K. A. Clark, A. S. Mcelhinny, M. C. Beckerle, and C. C. Gregorio, Striated muscle cytoarchitecture: an intricate web of form and function, Annu Rev Cell Dev Biol, vol.18, pp.637-706, 2002.

M. Gautel, The sarcomeric cytoskeleton: Who picks up the strain?, Curr Opin Cell Biol, vol.23, issue.1, pp.39-46, 2011.

M. Gautel and K. Djinovic-carugo, The sarcomeric cytoskeleton: from molecules to motion, J Exp Biol, vol.219, issue.2, pp.135-145, 2016.

A. Gordon, E. Homsher, and M. Regnier, Regulation of Contraction in Striated Muscle, Physiol Rev, vol.80, issue.2, pp.853-924, 2000.

M. A. Kontrogianni-konstantopoulos-a,-ackermann and A. L. Bowman, Muscle Giants : Molecular Scaffolds in Sarcomerogenesis, vol.89, pp.1217-1267, 2009.

O. Boonyarom and K. Inui, Atrophy and hypertrophy of skeletal muscles: Structural and functional aspects, Acta Physiol, vol.188, issue.2, pp.77-89, 2006.

C. A. Henderson, C. G. Gomez, S. M. Novak, L. Mi-mi, and C. C. Gregorio, Overview of the Muscle Cytoskeleton, Compr Physiol, vol.7, issue.3, pp.891-944, 2017.

J. W. Sanger, J. Wang, Y. Fan, J. White, and J. M. Sanger, Assembly and dynamics of myofibrils, J Biomed Biotechnol, p.858606, 2010.

T. Sadikot, C. R. Hammond, and M. B. Ferrari, Distinct roles for telethonin N-versus C-terminus in sarcomere assembly and maintenance, Dev Dyn, vol.239, issue.4, pp.1124-1135, 2010.

W. M. Obermann, M. Gautel, K. Weber, and D. O. Fürst, Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin, EMBO J, vol.16, issue.2, pp.211-220, 1997.

L. Tskhovrebova and J. Trinick, Titin: properties and family relationships, Nat Rev Mol Cell Biol, vol.4, issue.9, pp.679-689, 2003.

X. Huang, J. Li, and D. Foster, Protein Kinase C-Mediated Desmin Phosphorylation is Related to Myofibril Disarray in Cardiomyopathic Hamster Heart 1, Exp Biol Med, vol.227, issue.11, pp.1039-1046, 2002.

M. A. Ackermann and A. Kontrogianni-konstantopoulos, Myosin Binding Protein-C Slow is a Novel Substrate for Protein Kinase A (PKA) and C (PKC) in Skeletal Muscle, J Proteome Res, vol.10, issue.10, pp.4547-4555, 2011.

J. T. Stull, K. E. Kamm, and R. Vandenboom, Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle, Arch Biochem Biophys, vol.510, issue.2, pp.120-128, 2011.

R. Vandenboom, Modulation of Skeletal Muscle Contraction by Myosin Phosphorylation

, Compr Physiol, vol.7, issue.1, pp.171-212, 2016.

C. R. Torres and G. W. Hart, Topography and polypeptide distribution of terminal Nacetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc, J Biol Chem, vol.259, issue.5, pp.3308-3317, 1984.

M. R. Bond and J. A. Hanover, A little sugar goes a long way: The cell biology of O-GlcNAc, J Cell Biol, vol.208, issue.7, pp.869-880, 2015.

P. S. Banerjee, O. Lagerlöf, and G. W. Hart, Roles of O-GlcNAc in chronic diseases of aging, Mol Aspects Med, vol.51, pp.1-15, 2016.

X. Yang and K. Qian, Protein O-GlcNAcylation: emerging mechanisms and functions, Nat Rev Mol Cell Biol, vol.18, issue.7, pp.452-465, 2017.

R. S. Haltiwanger, G. D. Holt, and G. W. Hart, Identification of a uridine diphospho-N-acetylglucosamine:peptide beta-N-acetylglucosaminyltransferase, J Biol Chem, vol.265, issue.5, pp.2563-2568, 1990.

R. S. Haltiwanger, M. A. Blomberg, and G. W. Hart, Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyltransferase, J Biol Chem, vol.267, issue.13, pp.9005-9013, 1992.

V. Kooij, G. Stienen, and J. Van-der-velden, The role of protein kinase C-mediated phosphorylation of sarcomeric proteins in the heart-detrimental or beneficial?, Biophys Rev, vol.3, issue.3, pp.107-117, 2011.

R. Mounier, M. Théret, L. Lantier, M. Foretz, and B. Viollet, Expanding roles for AMPK in skeletal muscle plasticity, Trends Endocrinol Metab, vol.26, issue.6, pp.275-286, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01171734

L. Reimann, H. Wiese, and Y. Leber, Myofibrillar Z-discs Are a Protein Phosphorylation Hot Spot with Protein Kinase C (PKC?) Modulating Protein Dynamics, Mol Cell Proteomics, vol.16, issue.3, pp.346-367, 2017.

P. Kischel, B. Bastide, J. D. Potter, and Y. Mounier, The role of the Ca(2+) regulatory sites of skeletal troponin C in modulating muscle fibre reactivity to the Ca(2+) sensitizer bepridil, Br J Pharmacol, vol.131, issue.7, pp.1496-1502, 2000.

C. Cieniewski-bernard, V. Montel, L. Stevens, and B. Bastide, O-GlcNAcylation, an original modulator of contractile activity in striated muscle, J Muscle Res Cell Motil, vol.30, issue.7-8, pp.281-287, 2009.

C. Cieniewski-bernard, M. Lambert, E. Dupont, V. Montel, L. Stevens et al.,

, GlcNAcylation, contractile protein modifications and calcium affinity in skeletal muscle, Front Physiol, vol.5, pp.1-7, 2014.

A. F. Huxley and R. Niedergerke, Structural Changes in Muscle During Contraction: Interference Microscopy of Living Muscle Fibres, Nature, vol.173, issue.4412, pp.971-973, 1954.

H. Huxley and J. Hanson, Changes in the Cross-Striations of Muscle during Contraction and Stretch and their Structural Interpretation, Nature, vol.173, issue.4412, pp.973-976, 1954.

O. Herzberg, J. Moult, and M. N. James, Calcium binding to skeletal muscle troponin C and the regulation of muscle contraction, Ciba Found Symp, vol.122, pp.120-144, 1986.

W. Lehman, R. Craig, and P. Vibert, Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction, Nature, vol.368, issue.6466, pp.65-67, 1994.

D. K. Blumenthal and J. T. Stull, Activation of skeletal muscle myosin light chain kinase by calcium(2+) and calmodulin, Biochemistry, vol.19, issue.24, pp.5608-5614, 1980.

S. Lowey and K. M. Trybus, Common structural motifs for the regulation of divergent class II myosins, J Biol Chem, vol.285, issue.22, pp.16403-16407, 2010.

M. J. Greenberg, T. R. Mealy, J. D. Watt, M. Jones, D. Szczesna-cordary et al., The molecular effects of skeletal muscle myosin regulatory light chain phosphorylation, Am J Physiol Regul Integr Comp Physiol, vol.297, issue.2, pp.265-74, 2009.

A. Persechini, J. T. Stull, and R. Cooke, The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers, J Biol Chem, vol.260, issue.13, pp.7951-7954, 1985.

D. Szczesna, J. Zhao, M. Jones, G. Zhi, J. Stull et al., Phosphorylation of the regulatory light chains of myosin affects Ca 2+ sensitivity of skeletal muscle contraction, J Appl Physiol, vol.92, issue.4, pp.1661-1670, 2002.

H. L. Sweeney and J. T. Stull, Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: implications for regulation of actin-myosin interaction, Proc Natl Acad Sci, vol.87, issue.1, pp.414-418, 1990.

R. Padrón, N. Panté, H. Sosa, K. , and J. , X-ray diffraction study of the structural changes accompanying phosphorylation of tarantula muscle, J Muscle Res Cell Motil, vol.12, issue.3, pp.235-241, 1991.

R. J. Levine, R. W. Kensler, Z. Yang, J. T. Stull, and H. L. Sweeney, Myosin light chain phosphorylation affects the structure of rabbit skeletal muscle thick filaments, Biophys J, vol.71, issue.2, pp.898-907, 1996.

R. J. Levine, Z. Yang, N. D. Epstein, L. Fananapazir, J. T. Stull et al., Structural and functional responses of mammalian thick filaments to alterations in myosin regulatory light chains, J Struct Biol, vol.122, issue.1-2, pp.149-161, 1998.

M. Ito, T. Nakano, F. Erdodi, and D. J. Hartshorne, Myosin phosphatase: structure, regulation and function, Mol Cell Biochem, vol.259, issue.1-2, pp.197-209, 2004.

D. J. Hartshorne, M. Ito, and F. Erdödi, Role of protein phosphatase type 1 in contractile functions: myosin phosphatase, J Biol Chem, vol.279, issue.36, pp.37211-37214, 2004.

G. A. Ramirez-correa, J. W. Wang, and Z. , O-linked GlcNAc modification of cardiac myofilament proteins: A novel regulator of myocardial contractile function, Circ Res, vol.103, issue.12, pp.1354-1358, 2008.

C. Cieniewski-bernard, E. Dupont, E. Richard, and B. Bastide, Phospho-GlcNAc modulation of slow MLC2 during soleus atrophy through a multienzymatic and sarcomeric complex, Pflügers Arch -Eur J Physiol, vol.466, issue.11, pp.2139-2151, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02539468

G. W. Hart, C. Slawson, G. Ramirez-correa, and O. Lagerlof, Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease, Annu Rev Biochem, vol.80, pp.825-858, 2011.

K. H. Hortemo, J. M. Aronsen, I. G. Lunde, I. Sjaastad, P. K. Lunde et al., Exhausting treadmill running causes dephosphorylation of sMLC2 and reduced level of myofilament MLCK2 in slow twitch rat soleus muscle, Physiol Rep, vol.3, issue.2, pp.12285-12285, 2015.

K. H. Hortemo, P. K. Lunde, and J. H. Anonsen, Exercise training increases protein O-GlcNAcylation in rat skeletal muscle, Physiol Rep, vol.4, issue.18, p.12896, 2016.

R. Vandenboom, W. Gittings, I. C. Smith, R. W. Grange, and J. T. Stull, Myosin phosphorylation and force potentiation in skeletal muscle: evidence from animal models, J Muscle Res Cell Motil, vol.34, issue.5-6, pp.317-332, 2013.

M. Munkvik, P. K. Lunde, and O. M. Sejersted, Causes of fatigue in slow-twitch rat skeletal muscle during dynamic activity, Am J Physiol Regul Integr Comp Physiol, vol.297, issue.3, pp.900-910, 2009.

K. H. Hortemo, M. Munkvik, P. K. Lunde, and O. M. Sejersted, Multiple Causes of Fatigue during Shortening Contractions in Rat Slow Twitch Skeletal Muscle. Lionetti V, PLoS One, vol.8, issue.8, p.71700, 2013.

T. T. Peternelj, S. A. Marsh, and N. A. Strobel, Glutathione depletion and acute exercise increase O-GlcNAc protein modification in rat skeletal muscle, Mol Cell Biochem, vol.400, issue.1-2, pp.265-275, 2015.

C. Cieniewski-bernard, Y. Mounier, J. Michalski, and B. Bastide, O-GlcNAc level variations are associated with the development of skeletal muscle atrophy, J Appl Physiol, vol.100, issue.5, pp.1499-1505, 2006.

M. Lambert, B. Bastide, and C. Cieniewski-bernard, Involvement of O-GlcNAcylation in the, Skeletal Muscle Physiology and Physiopathology: Focus on Muscle Metabolism. Front Endocrinol (Lausanne), vol.9, p.578, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02375915

G. A. Ramirez-correa, M. J. Slawson, and C. , Removal of Abnormal Myofilament O-GlcNAcylation Restores Ca2+ Sensitivity in Diabetic Cardiac Muscle, Diabetes, vol.64, issue.10, pp.3573-3587, 2015.

L. Stevens, B. Bastide, and J. Hedou, Potential regulation of human muscle plasticity by MLC2 post-translational modifications during bed rest and countermeasures, Arch Biochem Biophys, vol.540, issue.1-2, pp.125-132, 2013.

Y. Mounier, V. Tiffreau, V. Montel, B. Bastide, and L. Stevens, Phenotypical transitions and Ca2+ activation properties in human muscle fibers: effects of a 60-day bed rest and countermeasures, J Appl Physiol, vol.106, issue.4, pp.1086-1099, 2009.

C. Ricart-firinga, L. Stevens, M. H. Canu, T. L. Nemirovskaya, and Y. Mounier, Effects of beta(2)-agonist clenbuterol on biochemical and contractile properties of unloaded soleus fibers of rat

, Am J Physiol Cell Physiol, vol.278, issue.3, pp.582-590, 2000.

C. Bozzo, L. Stevens, L. Toniolo, Y. Mounier, and C. Reggiani, Increased phosphorylation of myosin light chain associated with slow-to-fast transition in rat soleus, Am J Physiol Physiol, vol.285, issue.3, pp.575-583, 2003.

J. Gannon, P. Doran, A. Kirwan, and K. Ohlendieck, Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age, Eur J Cell Biol, vol.88, issue.11, pp.685-700, 2009.

N. Fülöp, W. Feng, and D. Xing, Aging leads to increased levels of protein O-linked Nacetylglucosamine in heart, aorta, brain and skeletal muscle in Brown-Norway rats, Biogerontology, vol.9, issue.3, p.139, 2008.

J. M. Metzger and M. V. Westfall, Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation, Circ Res, vol.94, issue.2, pp.146-158, 2004.

C. R. Bayliss, A. M. Jacques, and M. Leung, Myofibrillar Ca2+ sensitivity is uncoupled from troponin I phosphorylation in hypertrophic obstructive cardiomyopathy due to abnormal troponin T, Cardiovasc Res, vol.97, issue.3, pp.500-508, 2013.

N. Buscemi, D. B. Foster, and I. Neverova, Van Eyk JE. p21-activated kinase increases the calcium sensitivity of rat triton-skinned cardiac muscle fiber bundles via a mechanism potentially involving novel phosphorylation of troponin I, Circ Res, vol.91, issue.6, pp.509-516, 2002.

H. E. Salhi, N. C. Hassel, and J. K. Siddiqui, Myofilament Calcium Sensitivity: Mechanistic Insight into TnI Ser-23/24 and Ser-150 Phosphorylation Integration, Front Physiol, vol.7, p.567, 2016.

E. Dubois-deruy, A. Belliard, and P. Mulder, Interplay between troponin T phosphorylation and O-N-acetylglucosaminylation in ischaemic heart failure, Cardiovasc Res, vol.107, issue.1, pp.56-65, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01389836

D. Kowlessur and L. S. Tobacman, Low Temperature Dynamic Mapping Reveals Unexpected Order and Disorder in Troponin, J Biol Chem, vol.285, issue.50, pp.38978-38986, 2010.

I. Na, M. J. Kong, S. Straight, J. R. Pinto, and V. N. Uversky, Troponins, intrinsic disorder, and cardiomyopathy, Biol Chem, issue.8, p.397, 2016.

A. L. Darling and V. N. Uversky, Intrinsic Disorder and Posttranslational Modifications: The Darker Side of the Biological Dark Matter, Front Genet, vol.9, 2018.

T. Britto-borges and G. J. Barton, A study of the structural properties of sites modified by the Olinked 6-N-acetylglucosamine transferase. Friedberg I, PLoS One, vol.12, issue.9, p.184405, 2017.

I. Agarkova and J. Perriard, The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere, Trends Cell Biol, vol.15, issue.9, pp.477-485, 2005.

E. Ehler and M. Gautel, The sarcomere and sarcomerogenesis, Adv Exp Med Biol, vol.642, pp.1-14, 2008.

S. Lange, E. Ehler, and M. Gautel, From A to Z and back? Multicompartment proteins in the sarcomere, Trends Cell Biol, vol.16, issue.1, pp.11-18, 2006.

D. Frank, C. Kuhn, H. A. Katus, and N. Frey, The sarcomeric Z-disc: A nodal point in signalling and disease, J Mol Med, vol.84, issue.6, pp.446-468, 2006.

J. M. Sanger and J. W. Sanger, The dynamic Z bands of striated muscle cells, Sci Signal, vol.1, issue.32, p.37, 2008.

L. Hu, M. A. Ackermann, and A. Kontrogianni-konstantopoulos, The sarcomeric M-region: A molecular command center for diverse cellular processes, Biomed Res Int, 2015.

P. Von-nandelstadh, M. Ismail, and C. Gardin, A Class III PDZ Binding Motif in the Myotilin and FATZ Families Binds Enigma Family Proteins: a Common Link for Z-Disc Myopathies

, Mol Cell Biol, vol.29, issue.3, pp.822-834, 2009.

D. Paulin and Z. Li, Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle, Exp Cell Res, vol.301, issue.1, pp.1-7, 2004.

R. M. Lovering, A. O'neill, J. M. Muriel, B. L. Prosser, J. Strong et al., Physiology, structure, and susceptibility to injury of skeletal muscle in mice lacking keratin 19-based and desminbased intermediate filaments, Am J Physiol Cell Physiol, vol.300, issue.4, pp.803-813, 2011.

D. L. Winter, D. Paulin, M. Mericskay, and Z. Li, Posttranslational modifications of desmin and their implication in biological processes and pathologies, Histochem Cell Biol, vol.141, issue.1, pp.1-16, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01545739

H. Ise, S. Kobayashi, and M. Goto, Vimentin and desmin possess GlcNAc-binding lectin-like properties on cell surfaces, Glycobiology, vol.20, issue.7, pp.843-864, 2010.

K. Hnia, C. Ramspacher, J. Vermot, and J. Laporte, Desmin in muscle and associated diseases: beyond the structural function, Cell Tissue Res, vol.360, issue.3, pp.591-608, 2014.

A. M. Farach and D. S. Galileo, O-GlcNAc modification of radial glial vimentin filaments in the developing chick brain, Brain Cell Biol, vol.36, issue.5-6, pp.191-202, 2008.

R. K. Sihag, M. Inagaki, T. Yamaguchi, T. B. Shea, and H. C. Pant, Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments, Exp Cell Res, vol.313, issue.10, pp.2098-2109, 2007.

B. Srikanth, M. M. Vaidya, and R. D. Kalraiya, O-GlcNAcylation determines the solubility, filament organization, and stability of keratins 8 and 18, J Biol Chem, vol.285, issue.44, pp.34062-34071, 2010.

S. Ji, J. G. Kang, S. Y. Park, J. Lee, Y. J. Oh et al., O-GlcNAcylation of tubulin inhibits its polymerization, Amino Acids, vol.40, issue.3, pp.809-818, 2011.

H. Bar, B. Goudeau, and S. Walde, Conspicuous involvement of desmin tail mutations in diverse cardiac and skeletal myopathies, Hum Mutat, vol.28, issue.4, pp.374-386, 2007.

H. Herrmann, M. Haner, and M. Brettel, Structure and Assembly Properties of the Intermediate Filament Protein Vimentin: The Role of its Head, Rod and Tail Domains, J Mol Biol, vol.264, issue.5, pp.933-953, 1996.

T. Heimburg, J. Schuenemann, K. Weber, and N. Geisler, Specific Recognition of Coiled Coils by Infrared Spectroscopy: Analysis of the Three Structural Domains of Type III Intermediate Filament Proteins, Biochemistry, vol.35, issue.5, pp.1375-1382, 1996.

L. G. Goldfarb, M. Olivé, P. Vicart, and H. H. Goebel, Intermediate filament diseases: Desminopathy

, Adv Exp Med Biol, vol.642, pp.131-164, 2008.

K. R. Rogers, A. Eckelt, and V. Nimmrich, Truncation mutagenesis of the non-alpha-helical carboxyterminal tail domain of vimentin reveals contributions to cellular localization but not to filament assembly, Eur J Cell Biol, vol.66, issue.2, pp.136-150, 1995.

J. L. Elliott, D. Perng, M. Prescott, A. R. Jansen, K. A. Koenderink et al., The specificity of the interaction between ?B-crystallin and desmin filaments and its impact on filament aggregation and cell viability, Philos Trans R Soc Lond B Biol Sci, vol.368, p.20120375, 1617.

S. Sharma, G. M. Conover, J. L. Elliott, D. Perng, M. Herrmann et al., ?B-crystallin is a sensor for assembly intermediates and for the subunit topology of desmin intermediate filaments, Cell Stress Chaperones, vol.22, issue.4, pp.613-626, 2017.

H. Ecroyd, S. Meehan, and J. Horwitz, Mimicking phosphorylation of alphaB-crystallin affects its chaperone activity, Biochem J, vol.401, issue.1, pp.129-141, 2007.

R. Bakthisaran, K. K. Akula, R. Tangirala, and C. M. Rao, Biochimica et Biophysica Acta Phosphorylation of ?B-crystallin : Role in stress , aging and patho-physiological conditions, BBA -Gen Subj, vol.1860, issue.1, pp.167-182, 2016.

V. Krishnamoorthy, A. J. Donofrio, and J. L. Martin, O-GlcNAcylation of ?b-crystallin regulates its stress-induced translocation and cytoprotection, Mol Cell Biochem, vol.379, issue.1-2, pp.59-68, 2013.

S. A. Houck, A. Landsbury, J. I. Clark, and R. A. Quinlan, Multiple sites in ?B-crystallin modulate its interactions with desmin filaments assembled in vitro, PLoS One, vol.6, issue.11, 2011.

X. Wang, R. Klevitsky, W. Huang, J. Glasford, F. Li et al., ?B-Crystallin Modulates Protein Aggregation of Abnormal Desmin, Circ Res, vol.93, issue.10, pp.998-1005, 2003.

U. P. Andley, P. D. Hamilton, N. Ravi, and C. C. Weihl, A Knock-In Mouse Model for the R120G Mutation of ?B-Crystallin Recapitulates Human Hereditary Myopathy and Cataracts, PLoS One, vol.6, issue.3, p.17671, 2011.

J. Udaka, S. Ohmori, and T. Terui, Disuse-induced preferential loss of the giant protein titin depresses muscle performance via abnormal sarcomeric organization, J Gen Physiol, vol.131, issue.1, pp.33-41, 2008.

S. Nakamura, S. Nakano, M. Nishii, S. Kaneko, and H. Kusaka, Localization of O-GlcNAc-modified proteins in neuromuscular diseases, Med Mol Morphol, vol.45, issue.2, pp.86-90, 2012.

C. S. Clemen, H. Herrmann, S. V. Strelkov, and R. Schröder, Desminopathies: Pathology and mechanisms, Acta Neuropathol, vol.125, issue.1, pp.47-75, 2013.

H. Shi, A. Munk, and T. S. Nielsen, Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity, Mol Metab, vol.11, pp.160-177, 2018.

J. R. Johnston, P. B. Chase, and J. R. Pinto, Troponin through the looking-glass: emerging roles beyond regulation of striated muscle contraction, Oncotarget, vol.9, issue.1, 2018.

J. R. Pinto, J. Muller-delp, and P. B. Chase, Will you still need me (Ca 2+ , TnT, and DHPR), will you still cleave me (calpain), when I'm 64?, Aging Cell, vol.16, issue.2, pp.202-204, 2017.

C. Jia and Y. Zuo, Computational Prediction of Protein O-GlcNAc Modification, Methods Mol Biol, vol.2018, pp.235-246