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In Amateur Athletes With Type 1 Diabetes, a 9-Day Period of Cycling at Moderate-to-Vigorous Intensity Unexpectedly Increased the Time Spent in a State of Hyperglycemia, Which Was Associated With Impairment in Heart Rate Variability

des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MAIN TEXT

In type 1 diabetes, cardiac autonomic neuropathy results from dysfunction of sympathetic and/or parasympathetic nervous system activity, and is associated with an increased risk of ventricular arrhythmia and cardiovascular morbidity and mortality [START_REF] Nathan | Complications Trial/Epidemiology of Diabetes I, Complications Study Research G. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes[END_REF]. Long before the appearance of autonomic neuropathy clinical signs, subtle cardiac autonomic dysfunction can manifest as a decrease in heart rate variability (HRV) and its components [START_REF] Makimattila | Predictors of abnormal cardiovascular autonomic function measured by frequence domain analysis of heart rate variability and conventional tests in patients with type 1 diabetes[END_REF]. A large body of literature describes an altered parasympathetic tone in individuals with uncomplicated type 1 diabetes compared to healthy controls, resulting in relative sympathetic overactivity [START_REF] Makimattila | Predictors of abnormal cardiovascular autonomic function measured by frequence domain analysis of heart rate variability and conventional tests in patients with type 1 diabetes[END_REF].

In an 11-year follow-up study of 83 subjects with type 1 diabetes, Mäkimattila et al. (2000) showed that chronic hyperglycemia (high HbA1c) was a strong predictor of a lower HRV [START_REF] Makimattila | Predictors of abnormal cardiovascular autonomic function measured by frequence domain analysis of heart rate variability and conventional tests in patients with type 1 diabetes[END_REF]. Chronic hyperglycemia might be attenuated by interventions such as exercise training (3), which has indeed been suggested as a way to improve HRV in type 1 diabetes (4; 5). However, aerobic exercise, particularly when prolonged, intense and/or unusual, may also trigger glycemic variability [START_REF] Riddell | Exercise management in type 1 diabetes: a consensus statement[END_REF]. Hypoglycemic episodes are common due to the increased muscle glucose disposal associated with high peripheral insulin concentrations, while nondecreased insulin levels in the portal vein prevent glucose release from the liver. Transient hyperglycemic episodes may also occur, for example during early recovery from intense exercise performed in post-absorptive state. Notably, it is not only sedentary or inactive patients who are prone to these exercise-induced glycemic fluctuations but also the increasing number of sports enthusiasts with type 1 diabetes engaging in outdoor ultraendurance events. Interestingly, outside the context of exercise, it has been suggested that acute glycemic excursions impair cardiac autonomic activity. Thus, [START_REF] Nguyen | Effects of hyperglycemia on variability of RR, QT and corrected QT intervals in Type 1 diabetic patients[END_REF] provided pilot data in 6 subjects with type 1 diabetes, showing that periods of naturally occurring hyperglycemia (measured over one night) were associated with an impaired global HRV and parasympathetic tone, compared to the non-hyperglycemic periods [START_REF] Nguyen | Effects of hyperglycemia on variability of RR, QT and corrected QT intervals in Type 1 diabetic patients[END_REF]. Besides, [START_REF] Koivikko | Effects of sustained insulin-induced hypoglycemia on cardiovascular autonomic regulation in type 1 diabetes[END_REF] showed a reduction in HRV and parasympathetic tone in response to hyperinsulinemic-hypoglycemic clamp as compared to euglycemic clamp in subjects with type 1 diabetes [START_REF] Koivikko | Effects of sustained insulin-induced hypoglycemia on cardiovascular autonomic regulation in type 1 diabetes[END_REF]. Additionally, a greater glycemic variability towards low blood glucose values, registered over a regular 5-day period, was associated with impaired HRV in adults with type 1 diabetes [START_REF] Jaiswal | Association between impaired cardiovascular autonomic function and hypoglycemia in patients with type 1 diabetes[END_REF]. However, the literature offers no data about cardiac autonomic activity changes accompanying exerciseinduced glycemic fluctuations, even though exercise-induced hypoglycemic episodes may appear long (24h) after the exercise session.

The aim of this observational study was to explore, in riders with uncomplicated type 1 diabetes, the impact of a 9-day cycling tour on HRV, taking into consideration concomitant exerciseinduced glycemic excursions and their influencing factors (i.e., diet and insulin).

Research Design and Methods

Subjects

Twenty-three riders agreed to participate in this investigation, traveling the 1456 km that separates Brussels and Geneva over 10 days (mHealth Grand Tour, 3-12 September 2015), including a recovery day (day 4) (Supplemental table S1). The inclusion criteria were: aged 18 years or older, a history of type 1 diabetes for more than one year, an HbA1c (dating back no more than 3 months) below 9% [75mmol.mol -1 ], and to have already experienced a one-day ride over 160km as well as rides of 100km on consecutive days. All participants were free from overt micro-and macrovascular complications, except one who suffered from arteriopathy; thus, the latter was excluded from the analyses. Written informed consent was obtained, and data collection was granted approval by CNIL (MMS/TDG/ALU/AE151191). Usual physical activity was assessed using the short version of the International Physical Activity Questionnaire. Additionally, 10 riders had undergone an incremental maximal exercise test (VO2max) as part of independent medical monitoring of athletes. Whether participants suffered from hypoglycemia unawareness was also reported. According to VO2max and/or training status, the participants were recreationally-trained or trained cyclists (10; 11).

The cycling tour

Throughout the 10 days of the tour, subjects wore a CGM (Dexcom G4 Platinum® ≥3 calibrations/day by capillary fingerstick measurement, Tapcheck glucometer) to evaluate glycemic excursions and variability. They concomitantly wore a heart rate monitor (Polar H7®)

to assess HRV at night plus time spent at different exercise intensities during cycling [START_REF] Diabetes | Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology[END_REF].

Helped by the onsite dietician, riders reported their self-estimation of carbohydrates consumed at every meal (breakfast, lunch and dinner). The day prior to the start of the tour, riders were interviewed by the dietician to assess their ability to accurately count carbohydrates. Those who were less accustomed to this practice benefited from a closer follow-up by the dietician throughout the tour. Riders also reported the exact times and types of snacks consumed. For better standardization, they were encouraged to use the gels, bars and recovery drinks provided by the staff. Among the 13 individuals treated with continuous subcutaneous insulin infusion (CSII), 8 made their insulin pump data available for the study analyses. Every morning of the tour, just before breakfast, blood pressure and body composition (bioelectric impedance) were noted. Data from the heart rate monitor, CGMs, carbohydrate intake, capillary blood glucose, and symptomatic (awareness) episodes of hypoglycemia were gathered via Bluetooth on smartphones and thereafter downloaded with specific software for further analyses.

HRV analysis

The HRV analysis was performed with Kubios HRV software® in accordance with the Task Force of the European Society of Pacing and Electrophysiology (13). HRV was analyzed during a standardized calm (sleeping) period between midnight and 4:00 AM throughout the 9 days of cycling. We analyzed time domain parameters [SDNN (standard deviation of normal to normal R-R intervals), pNN50 (percentage of differences >50ms between successive NN intervals), and RMSSD (the root mean squared of differences of successive NN intervals)] as well as frequency domains of HRV by the Fast-Fourier Transform (FFT) [high-frequency (HF: 0.15-0.40 Hz) and low-frequency (LF: 0.04-0.15 Hz)].

Glycemic variability analysis

Glycemic excursions and variability were calculated from CGM recordings over several specific periods: (i) from midnight to 4:00 AM, concomitant with the period of HRV analysis, (ii) the day before, from the beginning of breakfast to 2h post-dinner, (iii) over periods of 24h, (iv) during the cycling periods excluding the lunch break, (v) during early and late recovery (2 and 6h following the cycling periods). Glycemic excursions considered were the percentage of time spent in range [between 70 and 180 mg.dL -1 (3.9 and 10 mmol.L -1 )], below range [level 1 hypoglycemia, <70 mg.dL -1 (<3.9 mmol.L -1 ); level 2 hypoglycemia, <54 mg.dL -1 (<3.0 mmol.L -1 )] and above range [level 1 hyperglycemia, >180; level 2 hyperglycemia, >250; and hyperglycemia >300 mg.dL -1 (14) (10, 13.9 and 16.7mmol.L -1 )] levels [START_REF] Battelino | Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range[END_REF]. Glycemic variability was assessed through coefficient of variation (%CV) [START_REF] Battelino | Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range[END_REF], SD, mean amplitude of glycemic excursions (MAGE), continuous overlapping net glycemic action 1&2 (CONGA 1&2), average daily risk ratio (ADRR) indexes [START_REF] Service | Glucose variability[END_REF].

Statistics

All statistical analyses were performed with SPSS software (Inc., IBM company©, Version 19).

The quantitative data are described as the mean ± SD. Normality was checked with the Shapiro-Wilk test. A logarithm transformation was applied to data with a non-Gaussian distribution. In all of the following models, covariates were added as fixed effects and subjects as random effects to consider between -and within -participant variability.

In the first set of models, HRV parameters were studied as dependent variables in linear mixed models with time (i.e., days 1 to 10, except for day 4, which was a recovery resting day) as covariates. In a second set of models, we then successively analyzed the effects of subjects and exercise characteristics during the tour, with time kept as a covariate. In a third set of models, the effects of time as well as glycemic variability and excursions were tested as covariates, in addition to exercise characteristics if significant in the second set of models.

In a fourth set of models, glycemic variability and excursions were studied as dependent variables in mixed models or multinomial & binary logistic regressions with time (i.e., days 1 to 10, except for day 4) and circadian (i.e., night vs. day periods, only for analyses over the periods of 24h) effects as covariates. Multinomial or binary logistic regressions were specifically used to assess the percentage of time spent in hypo-and hyperglycemia (see details in the legend of Table 3). In the fifth and sixth sets of models, with glycemic variability and excursions as dependent variables, we tested the effects of exercise characteristics and subject characteristics, respectively, with time and, for the 24h periods, circadian effects as covariates.

Subsequently, we tested the effects of carbohydrates (grams) ingested (seventh set of models) and the effects of carbohydrates ingested and insulin administered (n=8 subjects on CSII, eighth set of models) on glycemic variability and excursions, considering the time effect and, when significant in the fifth set of models, the exercise characteristics.

A P-value <0.05 was considered statistically significant. All results are expressed as the mean estimation "e". A particular focus was also given to the difference magnitude in addition to inferential statistical tests expressed using p-values.

Results

Technical problems were encountered in the collection of nighttime beat-to-beat heart rate and/or interstitial glucose (e.g., disconnection of sensor, synchronization problems) for 3 subjects. Thus, 20 subjects were included in the final analyses. Their characteristics are displayed in table 1.

Carbohydrate data were processed for 19 of the 20 riders because one of them incorrectly completed the food questionnaire. Among these 19 riders, fifteen were considered as having mastered advanced carbohydrate counting including appropriate carbohydrate gram estimation.

The other four participants benefited from closer assistance from the dietician with counting carbohydrates at every meal throughout the tour. Exercise intensities and exact duration of the cycling periods (supplemental table S1) were obtained only for 46 (i.e., 25.6%) full days over the 180 (i.e., 9 days for 20 riders) days of cycling analyzed because of problems with transient disconnection between the belt and heart rate watch monitor. Riders spent a large part of the cycling period at moderate (i.e., 160.0 ± 38.3 min per day) and vigorous (i.e., 155.1 ± 27.0 min per day) intensities. Morning body mass, percent of fat mass, muscular mass and hydration did not change over the 9-day period. While systolic blood pressure remained unchanged throughout the tour, morning diastolic blood pressure and mean blood pressure decreased significantly (main time effect e:-0.43 and e:-0.39, respectively, P<0.05). Anthropometric, demographic, and diabetes-related variables were not significantly related to blood pressure throughout the tour.

HRV during the Tour

The results of HRV are presented in 16 individuals because 4 riders did not wear their heart rate monitor correctly at night. The results of mixed models for the association of time, subjects' exercise characteristics, and glycemic excursions, with temporal and frequency HRV domains displaying significant main effects are presented in table 2.

Parasympathetic tone parameters (i.e., HF 910.4 ± 1440.2 ms 2 , pNN50 17.2 ± 20.2%, RMSSD 43.5 ± 32.5ms, mean over the 9 days) and sympathetic-vagal balance (i.e., LF:HF 4.1 ± 2.2, mean over the 9 days) did not significantly change with time throughout the tour and were not altered by the characteristics of the exercise performed each day. However, global HRV (as reflected by SDNN, 101.5 ± 39.0 ms over the 9 days) tended to decrease with the number of kilometers traveled the day before, without the influence of exercise intensity or time.

The 12 men had a higher sympathetic-vagal balance than the 4 women. Age decreased parasympathetic tone. Aerobic fitness (VO2max) was positively associated with global HRV and parasympathetic tone.

Global HRV was not linked with glycemic excursions. A decrease in sympathetic-vagal balance and an increase in parasympathetic tone during the night were associated with longer time spent in alert low glucose values during the previous day and 6-h post-exercise recovery. A decrease in parasympathetic tone during the night was associated with a longer time spent in level 2 hyperglycemia during the concomitant night, as well as in hyperglycemia >300 mg.dL -1 during the previous day.

Glycemic excursions and variability

Change in time spent in hypo-, normo-, and hyperglycemia throughout the tour is presented in figure 1 (for the 24h periods) and supplemental figure S1 (for cycling, early and late recovery periods). Glycemic variability is reported in supplemental figure S2. Factors influencing glycemic outcomes are presented in table 3.

Hypoglycemia unawareness (subjectively reported) did not influence hypoglycemic excursions.

A higher HbA1c level was associated with a longer time spent above range but lower glycemic variability. Neither mode of insulin therapy nor the habit of using CGMs influenced glycemic outcomes.

Notably, while the number of aware hypoglycemic episodes did not change during the tour (0 to 1 episode/day among the riders over the 9 days), riders decreased (time effect) the percentage of time spent below range (hypoglycemia levels 1 and 2), as measured over all the periods studied. However, this decrease was at the expense of glycemic variability and hyperglycemic excursions (as measured over all the periods studied), which worsened throughout the tour (time effect) and were more frequent the days a longer distance was ridden (for hyperglycemia >300 mg.dL -1 , MAGE, SD), without a significant effect of exercise intensity. This was accompanied by a decrease in time in range. Throughout the tour, subjects experienced less time in range and more time above range during the daytime compared to the nighttime.

Throughout the tour, the riders progressively decreased the daily carbohydrate content ingested via daytime snacks (e:-10.29, P<0.001) but did not change the carbohydrate content of the nighttime snacks or the 3 meals (Figure 1C). In this context of sustained repeated exercise, neither the carbohydrates from meals nor the carbohydrates from nighttime or daytime snacks (which decreased with time) were significantly associated with glycemic excursions throughout the tour (seventh set of models). In the sample of subjects providing insulin pump data, bolus and basal rates were not significantly changed throughout the tour (eighth set of models) (Figure 1D). Notably, when comparing insulin doses used during normal daily life (data obtained from 6 of the 8 subjects during a usual week before the tour) with those administered during the tour, no significant difference appeared (paired t-test) (insulin basal rate: 14.9 ± 7.5 vs. 20.9 ± 10.0 U.day -1 ; bolus: 18.8 ± 10.7 vs. 23.9 ± 13.0 U.day -1 throughout the 9 days of the tour vs. during one week of daily life, respectively). Nevertheless, during the tour, the larger the daily amount of insulin bolus (either in U or in U.kg -1 ) was, the greater the extent of time spent below range (level 2 hypoglycemia, e:+8.87 or e:+0.11, respectively, P<0.05) experienced by riders from breakfast to 2h post dinner. Glycemic outcomes during the night (between midnight and 4:00 AM) were not significantly associated with the concomitant insulin basal rate throughout the tour.

Conclusions

Our study of 20 riders with type 1 diabetes highlighted, for the first time, that the repetition of long-duration exercise bouts at moderate-to-vigorous intensity over 9 days may trigger hyperglycemic excursions, which were negatively associated with parasympathetic tone, while time spent in hypoglycemia decreased. The type of statistical model used was chosen to ensure that the observed relationships (e.g., between hyperglycemia -a covariate, and parasympathetic tone -the dependent endpoint) were not due to simultaneous changes in time or in exercise characteristics, but appeared for any given value of these 2 outcomes, which were added as covariates in the model.

While demographic characteristics such as age [START_REF] Koenig | Sex differences in healthy human heart rate variability: A metaanalysis[END_REF] and sex (2) are well-known predictors of sympathetic-vagal balance, as confirmed in our study, the impact of exercise training on cardiac autonomic function in type 1 diabetes is documented less frequently. Interestingly, in agreement with a recent study [START_REF] Rohling | Differential Patterns of Impaired Cardiorespiratory Fitness and Cardiac Autonomic Dysfunction in Recently Diagnosed Type 1 and Type 2 Diabetes[END_REF], we found that VO2max, as a reflection of regular aerobic training level, was positively associated with cardiac autonomic function (parasympathetic tone in our study).

However, nighttime beat-to-beat heart rate recordings throughout the tour revealed that unusual multiday sustained moderate-to-vigorous exercise, without appropriate recovery, may conversely trigger impairment of HRV in type 1 diabetes. The longer the distance ridden during the day, the lower the global HRV tended to be during the subsequent night. This phenomenon could reflect a state of overreaching as already observed in nondiabetic recreationally trained runners [START_REF] Fazackerley | The effect of an ultra-endurance running race on heart rate variability[END_REF]. The latter displayed a significant reduction in indexes of HRV (including SDNN) up to 24h after an ultramarathon (64km distance, 1572m accumulative altitude change). It should however be noted that studies on the effect of overreaching on heart rate variability in healthy athletes remain few and far between, with sometimes the finding of no significant change in HRV (20; 21) In our study, it is worth noting that some cardiac autonomic function parameters were actually linked with glycemic excursions. Thus, a longer time spent at low glucose levels (corresponding both to level 1 or 2 hypoglycemia) [START_REF] Battelino | Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range[END_REF] during late recovery (i.e., the 6h period post-exercise) was associated with increased parasympathetic activity during the subsequent night. To the best of our knowledge, the only studies having explored the link between hypoglycemia and cardiac autonomic balance specifically in the context of physical exercise (only one session) have considered either the changes occurring during the 60min before the hypoglycemic episode [START_REF] Bekkink | Early Detection of Hypoglycemia in Type 1 Diabetes Using Heart Rate Variability Measured by a Wearable Device[END_REF] or the changes occurring concomitant with the hypoglycemic period (e.g., (23; 24)), and showed either a decrease, or an increase, in parasympathetic tone, respectively. Further studies are needed to confirm the increase in nocturnal parasympathetic tone associated with post-exercise hypoglycemic periods and to understand its clinical implications.

While time spent in hypoglycemia decreased throughout the tour, we observed a surprisingly significant decrease in time spent in euglycemia due to a considerable increase in time spent in hyperglycemia. While the deleterious impact of chronic hyperglycemia (HbA1c) on HRV and parasympathetic tone is already well documented in youth with type 1 diabetes [START_REF] Jaiswal | Impact of glycemic control on heart rate variability in youth with type 1 diabetes: the SEARCH CVD study[END_REF], this study is the first to show a link between cardiac autonomic imbalance and acute hyperglycemic periods in the context of physical exercise. To our knowledge, only two studies, with quite controversial results, have attempted to explore the possible acute impact of hyperglycemia on HRV in individuals with type 1 diabetes, but without involving concomitant physical exercise and based only on a limited number of glycemic values (i.e., only one measure taken in a fasting state and the other 30min after a regular meal [START_REF] Rothberg | Association Between Heart Rate Variability Measures and Blood Glucose Levels: Implications for Noninvasive Glucose Monitoring for Diabetes[END_REF]; or one measure every 30min during one night in only 6 subjects ( 7)).

As impaired cardiac vagal control is associated with higher cardiac mortality ( 27), it appears crucial to elucidate the factors involved in the worsening of hyperglycemia observed during the tour. Although reducing insulin administration and/or increasing carbohydrate intake are commonly recommended for avoiding hypoglycemic episodes around physical exercise in type 1 diabetes (6), these measures may not be needed in athletes for whom insulin doses and diet are already well adjusted to their usual intensive exercise training. Accordingly, in our work, the cyclists did not increase carbohydrate intake throughout the tour and presumably did not change their usual insulin dose (as verified among the individuals using an insulin pump). Thus, while insulin and diet might not be the direct cause of exercise-induced hyperglycemia worsening, the characteristics of the multiday exercise, i.e., prolonged and including a significant portion of vigorous intensity, may play a fundamental role. Intense exercise (>85% VO2max) to exhaustion is known to induce an increase in glycemia during the early recovery period because plasma catecholamines and glucagon take time (~30min and 30-50min, respectively) to return to resting concentrations. In nondiabetic subjects, the increase in glycemia during early recovery following intense exercise is counteracted by a 2-fold increase in plasma insulin, whereas individuals with type 1 diabetes are prone to transient hyperglycemia unless a bolus of insulin is delivered [START_REF] Purdon | The roles of insulin and catecholamines in the glucoregulatory response during intense exercise and early recovery in insulin-dependent diabetic and control subjects[END_REF]. Consistent with this theory, the only cyclist in our study who did not experience significant post-exercise hyperglycemia received a frequent insulin correction bolus in the hours following exercise.

Additionally, when exercise becomes extremely prolonged, glucose metabolism might be disrupted long after the end of exercise, as revealed in a study in nondiabetic subjects [START_REF] Maresh | Substrate and hormone responses to exercise following a marathon run[END_REF].

Equally of interest, in line with this result, we noticed a positive association between the number of kilometers traveled during the day with time spent in hyperglycemia as well as with glycemic variability during the surrounding 24h. To the best of our knowledge, blood metabolite and hormonal response to multiday long-distance sports events has only been the topic of one single case report in an athlete with type 1 diabetes, showing progressive increase in markers of inflammation (CRP) and muscle damage (creatine kinase), which are two factors of insulin resistance (30; 31), while changes in cortisol, an activator of hepatic gluconeogenesis, did not exactly follow trends of hyperglycemic excursions [START_REF] Bach | Blood glucose kinetics and physiological changes in a type 1 diabetic finisher of the Ultraman triathlon: a case study[END_REF]. Future studies on larger sample sizes, will be needed to ascertain the cause of the observed persistent hyperglycemia. Data from a study using non-repeated sustained exercise, i.e., a single marathon, suggest that persistence of free fatty acid oxidation long after exercise may suppress carbohydrate oxidation [START_REF] Tuominen | Postmarathon paradox: insulin resistance in the face of glycogen depletion[END_REF].

Additionally, in non-diabetic subjects, the exercise-induced increase in lactatemia has been shown to be enhanced throughout the week following a marathon [START_REF] Maresh | Substrate and hormone responses to exercise following a marathon run[END_REF], and lactate can then serve as an alternative muscle substrate for sparing blood glucose [START_REF] Miller | Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion[END_REF].

Finally, it is noteworthy that in addition to the negative link between glycemic excursions and cardiac autonomic activity during the 9-day repeated moderate-to-vigorous exercise, such activity was associated with a progressive decrease in morning diastolic blood pressure. This phenomenon has already been observed in response to long and strenuous events in healthy athletes and was suggested to be due to metabolic vasodilatation and/or ineffective transduction of sympathetic outflow from arterial smooth muscle [START_REF] Gratze | Hemodynamic and autonomic changes induced by Ironman: prediction of competition time by blood pressure variability[END_REF]. Therefore, better attention should be paid to vulnerability to orthostatic challenges after multiday prolonged exercise in athletes with type 1 diabetes.

While our results are particularly relevant given the growing popularity of long distance or multiday running or cycling events, including for persons with type 1 diabetes, the findings should be interpreted in the context of the study limitations. The non-standardization of the resting day and the limited data obtained during riders' daily-life prevent drawing comparisons between control resting periods and the multiday cycling challenge. We obtained insulin data only from a small proportion of the participants, making generalization difficult. In addition, the accuracy of CGMs may be reduced during exercise bouts due to multiple factors, such as subcutaneous dehydration, temperature variations, rapid decreases in glycemia, etc. To address these limitations, the CGMs were calibrated at least three times daily by capillary finger prick testing, and body hydration was controlled every morning.

Given the observational study design, we cannot draw conclusions about causality. However, the current cross-sectional study was a necessary first step towards future implementation of interventional randomized control trials. Based on the current results, these future trials could contribute to reducing hyperglycemia induced by outdoor endurance sports, instead of focusing only on hypoglycemia, and provide observations of the subsequent impact on heart rate variability. This will make it possible to partition off the possible impact of hyperglycemia from that of overreaching, the latter having already been reported in non-diabetic athletes. As far as we are aware, our study is the first to confirm empirical data (i.e., based on patients' narrative and on a single case report [START_REF] Valletta | Metabolic regulation during constant moderate physical exertion in extreme conditions in Type 1 diabetes[END_REF]) on the increased risk of hyperglycemia triggered by multiday ultra-endurance events, in amateur athletes with type 1 diabetes, with concomitant careful consideration of exercise intensity and carbohydrate intake. Notably, two other recent reports are available (37; 38), but on professional cyclists, whose adaptations to elite stage races are certainly different from those of amateur athletes. In addition to offering widely generalizable data, the unique nature of our study lies above all in the novel way the putative links between sustained exercise-induced glycemic excursions and cardiac autonomic activity are examined.

Further studies are needed to understand the mechanisms involved in the hyperglycemic effect of such multiday moderate-to-vigorous prolonged exercise events and to gain more insight into the health consequences of accompanying cardiac autonomic imbalance.

In conclusion, this study on amateur athletes with type 1 diabetes demonstrates that multiday prolonged exercise at moderate-to-vigorous intensity increased the time spent in hyperglycemia, and this was negatively associated with parasympathetic cardiac tone. These results are important considering the putative consequences on future cardiac mortality risk. In this context, beyond research on hypoglycemia prevention strategies, future work on understanding and managing exercise-induced hyperglycemia should be promising. Data are expressed as the mean ± SD (min-max). The number of subjects is indicated for outcomes with some lacking data. CSII, continuous subcutaneous insulin infusion; MDI, multiple daily insulin injections; ICR, insulin-to-carbohydrate ratio: IPAQ, International Physical Activity Questionnaire night were not used because several riders decided to remove their collection devices before that night.

Tables

In the first set of models, no significant effect of time was detected. In the second set of models, the subject characteristics analyzed were (i) anthropometric (% fat mass) and demographic (age, sex) characteristics, (ii) disease & treatment (HbA1c, diabetes duration, mode of insulin therapy, habit of wearing a CGM), and (iii) physical activity and fitness (IPAQ score, VO2max) characteristics. In the second set of models, the exercise characteristics analyzed were kilometers daily traveled, cumulative altitude change, and cycling duration, combined in a first model. Then, the effect of percentage of time spent in moderate-and vigorous-intensity activity was tested with the exercise characteristic(s) kept as (a) covariate(s) if significant in the preceding model.

In the third set of models, glycemic variability and excursions during the cycling period and during the 6-hour recovery period were obtained for 42 (i.e., 26.2%) and 85 (i.e., 53.1%) days, respectively, over the 160 days of analysis, since these periods were determined based on heart rate data from morning and afternoon, or afternoon only, respectively (cf. problems of transient disconnection between the belt and heart rate watch monitor). No significant effects were detected for time spent in range (70-180 mg.dL -1 ), above range level 1 (>180 mg.dL -1 ) or most of the glycemic variability indexes (%CV, ADRR, MAGE, CONGA 1&2). The km traveled was added as a covariate for all models with SDNN as the dependent variable. *For binary and multinomial logistic regressions, a positive or a negative 'e' represents an increase or a decrease, respectively, of the probability to be in the following categories <54, <70, >180, >250, >300 mg.dL -1 . The multinomial or binary logistic regressions were specifically used to assess for the percentage of time spent in hypo-and hyperglycemia. Ordinal categories 1, 2 and 3 (i.e., no time spent in the target glucose range, below the median and above the median time spent in the target glucose range, respectively) were derived from time spent <70, >180 or >250 mg.dL -1 [3.9, 9.9, 13.9 mmol.L -1 ]. Additionally, categories 0 and 1 (i.e., no time spent in the target glucose range or some time spent in the target glucose range, respectively) were designed to reflect time spent <54 or >300 mg.dL -1 [3.0 or 16.7 mmol.L -1 ]. MAGE, Mean Amplitude of Glycemic Excursions; CONGA 1 & 2, Continuous Overlapping Net Glycemic Action 1&2; ADRR, Average Daily Risk Ratio; For the circadian effect, night was chosen as the reference. For the mode of treatment effect, CSII was chosen as the reference. For habit with CGM use, the fact that the rider was not familiar with the wear of a CGM was chosen as a reference. Glycemic data from the last (i.e., the 10 th ) night were not used because several riders decided to remove their CGM before that night.

In the fifth set of models, the exercise characteristics analyzed were kilometers daily traveled, cumulative altitude change, and cycling duration, combined in a first model. Then, the effect of percentage of time spent in moderate-and vigorous-intensity activity was tested with the exercise characteristic(s) kept as (a) covariate(s) if significant in the preceding model. In the sixth set of models, the subject characteristics analyzed were (i) anthropometric (% fat mass) and demographic (age, sex) characteristics, (ii) disease & treatment (HbA1c, diabetes duration, mode of insulin therapy, habit of wearing a CGM), and (iii) physical activity and fitness (IPAQ score, VO2max) characteristics. Neither daily physical activity (IPAQ) nor VO2 max significantly influenced glycemic variability and excursions.

When we focused our analysis on glycemic outcomes measured in the periods between breakfast and 2 h post dinner, the effects of time during the tour (days) were comparable to those presented here, i.e., for the 24 h periods. The negative effect of kilometers traveled on glycemic variability was also found when we focused specifically on subsequent early (2 h) and late (6h) post-exercise recovery periods (early recovery: MAGE, e: +2.32, P < 0.01; late recovery: SD, e: +0.41, P = 0.09; MAGE, e: +2.03, P < 0.01). In addition, cumulative altitude change increased glycemic variability during late post-exercise recovery periods (%CV, P < 0.05, e +0.01; SD, e: +0.02, P < 0.05; MAGE, e: +0.07, P < 0.01). There was no significant result for %CV in other models except for the circadian effect in the 4 th set of models (P < 0.05, e +3.25). The percentage time in vigorous intensity tended to decrease the time spent < 70 mg.dL -1 during subsequent late recovery period (e: -0.04, P = 0.08) and to increase the 

1C.

  N=19; Day, from breakfast to 2 h post-dinner; Night, from 2h post-dinner to breakfast the next day; black bars, snacks during the tour; white bars, 3 meals of the day. Carbohydrates from meals of day 10 were not taken into account because most of the riders did not correctly report their intake of the dinner following the end of the tour. The effects of time on carbohydrate ingestion are indicated in the results section. SD values varied between 15.0 and 28.4, 0.6 and 4.6, 10.5 and 21.5 g for carbohydrates (CHO) from the daytime snacks, the nighttime snacks, and from the 3 meals, respectively. 1D. N=8 who were treated with an insulin pump; Day, from breakfast to 2 h post-dinner; Night, from 2 h post-dinner to breakfast the next day; White bars, insulin bolus; Black bars, basal rates. The effects of time on insulin administration are indicated in the results section. SD values varied between 7.7 and 19.3, 0.3 and 2.5, 3.2 and 4.7, 3.6 and 4.2 U for daytime and nighttime insulin bolus, and for daytime and nighttime basal rates, respectively.

Table 1 .

 1 Anthropometric, demographic and physical activity characteristics of the riders

	Sex, male/female	16/4
	Age (years)	37.9 ± 10.5 (19.0-54.0)
	BMI (kg.m -2 )	23.8 ± 2.6 (18.3-30.8)
	Fat mass (%)	17.6 ± 5.7 (7.4-36.9)
	Waist/hip circumference	0.9 ± 0.1 (0.7-1.0)
	Diabetes duration (years)	19.6 ± 7.7 (5.0-35.0)
	HbA1c (mmol.mol -1 )	54.1 ± 9.1 (42.1-74.9)
	HbA1c (%)	7.1 ± 0.8 (6.0-9.0) (n=19)
	Habit to wear a CGM/no habit	12/8
	Brands of CGM used	N=4 from Medtronic®, N=8 from Dexcom®
	CSII/MDI	13/7
	ICR (grams/unit of insulin)	11.2 ± 4.9 (n = 15)
	Other drugs	n=1 calcium antagonists
		n=2 thyroid drug
	VO2max (mL.min -1 .kg -1 )	53.1 ± 7.9 (38.6-67.4) (n=10)
	IPAQ score (MET-min.wk -1 )	7559.0 ± 5104.4 (2187.0-25194.0) (n=19)
	Mean number of kilometers/year traveled	6339 ± 3518 (500-15000)
	(cycling) in daily life	

Table 2 .

 2 Results of mixed models for influence of subject's and exercise characteristics, glycemic variability (during day or night) and excursions on HRV data values are log-transformed; SD, Standard Deviation of glycemia; Glycemic and heart rate variability data from the last (i.e., the 10 th )

	Global HRV	Parasympath	Sympathetic-
		etic tone	vagal balance

† 

Table 3 .

 3 Results of mixed models and logistic regression for parameters influencing glycemic excursions and variability over periods of 24 hours (8:00 AM-8:00 PM and 8:00 PM-8:00 AM)

		Hypoglycemic		Euglycemia	Hyperglyce			Glycemic				
		excursions			mic			variability				
					excursions							
		Time (%) spent	Time	Time (%)	Time (%)	Time (%)	Time (%)	MAGE	ADRR	CONGA1 CONGA2	SD
		<54 mg.dL -1 *	(%)	spent	spent >180	spent	spent					
			spent	between 70-	mg.dL -1 *	>250	>300					
			<70	180 mg.dL -1		mg.dL -1 *	mg.dL -1 *					
			mg.dL -1 *									
	Effect of time											
	throughout the tour											
	(fourth set of											
	models)											
	Effect of time	e:-0.21;	e:-0.10;	e:-1.67;	e:+0.33;	e:+0.16;	e:+0.18;	e:+2.54;	e:+0.57;	e:+1.82;	e:+1.97;	e:+1.07;
		P<0.001	P=0.06	P<0.001	P<0.001	P<0.01	P<0.001	P<0.01	P<0.05	P<0.001	P<0.001	P<0.01
	Circadian effects											
	throughout the tour											
	(fourth set of											
	models)											
	Circadian effects	NS	NS	e:-7.50;	e:+1.21;	e:+1.59;	e:+1.26;	NS	NS	NS	NS	e:+11.24;
				P<0.01	P<0.01	P<0.001	P<0.001					P<0.001
	Effects of exercise											
	characteristics (fifth											
	set of models) (no											
	effect of altitude											
	change, cycling											
	duration or exercise											
	intensity)											
	Effects of	NS	NS	NS	NS		e:+0.03;	e:+0.62;	NS	NS	NS	e:+0.26;
	kilometers						P<0.05	P=0.06				P=0.06
	Effects of subject											
	characteristics (sixth											
	set of models)											
	Anthropometric											
	characteristics (no											
	effect of age or sex)											
	Fat mass (%)	NS	NS	NS	NS	NS	e:+0.07;	NS	NS	NS	NS	NS
							P=0.09					
	Disease and											
	treatment											

  Percentage of time spent in hypo-, normo-and hyperglycemia in relation to insulin administration and carbohydrate intake Between 8 PM and 8 AM the next day; N=20; black bars, percentage of time spent below 70 mg.dL -1 ; clear bold hatch bars, percentage of time spent between 70 and 180 mg.dL -1 ; white bars, percentage of time spent above 180 mg.dL -1 . The effects of time on these glycemic outcomes are displayed in table3. SD values varied between 3.02 and 16.12%, 9.18 and 28.07%, 11.78 and 30.17% for daytime data, and between 3.81 and 20.36%, 16.44 and 31.30%, 12.52 and 29.26% for nighttime data, for time spent in hypoglycemia, euglycemia, and hyperglycemia, respectively. Glycemic data from the last (i.e., the 10 th ) night were not used in analyses because several riders decided to remove their CGM before that night.

	characteristics (no FIGURE											
	effect of mode of											
	treatment nor habit to use a CGM) HbA1c Diabetes duration Figure 1. Legend	NS NS	e:-0.03; P=0.08 e:+0.06; P=0.08	NS NS	e:+0.04; P<0.05 NS	NS NS	e:+0.04; P<0.05 NS	NS NS	NS NS	e:-0.71; P<0.01 NS	e:-0.51; P=0.06 NS	NS NS
	1A. Between 8 AM and 8 PM										
	1B.											
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Data from day 4 are not displayed because they represent a resting day.

1A. N=9; during the cycling period, effects of time (i.e., days 1 to 10, except for day 4) for percentage of time spent: < 70 mg.dL -1 , e: -0.28, P < 0.05; > 180 mg.dL -1 , e: + 0.49, P = 0.06; in addition, there was also a decrease in time (%) spent < 54 mg.dL -1 , e: -0. 1C. N=19; during the 6 hours of post-exercise recovery, effects of time for percentage of time spent: < 70 mg.dL -1 , e: -0.15, P < 0.05; 70-180 mg.dL -1 , e: -1.57, P = 0.09; > 180 mg.dL -1 , e: + 0.17, P < 0.05; in addition, there was also a significant decrease in time (%) spent < 54 throughout the tour (n=20); CONGA 1 from the last (i.e., the 10 th ) night is not indicated because several riders decided to remove their CGM before this night; effect of time, e: + 1.67, P < 0.001; In addition, there was also a significant increase in nighttime CONGA 2 throughout the tour, e: + 2.17, P < 0.001.

In addition, there was a significant increase in Standard Deviation of glycemia (SD), CONGA 1, and CONGA 2 during the cycling periods (effect of time, e: + 1.54, P < 0.05; e: + 1.85, P < 0.01; and e: + 2.02, P < 0.01, respectively).