Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Dictionary-based tensor-train sparse coding

Abstract : Multidimensional signal processing is receiving a lot of interest recently due to the wide spread appearance of multidimensional signals in different applications of data science. Many of these fields rely on prior knowledge of particular properties, such as sparsity for instance, in order to enhance the performance and the efficiency of the estimation algorithms. However, these multidimensional signals are, often, structured into high-order tensors, where the computational complexity and storage requirements become an issue for growing tensor orders. In this paper, we present a sparse-based Joint dImensionality Reduction And Factors rEtrieval (JIRAFE). More specifically, we assume that an arbitrary factor admits a decomposition into a redundant dictionary coded as a sparse matrix, called the sparse coding matrix. The goal is to estimate the sparse coding matrix in the Tensor-Train model framework.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.univ-lille.fr/hal-02865345
Contributeur : Remy Boyer <>
Soumis le : jeudi 11 juin 2020 - 16:38:15
Dernière modification le : mardi 24 novembre 2020 - 14:18:27

Fichier

EUSIPCO.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02865345, version 1

Citation

Abdelhak Boudehane, Yassine Zniyed, Arthur Tenenhaus, Laurent Le Brusquet, Remy Boyer. Dictionary-based tensor-train sparse coding. 28th European Signal Processing Conference, EUSIPCO'20, Jan 2021, Amsterdam, Netherlands. ⟨hal-02865345⟩

Partager

Métriques

Consultations de la notice

222

Téléchargements de fichiers

122