A. Padmanabhan, L. S. Nair, and . Chitosan, Hydrogels for Regenerative Engineering, Chitin and Chitosan for Regenerative Medicine

, Springer Series on Polymer and Composite Materials, pp.3-40, 2016.

A. Sivashanmugam, R. Kumar, M. Vishnu-priya, S. V. Nair, and R. Jayakumar, An overview of injectable polymeric hydrogels for tissue engineering, Eur. Polym. J, vol.72, pp.543-565, 2015.

M. Guvendiren, H. D. Lu, and J. A. Burdick, Shear-thinning hydrogels for biomedical applications, Soft Matter, vol.8, pp.260-272, 2011.

S. Joshi, K. Vig, and S. R. Singh, Advanced Hydrogels for Biomedical Applications, Biomed. J. Sci. Tech. Res, vol.5, pp.214-229, 2018.

Q. Wang, S. Chen, and D. Chen, Preparation and characterization of chitosan based injectable hydrogels enhanced by chitin nano-whiskers, J. Mech. Behav. Biomed. Mater, vol.65, pp.466-477, 2017.

M. Vishnu-priya, A. Sivshanmugam, A. R. Boccaccini, O. M. Goudouri, W. Sun et al., Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects, Biomed. Mater, vol.11, p.35017, 2016.

J. Wu, J. Liu, Y. Shi, and Y. Wan, Rheological, mechanical and degradable properties of injectable chitosan/silk fibroin/hydroxyapatite/glycerophosphate hydrogels, J. Mech. Behav. Biomed. Mater, vol.64, pp.161-172, 2016.

H. Naderi-meshkin, K. Andreas, M. M. Matin, M. Sittinger, H. R. Bidkhori et al., Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering, Cell Biol. Int, vol.38, pp.72-84, 2014.

D. Y. Kim, H. Park, S. W. Kim, J. W. Lee, and K. Y. Lee, Injectable hydrogels prepared from partially oxidized hyaluronate and glycol chitosan for chondrocyte encapsulation, Carbohydr. Polym, vol.157, pp.1281-1287, 2017.

R. Jin, L. S. Moreira-teixeira, P. J. Dijkstra, M. Karperien, C. A. Van-blitterswijk et al., Injectable chitosan-based hydrogels for cartilage tissue engineering, Biomaterials, vol.30, pp.2544-2551, 2009.

B. Chang, N. Ahuja, C. Ma, and X. Liu, Injectable scaffolds: Preparation and application in dental and craniofacial regeneration, Mater. Sci. Eng. R Rep, vol.111, pp.1-26, 2017.

K. Agossa, M. Lizambard, T. Rongthong, E. Delcourt-debruyne, J. Siepmann et al., Physical key properties of antibiotic-free, PLGA/HPMC-based in-situ forming implants for local periodontitis treatment, Int. J. Pharm, vol.521, pp.282-293, 2017.

J. Zan, H. Chen, G. Jiang, Y. Lin, and F. Ding, Preparation and properties of crosslinked chitosan thermosensitive hydrogel for injectable drug delivery systems, J. Appl. Polym. Sci, vol.101, pp.1892-1898, 2006.

M. J. Moura, H. Faneca, M. P. Lima, M. H. Gil, and M. Figueiredo, Situ Forming Chitosan Hydrogels Prepared via Ionic/Covalent Co-Cross-Linking, vol.12, pp.3275-3284, 2011.

M. H. Chen, L. L. Wang, J. J. Chung, Y. Kim, P. Atluri et al., Methods to Assess Shear-Thinning Hydrogels for Application as Injectable Biomaterials, ACS Biomater. Sci. Eng, vol.3, pp.3146-3160, 2017.

S. Saravanan, R. S. Leena, and N. Selvamurugan, Chitosan based biocomposite scaffolds for bone tissue engineering, Int. J. Biol. Macromol, vol.93, pp.1354-1365, 2016.

M. C. Pellá, M. K. Lima-tenório, E. T. Tenório-neto, M. R. Guilherme, E. C. Muniz et al., Chitosan-based hydrogels: From preparation to biomedical applications, Carbohydr. Polym, vol.196, pp.233-245, 2018.

Z. Shariatinia and A. M. Jalali, Chitosan-based hydrogels: Preparation, properties and applications, Int. J. Biol. Macromol, vol.115, pp.194-220, 2018.

Y. Zhu, J. Wang, J. Wu, J. Zhang, Y. Wan et al., Injectable hydrogels embedded with alginate microspheres for controlled delivery of bone morphogenetic protein-2, Biomed. Mater, vol.11, p.25010, 2016.

R. Niranjan, C. Koushik, S. Saravanan, A. Moorthi, M. Vairamani et al., A novel injectable temperature-sensitive zinc doped chitosan/?-glycerophosphate hydrogel for bone tissue engineering, Int. J. Biol. Macromol, vol.54, pp.24-29, 2013.

A. Oryan and S. Sahvieh, Effectiveness of chitosan scaffold in skin, bone and cartilage healing, Int. J. Biol. Macromol, vol.104, pp.1003-1011, 2017.

S. L. Levengood and M. Zhang, Chitosan-based scaffolds for bone tissue engineering, J. Mater. Chem. B Mater. Biol. Med, vol.2, pp.3161-3184, 2014.

M. Buriuli and D. Verma, Polyelectrolyte Complexes (PECs) for Biomedical Applications, Advances in Biomaterials for Biomedical Applications

, Advanced Structured Materials, pp.45-93, 2017.

Y. Luo and Q. Wang, Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery, Int. J. Biol. Macromol, vol.64, pp.353-367, 2014.

M. Weltrowski, M. Morcellet, and B. Martel, Cyclodextrin Polymers and/or Cyclodextrin Derivatives with Complexing Properties and Ion-Exchange Properties and Method for the Production Thereof, U.S. Patent, vol.660, issue.6, 2003.

B. Martel, D. Ruffin, M. Weltrowski, Y. Lekchiri, and M. Morcellet, Water-soluble polymers and gels from the polycondensation between cyclodextrins and poly(carboxylic acid)s: A study of the preparation parameters, J. Appl. Polym. Sci, vol.97, pp.433-442, 2005.

M. J. Garcia-fernandez, N. Tabary, F. Chai, F. Cazaux, N. Blanchemain et al., New multifunctional pharmaceutical excipient in tablet formulation based on citric acid-cyclodextrin polymer, Int. J. Pharm, vol.511, pp.913-920, 2016.

A. Martin, N. Tabary, L. Leclercq, J. Junthip, S. Degoutin et al., Multilayered textile coating based on a ?-cyclodextrin polyelectrolyte for the controlled release of drugs, Carbohydr. Polym, vol.93, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01003157

A. Mogrovejo-valdivia, O. Rahmouni, N. Tabary, M. Maton, C. Neut et al., In vitro evaluation of drug release and antibacterial activity of a silver-loaded wound dressing coated with a multilayer system, Int. J. Pharm, vol.556, pp.301-310, 2019.

A. Pérez-anes, M. Gargouri, W. Laure, H. Van-den-berghe, E. Courcot et al., Bioinspired Titanium Drug Eluting Platforms Based on a Poly-?-cyclodextrin-Chitosan Layer-by-Layer Self-Assembly Targeting Infections, ACS Appl

, Mater. Interfaces, vol.7, pp.12882-12893, 2015.

S. Ouerghemmi, S. Degoutin, N. Tabary, F. Cazaux, M. Maton et al., Triclosan loaded electrospun nanofibers based on a cyclodextrin polymer and chitosan polyelectrolyte complex, Int. J. Pharm, vol.513, pp.483-495, 2016.

N. Blanchemain, B. Martel, C. Flores, F. Cazaux, F. Chai et al., Method for the Production of Hydrogel Comprising Chitosan and Negatively Charged Polyelectrolytes, and Cellular, Porous Material Resulting from Said Hydrogel, vol.414, 2018.

C. Flores, M. Lopez, N. Tabary, C. Neut, F. Chai et al., Preparation and characterization of novel chitosan and ?-cyclodextrin polymer sponges for wound dressing applications, Carbohydr. Polym, vol.173, pp.535-546, 2017.

S. R. Raghavan and B. H. Cipriano, Gel Formation: Phase Diagrams Using Tabletop Rheology and Calorimetry, Molecular Gels, pp.241-252, 2006.

H. Wang, M. B. Hansen, D. W. Löwik, J. C. Van-hest, Y. Li et al., Oppositely Charged Gelatin Nanospheres as Building Blocks for Injectable and Biodegradable Gels, Adv. Mater, vol.23, pp.119-124, 2011.

F. Wahid, Y. Zhou, H. Wang, T. Wan, C. Zhong et al., Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity, Int. J. Biol. Macromol, vol.114, pp.1233-1239, 2018.

H. Chen, J. Cheng, L. Ran, K. Yu, B. Lu et al., An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing, Carbohydr. Polym, vol.201, pp.522-531, 2018.

A. Lejardi, R. Hernández, M. Criado, J. I. Santos, A. Etxeberria et al., Novel hydrogels of chitosan and poly(vinyl alcohol)-g-glycolic acid copolymer with enhanced rheological properties, Carbohydr. Polym, vol.103, pp.267-273, 2014.

I. K. Dimzon and T. P. Knepper, Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares, Int. J. Biol. Macromol, vol.72, pp.939-945, 2015.

J. Hernandez-montelongo, N. Naveas, S. Degoutin, N. Tabary, F. Chai et al., Porous silicon-cyclodextrin based polymer composites for drug delivery applications, Carbohydr. Polym, vol.110, pp.238-252, 2014.

Q. Wang and D. Chen, Synthesis and characterization of a chitosan based nanocomposite injectable hydrogel, Carbohydr. Polym, vol.136, pp.1228-1237, 2016.

M. Anraku, D. Iohara, A. Hiraga, K. Uekama, S. Ifuku et al., Formation of Elastic Gels from Deacetylated Chitin Nanofibers Reinforced with Sulfobutyl Ether ?-Cyclodextrin, Chem. Lett, vol.44, pp.285-287, 2015.

A. Borzacchiello and L. Ambrosio, Structure-Property Relationships in Hydrogels, Hydrogels, pp.9-20, 2009.

A. Rogina, A. Ressler, I. Mati?, G. Gallego-ferrer, I. Marijanovi? et al., Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system, Carbohydr. Polym, vol.166, pp.173-182, 2017.

R. Herbois, S. Noël, B. Léger, S. Tilloy, S. Menuel et al., Ruthenium-containing ?-cyclodextrin polymer globules for the catalytic hydrogenation of biomass-derived furanic compounds, Green Chem, vol.17, pp.2444-2454, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01664683

D. Dyondi, T. J. Webster, and R. Banerjee, A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration, Int. J. Nanomed, vol.8, pp.47-59, 2013.

A. Vo, M. Doumit, and G. Rockwell, The Biomechanics and Optimization of the Needle-Syringe System for Injecting Triamcinolone Acetonide into Keloids, J. Med. Eng, 2016.

D. B. Lima, R. D. Almeida, M. Pasquali, S. P. Borges, M. L. Fook et al., Physical characterization and modeling of chitosan/peg blends for injectable scaffolds, Carbohydr. Polym, vol.189, pp.238-249, 2018.

F. Cilurzo, F. Selmin, P. Minghetti, M. Adami, E. Bertoni et al., Injectability Evaluation: An Open Issue, AAPS PharmSciTech, vol.12, pp.604-609, 2011.

D. Ji, T. Kuo, H. Wu, J. Yang, and S. Lee, A novel injectable chitosan/polyglutamate polyelectrolyte complex hydrogel with hydroxyapatite for soft-tissue augmentation, Carbohydr. Polym, vol.89, pp.1123-1130, 2012.

E. Alarçin, T. Y. Lee, S. Karuthedom, M. Mohammadi, M. A. Brennan et al., Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors, Biomater. Sci, vol.6, pp.1604-1615, 2018.

A. Sivashanmugam, P. Charoenlarp, S. Deepthi, A. Rajendran, S. V. Nair et al., Injectable Shear-Thinning CaSO4/FGF-18-Incorporated Chitin-PLGA Hydrogel Enhances Bone Regeneration in Mice Cranial Bone Defect Model, ACS Appl. Mater. Interfaces, vol.9, pp.42639-42652, 2017.