. J. Parker, and G. W. Hart, Dynamic Oglycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain, J. Biol. Chem, vol.276, pp.9838-9845, 2001.

T. M. Gloster and D. J. Vocadlo, Mechanism, structure, and inhibition of O-GlcNAc processing enzymes, Curr. Signal Transduct. Ther, vol.5, pp.74-91, 2010.

G. W. Hart, M. P. Housley, and C. Slawson, Cycling of O-linked beta-Nacetylglucosamine on nucleocytoplasmic proteins, Nature, vol.446, pp.1017-1022, 2007.

G. W. Hart, C. Slawson, G. Ramirez-correa, and O. Lagerlof, Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease, Annu. Rev. Biochem, vol.80, pp.825-858, 2011.

M. Hawkins, I. Angelov, R. Liu, N. Barzilai, and L. Rossetti, The tissue concentration of UDP-N-acetylglucosamine modu lates the stimulatory effect of insulin on skeletal muscle glucose uptake, J. Biol. Chem, vol.272, pp.4889-4895, 1997.

M. Hawkins, N. Barzilai, R. Liu, M. Hu, W. Chen et al., Role of the glucosamine pathway in fat-induced insulin resistance, J. Clin. Invest, vol.99, pp.2173-2182, 1997.

J. Hedou, B. Bastide, A. Page, J. C. Michalski, and W. Morelle, Mapping of O-linked beta-N-acetylglucosamine modification sites in key contractile proteins of rat skeletal muscle, Proteomics, vol.9, pp.2139-2148, 2009.

J. Hedou, C. Cieniewski-bernard, Y. Leroy, J. C. Michalski, Y. Mounier et al., O-linked N-acetylglucosaminylation is involved in the Ca 2+ activation properties of rat skeletal muscle, J. Biol. Chem, vol.282, pp.10360-10369, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00250067

M. P. Housley, N. D. Udeshi, J. T. Rodgers, J. Shabanowitz, P. Puigserver et al., A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose, J. Biol. Chem, vol.284, pp.5148-5157, 2009.

Y. Hu, D. Belke, J. Suarez, E. Swanson, R. Clark et al., Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart, Circ. Res, vol.96, pp.1006-1013, 2005.

P. Huang, S. R. Ho, K. Wang, B. C. Roessler, F. Zhang et al., Muscle-specific overexpression of NCOATGK, splice variant of O-GlcNAcase, induces skeletal muscle atrophy, Am. J. Physiol. Cell Physiol, vol.300, pp.456-465, 2011.

H. Ise, S. Kobayashi, M. Goto, T. Sato, M. Kawakubo et al., Vimentin and desmin possess GlcNAc-binding lectin-like properties on cell surfaces, Glycobiology, vol.20, pp.843-864, 2010.

S. P. Iyer, Y. Akimoto, and G. W. Hart, Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase, J. Biol. Chem, vol.278, pp.5399-5409, 2003.

S. P. Iyer and G. W. Hart, Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity, J. Biol. Chem, vol.278, pp.24608-24616, 2003.

V. L. Johnsen, D. D. Belke, C. C. Hughey, D. S. Hittel, R. T. Hepple et al., Enhanced cardiac protein glycosylation (O-GlcNAc) of selected mitochondrial proteins in rats artificially selected for low running capacity, Physiol. Genomics, vol.45, pp.17-25, 2013.

K. Katoh, Y. Kano, M. Amano, K. Kaibuchi, and K. Fujiwara, Stress fiber organization regulated by MLCK and Rho-kinase in cultured human fibroblasts, Am. J. Physiol. Cell Physiol, vol.280, pp.1669-1679, 2001.

L. G. Koch, S. L. Britton, and U. Wisløff, A rat model system to study complex disease risks, fitness, aging, and longevity, Trends Cardiovasc. Med, vol.22, pp.29-34, 2012.

L. K. Kreppel, M. A. Blomberg, and G. W. Hart, Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats, J. Biol. Chem, vol.272, pp.9308-9315, 1997.

N. O. Ku and M. B. Omary, Identification and mutational analysis of the glycosylation sites of human keratin 18, J. Biol. Chem, vol.270, pp.11820-11827, 1995.

T. K. Kwak, H. Kim, O. Jung, S. A. Lee, M. Kang et al., Glucosamine treatment-mediated O-GlcNAc modification of paxillin depends on adhesion state of rat insulinoma INS-1 cells, J. Biol. Chem, vol.285, pp.36021-36031, 2010.

B. Laczy, S. A. Marsh, C. A. Brocks, I. Wittmann, and J. C. Chatham, Inhibition of O-GlcNAcase in perfused rat hearts by NAG-thiazolines at the time of reperfusion is cardioprotective in an O-GlcNAc-dependent manner, Am. J. Physiol. Heart Circ. Physiol, vol.299, pp.1715-1727, 2010.

T. Lefebvre, V. Dehennaut, C. Guinez, S. Olivier, L. Drougat et al., Dysregulation of the nutrient/stress sensor O-GlcNAcylation is involved in the etiology of cardiovascular disorders, type-2 diabetes and Alzheimer's disease, Biochim. Biophys. Acta, vol.1800, pp.67-79, 2010.

M. C. Leung, P. G. Hitchen, D. G. Ward, A. E. Messer, and S. B. Marston, , 2013.

, Z-band alternatively spliced PDZ motif protein (ZASP) is the major O-linked ?-N-acetylglucosamine-substituted protein in human heart myofibrils, J. Biol. Chem, vol.288, pp.4891-4898

J. Ma and G. W. Hart, Protein O-GlcNAcylation in diabetes and diabetic complications, Expert Rev. Proteomics, vol.10, pp.365-380, 2013.

J. Ma and G. W. Hart, O-GlcNAc profiling: from proteins to proteomes, Clin. Proteomics, vol.11, issue.8, 2014.

Z. Ma and K. Vosseller, O-GlcNAc in cancer biology, Amino. Acids, vol.45, pp.719-733, 2013.

Y. Mounier, V. Tiffreau, V. Montel, B. Bastide, and L. Stevens, Phenotypical transitions and Ca2_ activation properties in human muscle fibers: effects of a 60-day bed rest and countermeasures, J. Appl. Physiol, vol.106, pp.1086-1099, 2009.

S. Nakamura, S. Nakano, M. Nishii, S. Kaneko, and H. Kusaka, Localization of O-GlcNAc-modified proteins in neuromuscular diseases, Med. Mol. Morphol, vol.45, pp.86-90, 2012.

G. A. Ngoh, L. J. Watson, H. T. Facundo, and S. P. Jones, Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes, Amino Acids, vol.40, pp.895-911, 2010.

A. Persechini, J. T. Stull, and R. Cooke, The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers, J. Biol. Chem, vol.260, pp.7951-7954, 1985.

G. A. Ramirez-correa, W. Jin, Z. Wang, X. Zhong, W. D. Gao et al., O-linked GlcNAc modification of cardiac myofilament proteins: a novel regulator of myocardial contractile function, Circ. Res, vol.103, pp.1354-1358, 2008.

E. P. Roquemore, M. R. Chevrier, R. J. Cotter, and G. W. Hart, , 1996.

, Dynamic O-GlcNAcylation of the small heat shock protein alpha B-crystallin, Biochemistry, vol.35, pp.3578-3586

J. D. Rotty, G. W. Hart, and P. A. Coulombe, Stressing the role of O-GlcNAc: linking cell survival to keratin modification, Nat. Cell Biol, vol.12, pp.847-849, 2010.

Y. Safwat, N. Yassin, E. D. Gamal, and L. Kassem, Modulation of skeletal muscle performance and SERCA by exercice and adiponectin gene therapy in insulin-resistant rat, DNA Cell Biol, vol.32, pp.378-385, 2013.

R. Shafi, S. P. Iyer, L. G. Ellies, N. O'donnell, K. W. Marek et al., , 2000.

, The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.5735-5739

C. Slawson, R. J. Copeland, and G. W. Hart, O-GlcNAc signaling: a metabolic link between diabetes and cancer?, Trends Biochem. Sci, vol.35, pp.547-555, 2010.

C. Slawson, T. Lakshmanan, S. Knapp, and G. W. Hart, A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin, Mol. Biol. Cell, vol.19, pp.4130-4140, 2008.

B. Srikanth, M. M. Vaidya, and R. D. Kalraiya, O-GlcNAcylation determines the solubility, filament organization, and stability of keratins 8 and 18, J. Biol. Chem, vol.285, pp.34062-34071, 2010.

G. M. Stephenson and D. G. Stephenson, Endogenous MLC2 phosphorylation and Ca (2+) -activated force in mechanically skinned skeletal muscle fibres of the rat, Pflugers Arch, vol.424, pp.30-38, 1993.

L. Stevens, B. Bastide, J. Hedou, C. Cieniewski-bernard, V. Montel et al., Potential regulation of human muscle plasticity by MLC2 post-translational modifications during bed rest and countermeasures, Arch. Biochem. Biophys, vol.540, pp.125-132, 2013.

H. L. Sweeney, B. F. Bowman, and J. T. Stull, Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function, Am. J. Physiol, vol.264, pp.1085-1095, 1993.

D. Szczesna, J. Zhao, M. Jones, G. Zhi, J. Stull et al., Phosphorylation of the regulatory light chains of myosin affects Ca 2+ sensitivity of skeletal muscle contraction, J. Appl. Physiol, vol.92, pp.1661-1670, 2002.

L. Wells, Y. Gao, J. A. Mahoney, K. Vosseller, C. Chen et al., , 2002.

, Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase

, J. Biol. Chem, vol.277, pp.1755-1761

L. Wells, L. K. Kreppel, F. I. Comer, B. E. Wadzinski, and G. W. Hart, O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits, J. Biol. Chem, vol.279, pp.38466-38470, 2004.

L. Wells, K. Vosseller, and G. W. Hart, Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc, Science, vol.23, pp.2376-2378, 2001.

T. R. Whisenhunt, X. Yang, D. B. Bowe, A. J. Paterson, B. A. Van-tine et al., Disrupting the enzyme complex regulating, 2006.

, O-GlcNAcylation blocks signaling and development, Glycobiology, vol.16, pp.551-563

Y. R. Yang, M. Song, H. Lee, Y. Jeon, E. J. Choi et al., O-GlcNAcase is essential for embryonic development and maintenance of genomic stability, Aging Cell, vol.11, pp.439-448, 2012.

H. Yki-jarvinen, A. Virkama-ki, M. C. Daniels, D. Mcclain, and W. K. Gottschalk, Insulin and glucosamine infusions increase O-linked Nacetylglucosamine in skeletal muscle proteins in vivo, Metab. Clin. Exp, vol.47, pp.449-455, 1998.

N. E. Zachara, N. O'donnell, W. D. Cheung, J. J. Mercer, J. D. Marth et al., Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells, J. Biol. Chem, vol.16, pp.30133-30142, 2004.

N. E. Zachara, K. Vosseller, and G. W. Hart, Detection and analysis of proteins modified by O-linked N-acetylglucosamine, Curr. Protoc. Protein Sci. Chapter, vol.12, 2011.

X. Zhang and V. Bennett, Identification of O-linked N-acetylglucosamine modification of ankyrinG isoforms targeted to nodes of Ranvier, J. Biol. Chem, vol.271, pp.31391-31398, 1996.