S. J. Zinkle, Challenges in developing materials for fusion technology -past, present and future, Fusion Sci. Technol, vol.64, issue.2, p.65, 2013.

R. Klueh and A. Nelson, Ferritic/martensitic steels for next-generation reactors, J. Nucl. Mater, vol.371, issue.1-3, p.37, 2007.

B. C. Masters, Dislocation loops in irradiated iron, Philos. Mag, vol.11, issue.113, p.881, 1965.

Z. Yao, M. L. Jenkins, M. Hernández-mayoral, and M. A. Kirk, The temperature dependence of heavy-ion damage in iron: A microstructural transition at elevated temperatures, Philos. Mag, vol.90, issue.35, p.4623, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00592593

M. E. Downey and B. L. Eyre, Neutron irradiation damage in molybdenum, Philos. Mag, vol.11, issue.109, p.53, 1965.

M. Marinica, F. Willaime, and J. Crocombette, Irradiation-induced formation of nanocrystallites with c15 laves phase structure in bcc iron, Phys. Rev. Lett, vol.108, p.25501, 2012.

J. Dérès, L. Proville, and M. Marinica, Dislocation depinning from nano-sized irradiation defects in a bcc iron model, Acta Mater, vol.99, p.99, 2015.

L. Dézerald, M. Marinica, L. Ventelon, D. Rodney, and F. Willaime, Stability of selfinterstitial clusters with C15 Laves phase structure in iron, J. Nucl. Mater, vol.449, issue.1-3, p.219, 2014.

A. Kaczmarowski, S. Yang, I. Szlufarska, and D. Morgan, Genetic algorithm optimization of defect clusters in crystalline materials, Comput. Mater. Sci, vol.98, p.234, 2015.

R. Alexander, M. Marinica, L. Proville, F. Willaime, K. Arakawa et al.,

. Dudarev, Ab initio scaling laws for the formation energy of nanosized interstitial defect clusters in iron, tungsten, and vanadium, Phys. Rev. B, vol.94, issue.2, p.24103, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02388648

A. Chartier and M. C. Marinica, Rearrangement of interstitial defects in alpha-Fe under extreme condition, Acta Materialia, vol.180, pp.141-148, 2019.

J. Byggmästar, F. Granberg, A. E. Sand, A. Pirttikoski, R. Alexander et al., Collision cascades overlapping with self-interstitial defect clusters in Fe and W, J. Phys.: Condens. Matter, vol.31, issue.24, p.245402, 2019.

N. Mousseau, L. K. Béland, P. Brommer, J. Joly, F. El-mellouhi et al., The Activation-Relaxation Technique: ART Nouveau and Kinetic ART, J. At. Mol. Opt. Phys, vol.2012, p.1, 2012.

T. D. Swinburne and D. Perez, Self-optimized construction of transition rate matrices from accelerated atomistic simulations with Bayesian uncertainty quantification, Phys. Rev. Materials, vol.2, issue.5, p.53802, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01962002

Y. Zhang, X. Bai, M. R. Tonks, and S. B. Biner, Formation of prismatic loops from C15 Laves phase interstitial clusters in body-centered cubic iron, Scripta Mater, vol.98, p.5, 2015.

J. Byggmästar and F. Granberg, Dynamical stability of radiation-induced C15 clusters in iron, Journal of Nuclear Materials, vol.528, p.151893, 2020.

R. P. Gupta, Lattice relaxation at a metal surface, Phys. Rev. B, vol.23, pp.6265-6270, 1981.

G. J. Ackland and R. Thetford, An improved N-body semi-empirical model for body-centred cubic transition metals, Philos. Mag. A, vol.56, issue.1, p.15, 1987.

V. Rosato, M. Guillope, and B. Legrand, Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model, Philos. Mag. A, vol.59, issue.2, pp.321-336, 1989.

M. S. Daw and M. I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B, vol.29, pp.6443-6453, 1984.

M. S. Daw, S. M. Foiles, and M. I. Baskes, The embedded-atom method: a review of theory and applications, Mater. Sci. Reports, vol.9, issue.7-8, p.251, 1993.

M. I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B, vol.46, issue.5, p.2727, 1992.

J. S. Luo and B. Legrand, Multilayer relaxation at surfaces of body-centered-cubic transition metals, Phys. Rev. B, vol.38, pp.1728-1733, 1988.

D. G. Pettifor, New many-body potential for the bond order, Phys. Rev. Lett, vol.63, issue.22, p.2480, 1989.

D. G. Pettifor, Bonding and structure of molecules and solids, 1996.

A. P. Horsfield, A. M. Bratkovsky, M. Fearn, D. G. Pettifor, and M. Aoki, Bond-order potentials: Theory and implementation, Phys. Rev. B, vol.53, issue.19, p.12694, 1996.

M. C. Desjonquères and D. Spanjaard, Concepts in Surface Physics, 1993.

M. W. Zimmmerman, Interatomic forces in condensed matter, 2003.

M. W. Finnis and J. E. Sinclair, A simple empirical N-Body potential for transition metals, Philos. Mag. A, vol.50, p.45, 1984.

A. P. Sutton and J. Chen, Long-range Finnis-Sinclair potentials, Phil. Mag. Lett, pp.139-146, 1990.

G. J. Ackland, D. J. Bacon, A. F. Calder, and T. Harry, Computer simulation of point defect properties in dilute FeCu alloy using a many-body interatomic potential, Philos. Mag. A, vol.75, issue.3, p.713, 1997.

F. Ercolessi and J. B. Adams, Interatomic Potentials from First-Principles Calculations: The Force-Matching Method, Europhys. Lett, vol.26, p.583, 1994.

M. I. Mendelev, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, and M. Asta, Developement of new interatomic potentials appropriate for crystalline and liquid iron, Philos. Mag, vol.83, p.3977, 2003.

P. A. Gordon, T. Neeraj, and M. I. Mendelev, Screw dislocation mobility in bcc metals: a refined potential description for ?-Fe, Philos. Mag, vol.91, issue.30, p.3931, 2011.

G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han, and A. V. Barashev, Development of an interatomic potential for phosphorus impurities in ?-iron, J. Phys.: Condens. Matter, vol.16, issue.27, p.2629, 2004.

L. Malerba, M. Marinica, N. Anento, C. Björkas, H. Nguyen et al., Comparison of empirical interatomic potentials for iron applied to radiation damage studies, J. Nucl. Mater, vol.406, issue.1, p.19, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01828113

L. Proville, D. Rodney, and M. Marinica, Quantum effect on thermally activated glide of dislocations, Nat. Mater, vol.11, issue.10, p.845, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00781319

J. Behler and M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces, Phys. Rev. Lett, vol.98, p.146401, 2007.

A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons, Phys. Rev. Lett, vol.104, p.136403, 2010.

J. Behler, Atom-centered symmetry functions for constructing high-dimensional neural network potentials, J. Chem. Phys, vol.134, issue.7, p.74106, 2011.

A. Thompson, L. Swiler, C. Trott, S. Foiles, and G. Tucker, Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials, Journal of Computational Physics, vol.285, pp.316-330, 2015.

M. A. Wood and A. P. Thompson, Quantum-accurate molecular dynamics potential for tungsten

M. A. Wood and A. P. Thompson, Extending the accuracy of the SNAP interatomic potential form, Journal of Chemical Physics, vol.148, issue.24

A. P. Bartók, J. Kermode, N. Bernstein, and G. Csányi, Machine learning a general-purpose interatomic potential for silicon, Phys. Rev. X, vol.8, p.41048, 2018.

A. M. Goryaeva, J. Maillet, and M. Marinica, Towards better efficiency of interatomic linear machine learning potentials, Computational Materials Science, vol.166, pp.200-209, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02443478

D. Dragoni, T. D. Daff, G. Csányi, and N. Marzari, Achieving dft accuracy with a machinelearning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron, Phys. Rev. Materials, vol.2, p.13808, 2018.

W. J. Szlachta, A. P. Bartók, and G. Csányi, Accuracy and transferability of gaussian approximation potential models for tungsten, Phys. Rev. B, vol.90, p.104108, 2014.

C. Fu, J. D. Torre, F. Willaime, J. Bocquet, and A. Barbu, Multiscale modelling of defect kinetics in irradiated iron, Nat. Mater, vol.4, p.68, 2005.

D. A. Terentyev, T. P. Klaver, P. Olsson, M. Marinica, F. Willaime et al., Self-trapped interstitial-type defects in iron, Phys. Rev. Lett, vol.100, p.145503, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01828303

M. Marinica, F. Willaime, and N. Mousseau, Energy landscape of small clusters of selfinterstitial dumbbells in iron, Phys. Rev. B, vol.83, p.94119, 2011.

F. Gao, D. J. Bacon, Y. N. Osetsky, P. E. Flewitt, and T. A. Lewis, Properties and evolution of sessile interstitial clusters produced by displacement cascades in ?-iron, J. Nucl. Mater, vol.276, issue.1-3, p.213, 2000.

L. Ventelon and F. Willaime, Core structure and Peierls potential of screw dislocations in ?-Fe from first principles: cluster versus dipole approaches, J. Computer-Aided Mat. Design, vol.14, pp.85-94, 2007.

C. Domain and C. S. Becquart, Ab initio calculations of defects in Fe and dilute Fe-Cu alloys, Phys. Rev. B, vol.65, p.24103, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01828683

C. Fu, F. Willaime, and P. Ordejón, Stability and mobility of mono-and di-interstitials in ?-Fe, Phys. Rev. Lett, vol.92, p.175503, 2004.

P. Ehrhart, K. H. Robrock, and H. R. Schober, Chapter 1 -basic defects in metals, of Modern Problems in Condensed Matter Sciences, vol.13, p.3, 1986.

S. L. Dudarev and P. M. Derlet, Magnetic interatomic potential for molecular dynamics simulations, J. Phys. Condens. Mat, vol.17, issue.44, p.7097, 2005.

M. Marinica, L. Ventelon, M. R. Gilbert, L. Proville, S. L. Dudarev et al., Interatomic potentials for modelling radiation defects and dislocations in tungsten, J. Phys.: Cond. Mater, vol.25, issue.39, p.395502, 2013.

D. J. Wales, Energy Landscapes, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01423280

T. D. Swinburne and M. Marinica, Unsupervised calculation of free energy barriers in large crystalline systems, Phys. Rev. Lett, vol.120, issue.13, p.135503, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01961998

J. Friedel, The Physics of Metals, vol.1, p.494, 1969.

F. Cyrot-lackmann,