J. Amodeo, C. Ph, and P. Cordier, Modelling the effect of pressure on the critical shear stress of MgO single crystals Phil, Mag, vol.92, pp.1523-1564, 2012.

T. Barron and M. Klein, Second-order elastic constants of a solid under stress, Proc. Phys. Soc. Lond, vol.85, pp.523-555, 1965.

D. Brunner, S. Taeri-baghbadrani, S. W. Ruhle, and M. , Surprising results of a study on the plasticity in strontium titanate, J. Am. Ceram. Soc, vol.84, pp.1161-1164, 2001.

C. Ph, P. Cordier, D. Mainprice, and A. Tommasi, Slip systems and plastic shear anisotropy in Mg 2 SiO 4 ringwoodite: insights from numerical modelling, Eur. J. Mineral, vol.18, pp.149-60, 2006.

C. Ph, D. Ferré, and P. Cordier, Peierls-Nabarro model for dislocations in MgSiO 3 post-perovskite calculated at 120 GPa from first principles Phil. Mag, vol.87, pp.3229-3276, 2007.

C. Ph, D. Ferré, C. Denoual, and P. Cordier, Modelling thermal activation of 1 1 0 {1 1 0} slip at low temperature in SrTiO 3, Scr. Mater, vol.63, pp.434-441, 2010.

J. Chen, D. Weldner, and M. Vaughan, The strength of Mg 0.9 Fe 0.1 SiO 3 perovskite at high pressure and temperature, Nature, vol.419, pp.824-830, 2002.

Y. Chen, A. Chernatynskiy, D. Brown, P. Schelling, A. E. Phillpot et al., Critical assessment of classical potentials for MgSiO 3 perovskite with application to thermal conductivity calculations, Phys. Earth Planet. Interiors, vol.210, pp.75-89, 2012.

E. Clouet, Elastic energy of a straight dislocation and contribution from core tractions Phil. Mag, vol.89, pp.1565-84, 2009.

P. Cordier, J. Amodeo, and C. Ph, Modelling the rheology of MgO under Earth's mantle pressure, temperature and strain rates, Nature, vol.481, pp.177-80, 2012.

P. Cordier, T. Ungar, L. Zsoldos, and G. Tichy, Dislocation creep in MgSiO 3 perovskite at conditions of the Earth's uppermost lower mantle, Nature, vol.428, pp.837-877, 2004.

C. Denoual, Dynamic dislocation modeling by combining Peierls-Nabarro and Galerkin methods, Phys. Rev. B, vol.70, p.24106, 2004.

C. Denoual, Modeling dislocation by coupling Peierls-Nabarro and element-free Galerkin methods Comput, Methods Appl. Mech. Eng, vol.196, pp.1915-1938, 2007.

J. Douin, P. Veyssiere, and P. Beauchamp, Dislocation line stability in Ni 3 Al Phil, Mag. A, vol.54, pp.375-93, 1986.

J. Durinck, C. Ph, and P. Cordier, Application of the Peierls-Nabarro model to dislocations in forsterite, Eur. J. Mineral, vol.19, pp.631-640, 2007.

D. Ferré, C. Ph, and P. Cordier, First principles determination of dislocations properties of MgSiO 3 perovskite at 30 GPa based on the Peierls-Nabarro model, Phys. Earth Planet. Interiors, vol.163, pp.283-91, 2007.

D. Ferré, C. Ph, and P. Cordier, Modeling dislocation cores in SrTiO 3 using the Peierls-Nabarro model, Phys. Rev. B, vol.77, p.14106, 2008.

D. Ferré, C. Ph, and P. Cordier, Peierls dislocation modelling in perovskite (CaTiO 3 ): comparison with tausonite (SrTiO 3 ) and MgSiO 3 perovskite, Phys. Chem. Min, vol.36, pp.233-242, 2009.

J. Gale, GULP: A computer program for the symmetry-adapted simulation of solids, J. Chem. Soc. Faraday Trans, vol.93, pp.629-666, 1997.

R. Groger, A. Bailey, and V. Vitek, Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2 1 1 1 screw dislocations at 0 K Acta Mater, vol.56, pp.5401-5412, 2008.

P. Gumbsch, S. Taeri-baghbadrani, D. Brunner, W. Sigle, and A. Ruhle, Plasticity and an inverse brittle-to-ductile transition in strontium titanate, Phys. Rev. Lett, vol.87, p.85505, 2001.

P. Hirel, M. Mrovec, and C. Elsasser, Atomistic simulation study of 1 1 0 dislocations in strontium titanate Acta Mater, vol.60, pp.329-367, 2012.

J. Hirth and J. Lothe, Theory of Dislocations, 1982.

H. Horiuchi, E. Ito, and D. Weidner, Perovskite-type MgSiO 3 -single crystal x-ray-diffractions study, Am. Mineralogist, vol.72, pp.357-60, 1987.

P. In't-veld, A. Ismail, and G. Grest, Application of Ewald summations to long-range dispersion forces, J. Chem. Phys, vol.127, p.144711, 2007.

Y. Ito and M. Toriumi, Silicon self-diffusion of MgSiO 3 perovskite by molecular dynamics and its implication for lower mantle rheology, J. Geophys. Res.-Solid Earth, vol.115, p.12205, 2010.

B. Joos, Q. Ren, and M. Duesbery, Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces, Phys. Rev. B, vol.50, pp.5890-5898, 1994.

S. Karato, K. Fujino, and E. Ito, Plasticity of MgSiO3 perovskite-the results of microhardness tests on singlecrystals, Geophys. Res. Lett, vol.17, pp.13-16, 1990.

G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, pp.11169-86, 1996.

G. Kresse and J. Hafner, Ab-initio molecular-dynamics for liquid-metals, Phys. Rev. B, vol.47, pp.558-61, 1993.

G. Kresse and J. Hafner, Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium, Phys. Rev. B, vol.49, pp.14251-69, 1994.

Z. Liu, X. Sun, X. Tan, Y. Guo, and Y. , Structural and thermodynamic properties of MgSiO 3 perovskite under high pressure and high temperature Solid State Commun, vol.144, pp.264-272, 2007.

G. Lu, The Peierls-Nabarro model of dislocations: a venerable theory and its current development Handbook of Materials Modeling ed S Yip, 2005.

G. Lu, N. Kioussis, V. Bulatov, and E. Kaxiras, The Peierls-Nabarro model revisited Phil, Mag. Lett, vol.80, pp.675-82, 2000.

D. Mainprice, A. Tommasi, D. Ferré, C. Ph, and P. Cordier, Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg-Perovskite at high pressure: implications for the seismic anisotropy in the lower mantle, Earth Planet. Sci. Lett, vol.271, pp.135-179, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00411460

T. Matsunaga and H. Saka, Transmission electron microscopy of dislocations in SrTiO 3 Phil, Mag. Lett, vol.80, pp.597-604, 2000.

S. Merkel, H. Wenk, J. Badro, G. Montagnac, P. Gillet et al., Deformation of (Mg 0.9 , Fe 0.1 )SiO 3 Perovskite aggregates up to 32, GPa Earth Planet. Sci. Lett, vol.209, pp.351-60, 2003.

A. Metsue, C. Ph, C. Denoual, D. Mainprice, and P. Cordier, Plastic deformation of wadsleyite: IV dislocation core modelling based on the Peierls-Nabarro-Galerkin model Acta Mater, vol.58, pp.1467-78, 2010.

C. Miranda and S. Scandolo, Computational materials science meets geophysics: dislocations and slip planes of MgO, Comput. Phys. Commun, vol.169, pp.24-31, 2005.

N. Miyajima, T. Yagi, and M. Ichihara, Dislocation microstructures of MgSiO 3 perovskite at a high pressure and temperature condition Phys. Earth Planet, Interiors, vol.174, pp.153-58, 2009.

H. Monkhorst and J. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, vol.13, pp.5188-92, 1976.

. Nabarro-f-r-n, Dislocations in a simple cubic lattice, Proc. Phys. Soc. Lond, vol.59, pp.256-72, 1947.

J. Nishigaki, K. Kuroda, and H. Saka, Electron-microscopy of dislocation-structures in SrTiO 3 deformed at hightemperatures Phys, Status Solidi a-Appl. Res, vol.128, pp.319-355, 1991.

A. Oganov, J. Brodholt, and G. Price, Comparative study of quasiharmonic lattice dynamics, molecular dynamics and Debye model applied to MgSiO 3 perovskite Phys. Earth Planet, Interiors, vol.122, pp.277-88, 2000.

R. Peierls, The size of a dislocation Proc, Phys. Soc, vol.52, pp.34-41, 1940.

J. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation-energy, Phys. Rev. B, vol.45, pp.13244-13253, 1992.

L. Pillon and C. Denoual, Inertial and retardation effects for dislocation interactions Phil. Mag, vol.89, pp.127-168, 2009.

L. Pillon, C. Denoual, and Y. Pellegrini, Equation of motion for dislocations with inertial effects, Phys. Rev. B, vol.76, p.224105, 2007.
URL : https://hal.archives-ouvertes.fr/cea-00412542

L. Pizzagalli and P. Beauchamp, First principles determination of the Peierls stress of the shuffle screw dislocation in silicon Phil, Mag. Lett, vol.84, pp.729-765, 2004.

L. Pizzagalli, J. Demenet, and J. Rabier, Theoretical study of pressure effect on the dislocation core properties in semiconductors, Phys. Rev. B, vol.79, p.45203, 2009.

S. Plimpton, Fast parallel algorithms for short-range molecular-dynamics, J. Comput. Phys, vol.117, pp.1-19, 1995.

L. Proville, R. D. Marinica, and M. , Quantum effect on thermally activated glide of dislocations Nature Mater, vol.11, pp.845-854, 2012.

G. Schoeck, The Peierls model: progress and limitations, Mater. Sci. Eng. A, vol.400, pp.7-17, 2005.

D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, vol.41, pp.7892-7897, 1990.

L. Ventelon and F. Willaime, Core structure and Peierls potential of screw dislocations in alpha-Fe from first principles: cluster versus dipole approaches, J. Comput.-Aided Mater. Des, vol.14, pp.85-94, 2007.

V. Vitek and V. Paidar, Non-planar dislocation cores: a ubiquitous phenomenon affecting mechanical properties of crystalline materials, p.87, 2008.

B. Von-sydow, J. Hartford, and G. Wahnstrom, Atomistic simulations and Peierls-Nabarro analysis of the Shockley partial dislocations in palladium Comput, Mater. Sci, vol.15, pp.367-79, 1999.

A. Walker, C. Ph, and P. Cordier, Atomic-scale models of dislocation cores in minerals: progress and prospects Min, Mag, vol.74, pp.381-413, 2010.

A. Walker, J. Gale, B. Slater, and K. Wright, Atomic scale modelling of the cores of dislocations in complex materials: I, Methodology Phys. Chem. Chem. Phys, vol.7, pp.3227-3261, 2005.

A. Walker, B. Slater, J. Gale, and K. Wright, Predicting the structure of screw dislocations in nanoporous materials Nature Mater, vol.3, pp.715-735, 2004.

D. Wallace, Thermodynamics of Crystals, 1972.

G. Wang, A. Strachan, C. T. Goddard, and W. , Role of core polarization curvature of screw dislocations in determining the Peierls stress in bcc Ta: a criterion for designing high-performance materials, Phys. Rev. B, vol.67, p.224101, 2003.

G. Watson, E. Kelsey, and S. Parker, Atomistic simulation of screw dislocations in rock salt structured materials Phil, Mag. A, vol.79, pp.527-563, 1999.

H. Wenk, I. Lonardelli, J. Pehl, J. Devine, V. Prakapenka et al., In situ observation of texture development in olivine, ringwoodite, magnesiowustite and silicate perovskite at high pressure Earth Planet, Sci. Lett, vol.226, pp.507-526, 2004.

R. Wentzcovitch, B. Karki, K. S. , and D. Silva-c-r-s, High pressure elastic anisotropy of MgSiO 3 perovskite and geophysical implications Earth, Planet. Sci. Lett, vol.164, pp.371-379, 1998.

C. Woo and M. Puls, Atomistic breathing shell-model calculations of dislocation core configurations in ionic-crystals Phil, Mag, vol.35, pp.727-56, 1977.

C. Woodward, First-principles simulations of dislocation cores, Mater. Sci. Eng. A, vol.400, pp.59-67, 2005.

C. Woodward and S. Rao, Flexible ab initio boundary conditions: Simulating isolated dislocations in bcc Mo and Ta, Phys. Rev. Lett, vol.88, p.216402, 2002.

W. Xu and J. Moriarty, Accurate atomistic simulations of the Peierls barrier and kink-pair formation energy for 1 1 1 screw dislocations in bcc Mo Comput, Mater. Sci, vol.9, pp.348-56, 1998.

M. Yamaguchi and V. Vitek, Core structure of nonscrew 1/2 1 1 1 dislocations on {1 1 0} planes in BCC crystals: I. Core structure in an unstressed crystal, J. Phys. F: Met. Phys, vol.3, pp.523-559, 1973.

O. Zienkiewicz and R. Taylor, The Finite Element Method, 2000.