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In the context of optimization using finite element method (FEM), many issues arise, mainly numerical noise due to re-meshing
when dealing with geometric parameters furthermore the computational time of the overall optimization can be prohibitive. In this
paper, we compare different approaches to deal with these issues. In some approaches, optimization method is coupled directly to
FEM simulation while other approaches aim to replace the expensive simulation with cheap meta-models that reduce the overall
time of optimization. As treating different approaches, a comparison protocol is proposed and two electromagnetic optimization
benchmarks are treated.

Index Terms—Finite element method, Meta-model, Optimization methods, TEAM Workshop problems.

I. INTRODUCTION

THE increasing constraints on the design of electromag-
netic devices require numerical tools that are able to

model the electromagnetic fields. Finite Element (FE) method
is the most used method to satisfy such a requirement. How-
ever, this method may be very expensive in computational time
due to nonlinear behavior, 3D geometries and time dependency.
Thus, its usage for optimization, i.e. iterative process, should be
made with caution since only a limited number of evaluations
of the simulation tool is possible. It also suffers from numerical
noise due to the re-meshing when dealing with geometric
parameters. Thus, these issues have been extensively studied
in the literature using meta-model approach and stochastic
algorithms [1], e.g. genetic algorithms (GA), etc. On the other
hand, optimization using gradient based algorithms is less
studied due to the re-meshing error that highly perturb the
computation of gradient using the finite difference technique.

Here, we compare different approaches. The first approach
directly use the expensive model. Some methods are derivative-
free such as GA and DIRECT, others are gradient-based
algorithm, they can also use the derivatives computed using
adjoint variable method. The second approach considers the
FEM simulation as a black-box and construct cheap meta-
models to reduce the computational burden while refining in
regions with high error or low objective value.

In this paper, we propose to compare both approaches, and
we mainly focus on the implementation and the computational
cost to get reliable results. Furthermore, we define metrics for
each approach to ease this task.

II. EXPENSIVE MODEL APPROACHES

In these approaches, we can distinguish two categories :

A. Gradient-based

In design optimization, the gradient gives the search di-
rection to gradient based algorithms, e.g. sequential quadratic

programming, active set. . . When dealing with FEM models,
the gradient information is not always available, it is then
approximated using finite difference. However, numerical noise
due to re-meshing make this approximation highly sensitive
and requires tweaking the step size used for the computation
[3]. Thus, the use of such algorithm is not beneficial. To be
able to take advantage of such algorithms, a gradient of good
quality has to be computed.

The adjoint variable method (AVM) enables to efficiently
compute the gradient from FEM code. Thus, no numerical
noise due re-meshing is observed as opposed to finite dif-
ference. We implemented a 2D FEM code and an AVM
code based on the discrete approach [4] for the gradient
computation. The implementation of the AVM code is cumber-
some since it require intrusive manipulation of the FEM code
itself, nevertheless, it remains very interesting in terms of the
computational cost, as the time for computing the gradient is
equivalent to evaluating FEM code once whatever the number
of variables. This can be very advantageous when treating large
scale problem, e.g eight variables and more.

However, gradient-based algorithms suffer from the con-
vergence to local optima that depends on the initial point.
To handle this issue, a multi-start strategy with uniformly
distributed initial points is considered. By doing so, we increase
the probability of attaining the global optimum. Therefore, we
define a convergence rate (C.R.) of the method by considering
two solutions as the same if the distance between them is less
than a small value. In this study, we took 1% of the design
range.

B. Derivative-free

Derivative-free optimization is a discipline in mathematical
optimization that does not use derivative information in the
classical sense to find optimal solutions. Many of gradient-
free algorithms are designed as global optimizers and thus
are able to find multiple local optima while searching for
the global optimum. Various gradient-free methods have been



developed. We are going to look at some of the most commonly
used algorithms: genetic algorithm (from Matlab) and DIRECT
algorithm [2].

Genetic algorithm is a stochastic optimization method. It is
based on randomness inherent in its operators that are selection,
mutation and crossover. A convergence rate can be computed
and it is expected to be close to one.

The DIRECT method [2] is one of the strategies to do
deterministic global optimization, it performs a systematic
search of the design space using a hyperdimensional adaptive
meshing scheme to search all the design space to find the
optimum.

III. META-MODEL APPROACH

Meta-models are widely used in the context of optimization
of electromagnetic devices [5][6]. They are constructed based
on a small sample from the expensive model, i.e. FEM simula-
tion. The optimization is performed on the meta-model rather
than the expensive model. This meta-model could be improved
using infill criteria that enable to sample new promising designs
from the full model. The infill criterion has a strong influence
on how efficiently and accurately the algorithm locates the
optimum. In this work, we developed a new approach to the
usage of meta-models in optimization because the conventional
approach of fitting one meta-model and enrich it has some
drawbacks :

• The infill criteria that focus more on the local search tend
to sample points close to each other which decay the
conditioning of the correlation matrix and in consequence
the construction of the meta-model [7][8].

• The number of samples exponentially increases as the
dimensionality of the optimization problem does (curse
of dimension). Thus, the size of the correlation matrix
increases and consequently the time needed to fit the meta-
model. This time can even exceed the evaluation time of
the FE model.

• The infill criteria optimization problem are highly multi-
modal and their modality is highly correlated to size
of the sample of expensive model, when the number of
samples increase the number of local optima increases
too. Therefore, it becomes highly difficult to solve these
optimization problems [9].

• When dealing with constrained optimization, the infill
criteria tend to sample inside the feasible region but not
on the constraint boundary which affects the solution
accuracy [10].

This approach (B2M2EP) is based on the idea of branch and
bound algorithms and consists of a systematic enumeration of
candidate solutions by spiting the search space into smaller
spaces. The algorithm explores each smaller space then esti-
mates the upper and lower bounds for each one of them. A
subspace is discarded if it cannot produce a better solution
than the best found so far by the algorithm [11].

IV. COMPARISON PROTOCOL

As comparing different approaches, we propose a probabilis-
tic measure for gradient based algorithms and GA. Once the

convergence rate is determined, the probability that at least one
optimization lead to the best of all solutions is

P = 1− (1− C.R.)n

where n is the number of optimizations to be considered. the
probability is P = 99.73%, then, we compute n

n =
log(1− P )
log(1− C.R.)

Then, the expected total number of evaluations (Expected #
FEM evals) is n times the average number of evaluations.

The stopping criterion for the gradient based approach is
based on the step size which is set to 10−9.

For GA, the algorithm is stopped if there is no improvement
in the objective function during 50 successive generations.

DIRECT is deterministic method, the implemented stopping
criteria are based on a maximum budget, Thus, we stopped
it manually when there were no improvement in the objective
function in 50 successive iterations.

For B2M2EP, the algorithm is stopped based on depth level
criterion, which limit the depth of the search in terms of the
size of the smallest sub-space with respect to whole design
space.

V. TEST CASES

A. TEAM Workshop Problem 25

In this problem, the objective is to find the size of the inner
die mold and the shape of the outer die mold in order to obtain
the desired magnetic field in the cavity shown in the Fig. 1.
The optimal radius for the inner mold and the elliptical shape
for the outer mold can be determined given specified design
objectives [12].

Fig. 1. Enlarged view of die press [12].

The objective of the shape optimization is to obtain a flux
density that is radial in the cavity space and with a constant
magnitude of 0.35Tesla. The objective function W is the
squared error between the Bx and By values sampled in 10
positions along the arc e-f.

min
x

W (x) =
∑10

i=1(Bxip −Bxio)
2 + (Byip −Byio)

2 (1)

where x are the design variable x = (R1, L2, L3, L4).
The algorithms parameters are as follows



• Gradient based : SQP algorithm from Matlab is used
with 100 uniformly distributed initial points.

• GA: 50 runs are performed, the population size is set
100, selection method is stochastic uniform, crossover
method and fraction are scattered and 80% respectively,
elite fraction is 5% and mutation method is Gaussian.

• DIRECT: Jones factor were set to 10−4 while increasing
the number of iterations [2].

• B2M2EP: we choose to build each meta-model using 8
initial samples generated by composite design and enrich
each one of them by 50 samples added using the error
prediction [11].

The results are summarized in TABLE I. GA could not get
reliable results, only one optimization converged to the solution
shown in the table. Furthermore, this one is not competitive
compared to other solutions. B2M2EP were able to locate the
optimal solution but with higher cost, which is expected since
it is based on branch and bound algorithms that enable to get
reliable results. Gradient based and DIRECT algorithms gave
the best solution, while the former outperforms all the others
in term of computational cost.

TABLE I
TEAM WORKSHOP PROBLEM 25 OPTIMIZATIONS RESULTS

Approach SQP GA DIRECT B2M2EP
R1 7.31 7.51 7.31 7.26
L2 14.21 14.64 14.20 14.07
L3 14.11 14.39 14.08 14.00
L4 14.37 14.44 14.39 14.31
W 7.62e-5 12.44e-5 7.61e-5 9.91e-5
# FEM evals 280 10100 24255 44536
C.R. 34 % 2 % 100 % 100 %
Expected # FEM evals 3585 2146501 24255 44536

It is worth noting that some results from literature [1]
were taken into account and compared to ours. But due to
the difference in FE model, the optimal values are different.
Nevertheless, those from literature, when evaluated in our FE
model, have bigger values of the objective function than those
presented in TABLE I.

B. TEAM Workshop Problem 22

The SMES device in Fig. 2 consists of two concentric
superconducting coils fed with currents that flow in opposite
directions [13]. The inner coil is used for storing magnetic
energy E, while the outer one has the role of diminishing
the magnetic stray field Bstray. The goal of the optimization
problem is to find the design configurations (8 parameters)
that give a specified value of stored magnetic energy and a
minimal magnetic stray field while satisfying some constraints.
Mathematically, this is formulated as

min
x

OF (x) = B2
stray(x)/B

2
norm + |E(x)− Eref |/Eref (2)

s.t. |J|+ 6.4|B| − 54 ≤ 0 (3)
R1 −R2 +

1
2 (d1 + d2) < 0 (4)

where Eref = 180MJ , Bnorm = 200µT and x are the design
variables x = (R1, R2, h1/2, h2/2, d1, d2, J1, J2).

Fig. 2. SMES Device [13]

The first constraint aims to limit the maximal flux density
(|B|) in the coils, the maximal values of |B| are located on
their boundaries on coordinates P1 = (R1 − d1/2, 0), P2 =
(R1 + d1/2, 0) and P3 = (R2 − d2/2, 0). Thus this constraint
is replaced by three constraints (6),(7) and (8).

The second constraint aims to prevent both coils from over-
lapping. Unfortunately, optimization algorithms can sometimes
violate the constraints, this implies taking some special care of
this issue that depends on the type of the algorithm used. As we
are comparing different approaches, we chose to define another
optimization problem equivalent to the initial one that avoids
the aforementioned issue. We define a variable A2 as

A2 = R2 −R1 − (d1 + d2)/2

this new variable is defined in the interval [0, 3.9] and replaces
the second hard constraint by two soft constraints (9) and (10).
Thus, the optimization problem becomes as follows

min
x

OF (x) = B2
stray(x)/B

2
norm + |E(x)− Eref |/Eref (5)

s.t. (|J(x, P1)| − 54)/6.4 + |B(x, P1)| ≤ 0 (6)
(|J(x, P2)| − 54)/6.4 + |B(x, P2)| ≤ 0 (7)
(|J(x, P3)| − 54)/6.4 + |B(x, P3)| ≤ 0 (8)

R1 +A2 + (d1 + d2)/2 ≤ 5 (9)
−R1 −A2 − (d1 + d2)/2 ≤ −1.8 (10)

where x are the design variables x =
(R1, A2, h1/2, h2/2, d1, d2, J1, J2). The algorithms setups are
as follows

• Gradient based : SQP algorithm from Matlab is used
with 100 uniformly distributed initial points.

• GA: 50 runs are performed, the population size is set
200, selection method is stochastic uniform, crossover
method and fraction are scattered and 80% respectively,
elite fraction is 5% and mutation method is Gaussian. The
constraints are handled by the penalty method.

• DIRECT: Jones factor were set to 10−4 while increasing
the number of iterations [2]. The constraints are handled
by penalty method

• B2M2EP: we choose to build each meta-model using 20
initial samples generated by latin hypercube sampling and
enrich each one of them by 30 samples added using the



prediction error infill criterion and 5 using the expected
improvement criterion [11].

TABLE II
TEAM WORKSHOP PROBLEM 25 OPTIMIZATIONS RESULTS

Approach SQP GA DIRECT B2M2EP
R1 1.336 1.457 1.543 1.292
A2 0.027 0.481 0.229 0.058
h1/2 1.011 1.209 0.951 0.95
h2/2 1.452 1.8 1.526 1.481
d1 0.677 0.347 0.374 0.668
d2 0.269 0.121 0.217 0.231
J1 15.579 19.834 22.346 15.338
J2 -15.069 -17.305 -13.441 -15.000
OF 0.00197 0.03502 0.04881 0.159
# FEM evals 1902 160201 421995 2261685
C.R. 1 % 2 % 100 % 100 %
Expected # FEM evals 529640 94276389 421995 2261685

Here, in TABLE II, we notice the gradient based approach
is largely outperforming the other approaches in term solution
quality, actually, 17% of the solutions found by this approach
has an objective function value less than 0.05 while being
distinct in term of the variables, this explain the low C.R. of
the method and, thus, the high expected number of evaluations.

Genetic algorithm performed better than DIRECT in term
of quality of solution but the former somewhat suffer from its
inherent randomness and thus the low convergence rate.

The meta-model based approach was unable to get a good
solution in a reasonable computational time, the number of
evaluation exceeds 2 millions evaluations. This is due to
the number of spaces generated after each splitting, i.e 256.
Nevertheless, it worth noting that the spaces containing the
solutions of the other algorithms are listed as candidate, which
means, if the algorithm goes further, it will eventually reach
one of these solutions.

VI. CONCLUSION

This article presents a comparison between gradient-based
and gradient-free approaches for the optimization of electro-
magnetic devices using FEM. We treated two known bench-
marks from the literature [13][12]. Then we used two metrics
for the comparison, the first one is the quality of the solution
and the second is the computational cost. The choice of the
algorithm from each category is based on what we can find
generally in the literature, the choice of a certain algorithm
or implementation was based on what we are working on, i.e.
gradient based and meta-model approaches, and the availability
and simplicity of usage. These are usually the challenges that
designers are facing when doing optimization.

In term of performances the gradient based approach outper-
form other strategies for both test cases, this was possible due
to the computation of the gradient using the adjoint variable
method. This improves drastically the convergence and the
quality of the solutions, but this come with the expense of
intrusive manipulation of the FEM code.

The meta-model approach remains a good alternative in term
of implementation and results quality but can be expensive, the
developed approach was able to overcome some on the very
known issues when using meta-models for optimization.

Genetic algorithm is one of the most used algorithms to deal
with noisy data, for both test cases GA did not perform well.
These performances could be slightly improved by doing some
parameter tuning or using other implementations.

Direct performed very well for the first test case but it was
ineffective for the second one, this can be explained by the
constraints handling strategy, the penalty method implemented
in the algorithm may not be the best.
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