M. Cecconi, D. Backer, D. Antonelli, M. Beale, R. Bakker et al., Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine, Intensive Care Med, vol.40, pp.1795-1815, 2014.

P. Krafft, H. Steltzer, M. Hiesmayr, W. Klimscha, and A. F. Hammerle, Mixed venous oxygen saturation in critically ill septic shock patients. The role of defined events, Chest, vol.103, pp.900-906, 1993.

P. T. Schumacker and S. M. Cain, The concept of a critical oxygen delivery, Intensive Care Med, vol.13, pp.223-229, 1987.

D. P. Nelson, R. W. Samsel, L. D. Wood, and P. T. Schumacker, Pathological supply dependence of systemic and intestinal O2 uptake during endotoxemia, J Appl Physiol, vol.64, pp.2410-2419, 1985.

H. Zhang and J. L. Vincent, Oxygen extraction is altered by endotoxin during tamponade-induced stagnant hypoxia in the dog, Circ Shock, vol.40, pp.168-176, 1993.

F. Bloos and K. Reinhart, Venous oximetry, Intensive Care Med, vol.31, pp.911-913, 2005.

L. S. Chawla, H. Zia, G. Gutierrez, N. M. Katz, M. G. Seneff et al., Lack of equivalence between central and mixed venous oxygen saturation, Chest, vol.126, pp.1891-1896, 2004.

K. Reinhart, H. J. Kuhn, C. Hartog, and D. L. Bredle, Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill, Intensive Care Med, vol.30, pp.1572-1578, 2004.

M. H. Dueck, M. Klimek, S. Appenrodt, C. Weigand, and U. Boerner, Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions, Anesthesiology, vol.103, pp.249-257, 2005.

M. Varpula, S. Karlsson, E. Ruokonen, and V. Pettilä, Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock, Intensive Care Med, vol.32, pp.1336-1343, 2006.

P. A. Van-beest, J. Van-ingen, E. C. Boerma, N. D. Holman, H. Groen et al., No agreement of mixed venous and central venous saturation in sepsis, independent of sepsis origin, Crit Care, vol.14, p.219, 2010.

C. Martin, J. P. Auffray, C. Badetti, G. Perrin, L. Papazian et al., Monitoring of central venous oxygen saturation versus mixed venous oxygen saturation in critically ill patients, Intensive Care Med, vol.18, pp.101-104, 1992.

J. D. Edwards and R. M. Mayall, Importance of the sampling site for measurement of mixed venous oxygen saturation in shock, Crit Care Med, vol.26, pp.1356-1360, 1998.

E. Rivers, B. Nguyen, S. Havstad, J. Ressler, A. Muzzin et al., Early goal-directed therapy in the treatment of severe sepsis and septic shock, N Engl J Med, vol.345, pp.1368-1377, 2001.

R. P. Dellinger, M. M. Levy, A. Rhodes, D. Annane, H. Gerlach et al., Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, Intensive Care Med, vol.39, pp.165-228, 2012.

D. M. Yealy, J. A. Kellum, D. T. Huang, A. E. Barnato, L. A. Weissfeld et al., A randomized trial of protocol-based care for early septic shock, N Engl J Med, vol.370, pp.1683-1693, 2014.

S. L. Peake, A. Delaney, M. Bailey, R. Bellomo, P. A. Cameron et al., Goal-directed resuscitation for patients with early septic shock, N Engl J Med, vol.371, pp.1496-1506, 2014.

P. R. Mouncey, T. M. Osborn, G. S. Power, D. A. Harrison, M. Z. Sadique et al., Trial of early, goal-directed resuscitation for septic shock, N Engl J Med, vol.372, pp.1301-1311, 2015.

T. Boulain, D. Garot, P. Vignon, J. B. Lascarrou, A. Desachy et al., Prevalence of low central venous oxygen saturation in the first hours of intensive care unit admission and associated mortality in septic shock patients: a prospective multicentre study, Crit Care, vol.18, p.609, 2014.

M. A. Puskarich, S. Trzeciak, N. I. Shapiro, A. C. Heffner, J. A. Kline et al., Outcomes of patients undergoing early sepsis resuscitation for cryptic shock compared with overt shock, Resuscitation, vol.82, pp.1289-1293, 2011.

J. V. Pope, A. E. Jones, D. F. Gaieski, R. C. Arnold, S. Trzeciak et al., Multicenter study of central venous oxygen saturation (ScvO(2)) as a predictor of mortality in patients with sepsis, Ann Emerg Med, vol.55, pp.40-46, 2010.

J. Textoris, L. Fouché, S. Wiramus, F. Antonini, S. Tho et al., High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality, Crit Care, vol.15, p.176, 2011.

W. J. Gu, Z. Zhang, and J. Bakker, Early lactate clearance-guided therapy in patients with sepsis: a meta-analysis with trial sequential analysis of randomized controlled trials, Intensive Care Med, vol.41, pp.1862-1863, 2015.

Z. Zhang and X. Xu, Lactate clearance is a useful biomarker for the prediction of all-cause mortality in critically ill patients: a systematic review and meta-analysis*, Crit Care Med, vol.42, pp.2118-2125, 2014.

A. E. Jones, N. I. Shapiro, S. Trzeciak, R. C. Arnold, H. A. Claremont et al., Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial, JAMA, vol.303, pp.739-746, 2010.

J. B. West, Gas transport to the periphery: how gases are moved to the peripheral tissues, pp.69-85, 1990.

B. Lamia, X. Monnet, and J. L. Teboul, Meaning of arterio-venous PCO2 difference in circulatory shock, Minerva Anestesiol, vol.72, pp.597-604, 2006.

I. Giovannini, C. Chiarla, G. Boldrini, and M. Castagneto, Calculation of venoarterial CO2 concentration difference, J Appl Physiol, vol.74, pp.959-964, 1985.

G. J. Mchardy, The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood, Clin Sci, vol.32, pp.299-309, 1967.

A. B. Groeneveld, Interpreting the venous-arterial PCO2 difference, Crit Care Med, vol.26, pp.979-980, 1998.

P. Herve, G. Simonneau, P. Girard, J. Cerrina, M. Mathieu et al., Hypercapnic acidosis induced by nutrition in mechanically ventilated patients: glucose versus fat, Crit Care Med, vol.13, pp.537-540, 1985.

H. M. Randall and J. J. Cohen, Anaerobic CO2 production by dog kidney in vitro, Am J Physiol, vol.211, pp.493-505, 1966.

H. Zhang and J. L. Vincent, Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion, Am Rev Respir Dis, vol.148, pp.867-871, 1993.

M. Von-planta, M. H. Weil, R. J. Gazmuri, J. Bisera, and E. C. Rackow, Myocardial acidosis associated with CO2 production during cardiac arrest and resuscitation, Circulation, vol.80, pp.684-692, 1989.

F. Kette, M. H. Weil, R. J. Gazmuri, J. Bisera, and E. C. Rackow, Intramyocardial hypercarbic acidosis during cardiac arrest and resuscitation, Crit Care Med, vol.21, pp.901-906, 1993.

P. Van-der-linden, I. Rausin, A. Deltell, Y. Bekrar, E. Gilbart et al., Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage, Anesth Analg, vol.80, pp.269-275, 1995.

A. B. Groeneveld, C. G. Vermeij, and L. G. Thijs, Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig, Anesth Analg, vol.73, pp.576-582, 1991.

E. C. Rackow, M. E. Astiz, C. E. Mecher, and M. H. Weil, Increased venousarterial carbon dioxide tension difference during severe sepsis in rats, Crit Care Med, vol.22, pp.121-125, 1994.

E. Benjamin, Venous hypercarbia: a nonspecific marker of hypoperfusion, Crit Care Med, vol.22, pp.9-10, 1994.

M. H. Weil, E. C. Rackow, R. Trevino, W. Grundler, J. L. Falk et al., Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation, N Engl J Med, vol.315, pp.153-156, 1986.

H. J. Adrogué, M. N. Rashad, A. B. Gorin, J. Yacoub, and N. E. Madias, Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood, N Engl J Med, vol.320, pp.1312-1316, 1989.

S. A. Bowles, R. Schlichtig, D. J. Kramer, and H. A. Klions, Arteriovenous pH and partial pressure of carbon dioxide detect critical oxygen delivery during progressive hemorrhage in dogs, J Crit Care, vol.7, pp.95-105, 1992.

J. L. Teboul, A. Mercat, F. Lenique, C. Berton, and C. Richard, Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine, Crit Care Med, vol.26, pp.1007-1010, 1998.

B. Vallet, J. L. Teboul, S. Cain, and S. Curtis, Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia, J Appl Physiol, vol.89, pp.1317-1321, 1985.

R. Nevière, J. L. Chagnon, J. L. Teboul, B. Vallet, and F. Wattel, Small intestine intramucosal PCO(2) and microvascular blood flow during hypoxic and ischemic hypoxia, Crit Care Med, vol.30, pp.379-384, 2002.

G. Gutierrez, A mathematical model of tissue-blood carbon dioxide exchange during hypoxia, Am J Respir Crit Care Med, vol.169, pp.525-533, 2004.

C. E. Mecher, E. C. Rackow, M. E. Astiz, and M. H. Weil, Venous hypercarbia associated with severe sepsis and systemic hypoperfusion, Crit Care Med, vol.18, pp.585-589, 1990.

J. Bakker, J. L. Vincent, P. Gris, M. Leon, M. Coffernils et al., Veno-arterial carbon dioxide gradient in human septic shock, Chest, vol.101, pp.509-515, 1992.

J. Creteur, D. Backer, D. Sakr, Y. Koch, M. Vincent et al., Sublingual capnometry tracks microcirculatory changes in septic patients, Intensive Care Med, vol.32, pp.516-523, 2006.

G. A. Ospina-tascón, D. F. Bautista-rincón, M. Umaña, J. D. Tafur, A. Gutiérrez et al., Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock, Crit Care, vol.17, p.294, 2013.

C. Richard, X. Monnet, and J. L. Teboul, Pulmonary artery catheter monitoring in 2011, Curr Opin Crit Care, vol.17, pp.296-302, 2011.

J. Cuschieri, E. P. Rivers, M. W. Donnino, M. Katilius, G. Jacobsen et al., Central venous-arterial carbon dioxide difference as an indicator of cardiac index, Intensive Care Med, vol.31, pp.818-822, 2005.

P. A. Van-beest, M. C. Lont, N. D. Holman, B. Loef, M. A. Kuiper et al., Central venous-arterial pCO2 difference as a tool in resuscitation of septic patients, Intensive Care Med, vol.39, pp.1034-1039, 2013.

B. Vallet, M. R. Pinsky, and M. Cecconi, Resuscitation of patients with septic shock: please "mind the gap, ! Intensive Care Med, vol.39, pp.1653-1655, 2013.

F. Vallée, B. Vallet, O. Mathe, J. Parraguette, M. A. Silva et al., Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock?, Intensive Care Med, vol.34, pp.2218-2225, 2008.

J. Mallat, F. Pepy, M. Lemyze, G. Gasan, N. Vangrunderbeeck et al., Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study, Eur J Anaesthesiol, vol.31, pp.371-380, 2014.

W. Du, D. W. Liu, X. T. Wang, Y. Long, W. Z. Chai et al., Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock, J Crit Care, vol.28, 2013.

M. A. Hayes, A. C. Timmins, E. H. Yau, M. Palazzo, C. J. Hinds et al., Elevation of systemic oxygen delivery in the treatment of critically ill patients, N Engl J Med, vol.330, pp.1717-1722, 1994.

L. Gattinoni, L. Brazzi, P. Pelosi, R. Latini, G. Tognoni et al., A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group, N Engl J Med, vol.333, pp.1025-1032, 1995.

J. Mallat, Y. Benzidi, J. Salleron, M. Lemyze, G. Gasan et al., Time course of central venous-to-arterial carbon dioxide tension difference in septic shock patients receiving incremental doses of dobutamine, Intensive Care Med, vol.40, pp.404-411, 2014.

R. R. Ruffolo, The pharmacology of dobutamine, Am J Med Sci, vol.294, pp.244-248, 1987.

J. Mallat, A. Lazkani, M. Lemyze, F. Pepy, M. Meddour et al., Repeatability of blood gas parameters, PCO2 gap, and PCO2 gap to arterial-to-venous oxygen content difference in critically ill adult patients, Medicine (Baltimore), vol.94, p.415, 2015.

I. L. Cohen, F. M. Sheikh, R. J. Perkins, P. J. Feustel, and E. D. Foster, Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine, Crit Care Med, vol.23, pp.545-552, 1995.

A. Mekontso-dessap, V. Castelain, N. Anguel, M. Bahloul, F. Schauvliege et al., Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients, Intensive Care Med, vol.28, pp.272-277, 2002.

X. Monnet, F. Julien, N. Ait-hamou, M. Lequoy, C. Gosset et al., Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders, Crit Care Med, vol.41, pp.1412-1420, 2013.

J. Mesquida, P. Saludes, G. Gruartmoner, C. Espinal, E. Torrents et al., Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock, Crit Care, vol.19, p.126, 2015.

G. A. Ospina-tascón, M. Umaña, W. Bermúdez, D. F. Bautista-rincón, G. Hernandez et al., Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O 2 content difference ratio as markers of resuscitation in patients with septic shock, Intensive Care Med, vol.41, pp.796-805, 2015.