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The sink strength and bias of edge dislocations, low-angle symmetric tilt grain boundaries (STGBs), and spherical cavities are calculated for Al, Ni and Fe using a phase-field approach in this work. The interactions between point defects (PDs) and sinks are incorporated in the present model. These interactions include an elastic contribution to the total free energy of the system, and the phenomenon of elastodiffusion which is often ignored and consists in the modification of the PD migration energy due the strain field generated by the sink. Specific spatial schemes and new algorithms have been developed and applied to perform the calculations due to the PD diffusion which becomes anisotropic and spatial dependent when elastodiffusion is taken into account. The results obtained show that the solution of Rauh and Simon systematically underestimates the sink strength of edge dislocations, especially for dumbells in Ni and Fe. STGBs with low misorientation angle and high density are biased sinks when elasticity (with and without elastodiffusion) is taken into account. It is also shown that taking into account the PD anisotropy at saddle point when

Introduction

Predicting the microstructure evolution of structural materials of nuclear reactors during irradiation is a crucial issue for the nuclear industry. Under irradiation, point defects (PDs), self-interstitial atoms (SIAs) and vacancies, as well as point defect clusters are created and diffuse towards microstructural sinks such as dislocations, grain boundaries (GBs) and cavities. These microstructural defects evolve according to their ability known as sink strength to absorb PDs.

Another interesting quantity called sink bias is commonly defined, which is the relative difference between the sink strengths for SIAs and vacancies. It allows explaining irradiation dislocation loop growth/shrinkage [START_REF] Horton | A TEM study of neutron-irradiated iron[END_REF][START_REF] Duparc | Microstructure modelling of ferritic alloys under high flux 1 MeV electron irradiations[END_REF][START_REF] Li | Computer simulations of interstitial loop growth kinetics in irradiated bcc Fe[END_REF], irradiation void swelling [START_REF] Was | Fundamentals of radiation materials[END_REF], or irradiation creep [START_REF] Okita | A critical test of the classical rate theory for void swelling[END_REF][START_REF] Brailsford | The rate theory of swelling due to void growth in irradiated metals[END_REF][START_REF] Heald | Steady-state irradiation creep[END_REF].

Different methods are used to calculate the sink strength: analytical resolution of the PD diffusion equation around the considered sink [START_REF] Nichols | On the estimation of sink-absorption terms in reaction-ratetheory analysis of radiation damage[END_REF][START_REF] Rauh | On the diffusion process of point defects in the stress field of edge dislocations[END_REF], object kinetic Monte Carlo simulations (OKMC) [START_REF] Malerba | Object kinetic Monte Carlo study of sink strengths[END_REF][START_REF] Jansson | Sink strength calculations of dislocations and loops using OKMC[END_REF][START_REF] Carpentier | Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities[END_REF][START_REF] Clouet | Elastic modeling of point-defects and their interaction[END_REF], or phase field (PF) approach [START_REF] Rouchette | Quantitative phase field model for dislocation sink strength calculations[END_REF][START_REF] Rouchette | Influence of shape anisotropy of self-interstitials on dislocation sink efficiencies in Zr : Multiscale modeling[END_REF][START_REF] Rouchette | Numerical evaluation of dislocation loop sink strengths: A phase-field approach[END_REF][START_REF] Thuinet | 3D phase-field modelling of dislocation loop sink strengths[END_REF]. The main advantage of the modelling techniques compared to the analytical models is the possibility to treat more complex microstructures and to incorporate the elastic interactions between PDs and sinks which may be addressed analytically only under simplifying conditions. This last point is important, since recent studies [START_REF] Carpentier | Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities[END_REF][START_REF] Rouchette | Quantitative phase field model for dislocation sink strength calculations[END_REF] showed that elasticity has strong effects on the dislocation sink strength computation.

The elastic interactions between PDs and sinks induce supplementary energy contribution which acts as a driving force for PD diffusion. Moreover, the migration energies of PDs are also modified by the strain field generated by the sink. This dependence is called elastodiffusion. It can be demonstrated that these two distinct effects are not redundant and appear when the continuum theory of diffusion is derived from the lattice theory of diffusion. This derivation has been an intense area of research and has been presented in the seminal work of [START_REF] Dederichs | Anisotropic diffusion in stress fields[END_REF] but also in [START_REF] Tome | Point-defect diffusion in a strained crystal[END_REF][START_REF] Savino | Point-defect anisotropic diffusion in strained hcp metals[END_REF]. In this formalism, PDs are characterized by their elastic dipole tensors [START_REF] Clouet | Elastic modeling of point-defects and their interaction[END_REF]. Several studies [START_REF] Carpentier | Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities[END_REF][START_REF] Skinner | Shape effect in the drift diffusion of point defects into straight dislocations[END_REF][START_REF] Vattré | Non-random walk diffusion enhances the sink strength of semicoherent interfaces[END_REF] addressed elastodiffusion effects on the sink strength calculations and on the role of the PD dipole tensor anisotropy at saddle point during PD diffusion. The analytical approach of elastodiffusion proposed in [START_REF] Skinner | Shape effect in the drift diffusion of point defects into straight dislocations[END_REF] showed the increase of the edge dislocation sink strength with the PD anisotropy at saddle point in fcc copper and bcc iron. Furthermore, they found that the anisotropy effects of the PD dipole tensor at saddle point were more pronounced for vacancies than SIAs in copper. More recently, the elastodiffusion effects on the edge dislocation sink strength were investigated in aluminium using OKMC simulations [START_REF] Carpentier | Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities[END_REF] and the results were qualitatively the same as those obtained in copper [START_REF] Skinner | Shape effect in the drift diffusion of point defects into straight dislocations[END_REF]. The results from [START_REF] Carpentier | Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities[END_REF] also showed that the bias associated to cavities can reach values greater than 10% by considering elastodiffusion, which means that a cavity cannot be considered as an unbiased sink as usually done [START_REF] Was | Fundamentals of radiation materials[END_REF]. GBs are usually considered as neutral sinks like cavities [START_REF] Was | Fundamentals of radiation materials[END_REF], but the investigation of the symmetric tilt grain boundary (STGB) stress field effects on its sink strength [START_REF] Jiang | Effect of grain boundary stresses on sink strength[END_REF] revealed that STGBs with low misorientation angle may have significantly higher sink strengths due to elasticity effects, especially when their density is high. These results explain the interest of the elaboration of nanocrystalline materials for nuclear reactor designing. Indeed, experimental studies [START_REF] Rose | Instability of irradiation induced defects in nanostructured materials[END_REF][START_REF] Chimia | Accumulation and recovery of defects in ion-irradiated nanocrystalline gold[END_REF] showed that nanocrystalline materials with high GB density can exhibit enhanced radiation resistance. In [START_REF] Vattré | Non-random walk diffusion enhances the sink strength of semicoherent interfaces[END_REF] it was also shown that elastic interactions between PDs and semicoherent interfaces lead to a marked enhancement of interface sink strength, especially when elastodiffusion effects are taken into account. This literature survey points out very interesting results concerning sink strengths of dislocations, STGBs or cavities but they are either limited to one particular material, which restricts the impact of their conclusions, or take only partially into account the elasticity effects, elastodiffusion being ignored in most of the cases. As a consequence, we propose in this paper a more systematic study of the sink strengths for these microstrutural defects for a panel of 3 materials, fcc Al, Ni and bcc Fe with a detailed description of elasticity effects, including elastodiffusion. This choice is driven by the fact that fcc Ni and bcc Fe are basic elements for nuclear materials and they belong at the same time to 2 different crystallographic structures. Concerning Al, it has already been studied in the literature and will be used thus as a case for comparison with the other studies.

This choice should also allow to determine if the fcc materials exhibit the same tendencies or if significant differences are obtained between the fcc and bcc crystals of the present study.

The simulation technique used is based on a phase field approach since it allows to incorporate diffusion and elastic effects in its formalism and is well suited to treat a high diversity of microstructural defects, such as the ones mentioned above. In particular, a phase-field model was previously used to calculate dislocation and dislocation loop sink strengths in anisotropic materials such as Zr [START_REF] Rouchette | Quantitative phase field model for dislocation sink strength calculations[END_REF][START_REF] Rouchette | Influence of shape anisotropy of self-interstitials on dislocation sink efficiencies in Zr : Multiscale modeling[END_REF][START_REF] Rouchette | Numerical evaluation of dislocation loop sink strengths: A phase-field approach[END_REF]. However, elastodiffusion was not considered in its formalism. This paper then proposes a new algorithm taking elastodiffusion into account in the phase field formalism. This is, to the authors' knowledge, the first attempt of this kind in the literature. This paper is organized as follows. Section 2 presents the phase field methodology employed to calculate the sink strength, with a particular emphasis on the treatment of the different microstructural defects considered, as well as elastod-iffusion. In section 3, the sink strength is computed in pure fcc Al, Ni and bcc metals for different sink types: edge dislocations, low-angle STGBs and spherical cavities. The results are discussed in section 4.

Phase field methodology

We consider a single cubic crystal in which one type of sink is introduced.

PDs are created by irradiation at a uniform and constant generation rate K 0 . Single PDs diffuse inside the matrix and are absorbed locally by the sink. To describe the system evolution under irradiation, the order parameters, the total free energy of the system and the evolution equations are defined successively, as usually done in a PF approach.

The necessary order parameters to describe the system evolution are the following: i. The site fractions of PDs X d (r) , d = I for SIAs or V for vacancies.

ii. The elastic shape function η s (r) associated to the sink s, which is used to generate the corresponding stress field, if a correct eigenstrain ε 0,ηs ij is associated to this field. Its expression depends on the type of the microstructural defect and will be established later in this section.

iii. The shape function λ s (r) of the capture zone of sink s (equal to 0 inside the matrix and 1 in the capture zone). This parameter allows a precise control of the absorption of PDs by the sink, which is essential to correctly calculate the sink strength.

The PF model used in this paper has the particularity of using 2 distinct order parameters related to the microstructural defects instead of one as usually done: one simulates its stress field, the other one simulates its capture zone. This method has already been tested in [START_REF] Rouchette | Quantitative phase field model for dislocation sink strength calculations[END_REF] and turns out to be efficient for the sink strength calculations.

The system evolves by minimisation of the total free energy F . Strictly speaking, this is only true close enough to equilibrium, an hypothesis that we assume in the following. F includes the chemical free energy F ch associated to PD and the elastic energy F el :

F (X d , η s ) = F ch (X d ) + F el (X d , η s ) (1) 
F ch and F el are respectively the chemical free energy associated to the PD and the elastic energy. In our system description, the sink evolution due to the PD absorption is not taken into account, and the sink is considered unchanged and immobile. This assumption is reasonable assuming a PD mobility higher than that of the sink, as is generally the case. In the following the self-free energy associated to the sink is ignored in Eq. 1. The chemical free energy in the limit of dilute solution is given by [START_REF] Was | Fundamentals of radiation materials[END_REF]:

F ch (X d ) = 1 V at d V E d f X d + k B T [X d ln X d + (1 -X d ) ln(1 -X d )] dV (2)
E d f is the PD formation energy, V at the atomic volume, V the volume of the computational domain, k B the Boltzmann constant, and T the temperature of the system. The elastic energy is calculated via the microelasticity theory [START_REF] Khachaturyan | Theory of structural transformations in solids[END_REF] and is a function of the elastic strain which is the difference between the total strain ε ij (r) and the total eigenstrain ε 0,tot ij (r) defined thereafter:

F el = 1 2 V C ijkl [ε ij (r) -ε 0,tot ij (r)][ε kl (r) -ε 0,tot kl (r)] dV (3)
where C ijkl are the elastic constants of the system. In this work, the system is considered as elastically homogeneous which means that the elastic constants are uniform in space. The total eigenstrain is given by:

ε 0,tot ij (r) = d ε 0,X d ij X d (r) + ε 0,ηs ij η s (r) (4) 
with ε 0,X d ij and ε 0,ηs ij respectively the eigenstrain tensors associated to the PD d in its stable equilibrium configuration and to sink s. In the elasticity theory, a PD can be modelled through its elastic dipole tensor P ij which is related to the PD eigenstrain or Vegard's tensor by:

P e,d ij = V at C ijkl ε 0,X d kl ( 5 
)
P e,d ij is the PD elastic dipole tensor at its stable state. The PD relaxation volume Ω d is related to the Vegard coefficients through the relation:

Ω d = V at Tr(ε 0,X d kl ), Tr(ε 0,X d kl ) = k,l(k=l) ε 0,X d kl ( 6 
)
Elastic equivalences between sinks and inclusions are used to determine the corresponding eigenstrain ε 0,ηs ij [START_REF] Nabarro | The synthesis of elastic dislocation fields[END_REF][START_REF] Wolfer | Stress-induced diffusion of point defects to spherical sinks[END_REF][START_REF] Borodin | Void bias factors due to the anisotropy of the point defect diffusion[END_REF]. Edge dislocations, low-angle GBs described as an array of edge dislocations, and spherical cavities are the sink geometries considered in this article. Proper PF simulation of dislocations became possible by means of the equivalence established by Nabarro [START_REF] Nabarro | The synthesis of elastic dislocation fields[END_REF], which states that a dislocation loop behaves elastically like a platelet inclusion with thickness d and whose border corresponds to the dislocation line. The eigenstrain 0,ηs ij associated to the platelet is then defined as follows:

ε 0,ηs ij = b i n j + b j n i 2d (7) 
b i and n j are respectively the i th component of the Burgers vector and the j th component of the unit vector normal to the habit plane of the loop. The field η s allows to describe the position of the platelet: it is equal to 0 inside the matrix, and 1 inside the platelet and varies from 0 to 1 at the platelet border.

The platelet border which corresponds to the dislocation loop core is therefore modelled as a diffuse interface of width w, typically set at 4 PF cells. In this paper, we use the Read and Shockley model [START_REF] Read | Dislocation models of crystal grain boundaries[END_REF], in which a low angle symmetric tilt grain boundaries (STGB) with the misorientation angle θ is described as an array of edge dislocations, separated by a distance h given by :

h = b 2 sin(θ/2) b θ (8)
As a consequence, a pile up of platelets (in which η s = 1) is introduced in the PF computational domain in order to simulate pairs of STGB or equivalently nanotwins. The same eigenstrain as in Eq. 7 can be used. Following [START_REF] Chiang | Stress concentration around a spherical cavity in a cubic medium[END_REF] we used the inclusion model of Eshelby [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] to determine the eigenstrain ε 0,ηs ij of a spherical cavity, which is in the absence of any external pressure [START_REF] Chiang | Stress concentration around a spherical cavity in a cubic medium[END_REF]:

ε 0,ηs ij = 2γ R cav (C 1111 + 2C 1122 )(S 1111 + 2S 1122 -1)
δ ij [START_REF] Rauh | On the diffusion process of point defects in the stress field of edge dislocations[END_REF] where γ and R cav are respectively the superficial tension and the radius of the cavity. δ ij is the Kronecker symbol and S ijkl the Eshelby tensor [START_REF] Chiang | Stress concentration around a spherical cavity in a cubic medium[END_REF][START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF]. The 105 cavity surface is modelled as a diffuse interface of width 4 PF cells.

The total strain ε ij (r) can be decomposed into two parts, the heterogeneous part of the strain δε ij (r) and the average strain ε ij :

ε ij (r) = ε ij + δε ij (r) (10) 
it can be demonstrated that in elastically homogeneous systems,

ε ij = d ε 0,X d ij X d (r) + ε 0,ηs ij η s (r) (11) 
where X d (r) and η s (r) are respectively the volume average values of X(r) and η s (r). The heterogeneous strain δε ij (r) derives from the displacement field u i (r) which is obtained by solving the mechanical equilibrium equation in the Fourier space [START_REF] Khachaturyan | Theory of structural transformations in solids[END_REF][START_REF] Thuinet | Phase-field modeling of precipitate evolution dynamics in elastically inhomogeneous low-symmetry systems: Application to hydride precipitation in Zr[END_REF][START_REF] Thuinet | Mesoscale modeling of coherent zirconium hydride precipitation under an applied stress[END_REF][START_REF] Louchez | Microscopic phase-field modeling of hcp|fcc interfaces[END_REF][START_REF] Oum | A 3D crystal plasticity model for coherency loss during precipitation[END_REF]:

C ijkl ∂ 2 u k (r) ∂r j ∂r l = C ijkl [ d ε 0,X d kl ∂X d ∂r j (r) + ε 0,ηs kl ∂η s ∂r j (r)] (12) 
The local PD flux J d i (r, t) which is a linear function of driving force µ d is given by:

J d i (r, t) = - j M d ij (r, t) V at ∇ j (µ d (r, t)) ( 13 
)
where µ d is the local energetic potential per PD:

µ d = V at δF δX d = µ d chem + µ d el ( 14 
)
with

µ d chem = V at δF chem δX d (15)
which, in the low PD fraction approximation, is given by:

µ d chem = E d f + k B T ln X d ( 16 
)
and

µ d el = V at δF el δX d ( 17 
)
M d ij (r, t) is the mobility tensor of PD d which, in the case of the free energy of Eq. 2, can be written as:

M d ij (r, t) = X d (r, t) k B T D d ij (r) (18) 
where D d ij (r) is the PD diffusion tensor. The PD diffusion equation is assumed to be of the Cahn-Hilliard type [START_REF] Cahn | On spinodal decomposition[END_REF]. The generation rate term K 0 and the absorption term J abs s,d (r, t) are added in this equation to simulate the PD creation by irradiation and their local absorption by the sink. The resulting equation is given by:

∂X d ∂t (r, t) = i ∇ i [ j D d ij (r) V at k B T X d (r, t)∇ j µ d (r, t)] + K 0 -J abs s,d (r, t) (19) 
The recombination between PDs is neglected and the PD diffusion equations are solved independently. J abs s,d is defined by using the shape function λ s according to:

J abs s,d (r, t) = λ s (r)λ eff (X d (r, t) -X s d ) ( 20 
)
λ eff is an efficiency factor taken equal to 1/δt to maintain the PD atomic fraction inside the sink at X s d , δt is the time step used to evolve the kinetic equations.

X s d is fixed at a constant value, usually taken as the thermal equilibrium fraction of PD. The shape function λ s (r) in the expression of the absorption term J abs s,d 110 of Eq. 20 ensures the PD absorption only inside the sink, η s and λ s are assumed not to evolve with time since the sink is supposed to remain unchanged during the simulation.

Due to the cubic symmetry of the crystals and the nature of the point defects studied in this paper, the PD diffusion tensor in the unstrained system D 0,d ij is isotropic:

D 0,d ij = D 0,d δ ij (21)
However, during the diffusion of PDs towards the sink, the migration rate of PD is modified by the strain field. This phenomenon is called elastodiffusion.

In the presence of an extended elastic strain field ε kl (r) generated by the sinks, the stable and saddle state energies E e and E sad are modified at the first order as follows:

E e = E e 0 - kl P e kl ε kl (r e ) ( 22 
)
E sad = E sad 0 - kl P sad kl ( h ξψ )ε kl (r sad ) ( 23 
)
where E e 0 and E sad 0 are respectively the PD energy at stable and saddle configurations in the unstrained system. P e kl and P sad kl ( h ξψ ) are respectively the elastic dipole tensors of PD at stable and saddle point for the jump direction h and for the initial ξ and final ψ PD orientations. Assuming that ε kl (r sad ) ε kl (r e ), it can be demonstrated that through an averaging procedure on all the possible jumps of PD d, the PD diffusion tensor is given by [START_REF] Dederichs | Anisotropic diffusion in stress fields[END_REF][START_REF] Tome | Point-defect diffusion in a strained crystal[END_REF]:

D d ij (r) = 3D 0,d N Z h ξψ u h i u h j exp[ 1 k B T kl (P sad kl ( h ξψ ) -P e kl )ε kl (r e )] (24) 
with u h i the i th component of the unit vector in the direction of the jump h, Z is the number of pairs (ξ,ψ) and N the number of nearest neighbour sites, P e kl is given by:

P e kl = 1 3 
Tr(P e kl )δ kl [START_REF] Chimia | Accumulation and recovery of defects in ion-irradiated nanocrystalline gold[END_REF] The P ij -tensors are determined from DFT based ab initio calculations described in section 3.1.

The sink strength k 2 s,d can be deduced from Eq. 19 when steady state is reached. It is a function of the absorption rate J abs s,d and the average site fraction

X d [4]: k 2 s,d = J abs s,d D 0,d (X d -X s d ) (26) 
with

J abs s,d = 1 V V J abs s,d (r)dV, X d = 1 V V X d (r)dV (27) 
The sink bias B s is defined as [START_REF] Heald | Point defect behaviour in irradiated materials[END_REF]:

B s = 1 - k 2 s,V k 2 s,I (28) 
To solve the PD evolution equations, the following dimensionless parameters are introduced:

                                     r * = r/a 0 , ∇ * i = a 0 ∇ i D d, * ij = D d ij /D 0,d t * = t/t 0 , t 0 = a 2 0 /D 0,d K * 0 = t 0 K 0 J abs, * s,d = t 0 J abs s,d C * ijkl = C ijkl /( k B T Vat ), µ d, * = µ d /k B T ( 29 
)
where a 0 is the length of a unit PF cell. The dimensionless form of Eq. 19 is then:

∂X d ∂t * (r * , t * ) = i ∇ * i [ j D d, * ij (r * )X d ∇ * j µ d, * (r * , t * )] + K * 0 -J abs, * s,d (r * , t * ) (30)
Eq. 24 shows that the PD diffusion tensor in strained system becomes anisotropic and spatial dependent due to elastodiffusion whereas it is isotropic and uniform in the unstrained system. In presence of elastodiffusion, solving the PD diffusion equation is then much more complex and time consuming, and specific spatial schemes and new algorithms have been derived to treat Eq. 30. They are described in the Appendix A.

Results in pure fcc Al, Ni and bcc Fe

Input data

The simulations were performed at temperature T = 300 K and with the dimensionless PD generation rate K * 0 = 3 × 10 -8 . For this temperature, the thermal equilibrium fractions of PDs are generally small and thus we fixed the PD fraction inside the sink X s d close at 0. The elastic parameters for the simulations are given in table 1. The PD elastic dipole tensors necessary for elastodiffusion calculations in Al are available in [START_REF] Carpentier | Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities[END_REF] and recalled in table 1. The elastic dipole tensors of PDs in Ni and Fe were computed by DFT simulations using VASP [START_REF] Kresse | Ab initio molecular dynamics for liquid metals[END_REF][START_REF] Kresse | Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set[END_REF]. For this purpose, a periodic simulation cell of volume V containing a perfect crystal with N atoms is considered and relaxed.

One PD is then introduced, the supercell vectors being kept fixed during atomic relaxation. If the PD is a vacancy (respectively SIA), the resulting number of atoms in the simulation supercell is N-1 (respectively N+1). The P ij -tensors are deduced from the residual stress σ ij induced by the PD on the simulation supercell through the relation [START_REF] Carpentier | Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities[END_REF][START_REF] Clouet | Elastic modeling of point-defects and their interaction[END_REF][START_REF] Vattré | Non-random walk diffusion enhances the sink strength of semicoherent interfaces[END_REF]:

P ij = V (σ ij -σ 0 ij ) (31) 
where σ 0 ij is the residual stress on the perfect (without defect) supercell after relaxation which can be different from zero due to convergence limitations of the (PBE) formulation. The plane wave energy cutoff was set to 350 eV for Ni and 300 eV for Fe, and the k-point grid mesh used was 3×3×3. The most stable SIA configuration in fcc structures is generally the <100>-dumbbell [START_REF] Johnson | Point-defect calculations for an fcc lattice[END_REF] and in bcc structures the <111>-dumbbell, but in bcc iron it is the <110>-dumbbell which is the most stable due to magnetism [START_REF] Domain | Ab initio calculations of defects in Fe and dilute Fe-Cu alloys[END_REF]. The dumbbell migration mechanism is more complex than that of vacancies and the most favorable one for the ). Therefore all the tensors must be rewritten in the PF basis using proper space rotations in the simulations. Different cases were chosen to investigate the elastodiffusion effects:

i. Case 1: no elastodiffusion, P sad ij ≡ P e ij .

ii. Case 2: isotropic PD at saddle point,

P sad ij ≡ 1 3 T r(P sad ij )δ ij .
iii. Case 3: full elastodiffusion, real P sad ij -tensors.

Cases 2 and 3 allows assessing the importance of the PD anisotropy at the saddle point.

Edge dislocation

A dipole of edge dislocations is considered as illustrated in Fig. 1-a), with the glide systems {111}< 110> in fcc and {110}< 111> in bcc. Each dislocation is characterised by: a) its unit line vector: (see Fig. 1-a)). The capture region of the PD by the dislocation cores corresponds to 2 cylinders of radius r 0 , where r 0 is set at 4b, a value which is close to the one proposed in the literature for pure bcc iron [START_REF] Sivak | Kinetic monte-carlo simulation of self-point defect diffusion in dislocation elastic fields in bcc iron and vanadium[END_REF]. The shape function λ s (r) is equal to 0 outside the cylinder and 1 inside it.

l = 1 √ 6 [ 112 ] (fcc), 1 b N 1 2 N N 2 = N 1 /2
The PD fluxes are plotted in Fig. 2 for each metal without (case 1) and with full elastodiffusion (case 3). Overall, for both cases, dumbbells migrate preferen- x 2 (nm)

x 1 (nm) x 2 (nm)

x 1 (nm) 

= J 2 1 + J 2 2 .
tially towards the tension region of dislocations. On the contrary, vacancies are more attracted to the compression region which is expected when elastic inter-actions are considered. When the elastodiffusion is taken into account, the flow of dumbbells hardly changes for all the metals investigated here. Conversely, the trajectory of vacancies in all the metals is more affected by the elastodiffusion especially in the compression region. The flow intensity of vacancies decreases and its orientation changes near the compression region as shown in Figs. 2-b), 2-d) and 2-f).

In figure 3 are represented the sink strengths and the corresponding biases.

The sink strength is higher with full elastodiffusion (case 3) compared to the case without elastodiffusion (case 1) in each metal and for each PD. This difference is amplified with the density of dislocations. The elastodiffusion effects are more significant for vacancies in all the metals.

We now examine intermediate case 2 to study the effects of PD anisotropy.

In this case, the effect of elastodiffusion is due only to the change in the PD relaxation volume between stable and saddle points. The sink strength obtained in cases 1 and 2 are very close for dumbbells in all the metals. In the case of vacancies, elastodiffusion in case 2 induces a decrease of the sink strength in comparison to case 1 as shown in Fig. 3 in all the metals and this decrease is more marked in Ni. The relative difference of the relaxation volume (Ω s -Ω e )/Ω e for dumbbells in all the metals and for vacancies in Fe is less or equal to 10% (see table 1). Thus the elastic interactions between PDs and dislocations at stable and saddle state configurations are practically the same in case 2 which explains the small change of the sink strength between cases 1 and 2. However, ii. To obtain the Rauh and Simon solution, the choice of the boundary conditions are similar to those of the Laplace's model [START_REF] Nichols | On the estimation of sink-absorption terms in reaction-ratetheory analysis of radiation damage[END_REF][START_REF] Rouchette | Quantitative phase field model for dislocation sink strength calculations[END_REF]. The PD atomic fraction used to compute the sink strength (see Eq. 26) corresponds to the atomic fraction at the boundaries of the reservoir instead of the mean value X as in the PF model.

the
iii. The Rauh and Simon model ignores the elastic interactions between the dislocations, which limits its validity to low dislocations densities.

The results obtained in [START_REF] Carpentier | Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities[END_REF] for sink strength and bias in Al using OKMC simulations are represented in figure 3. There is a good agreement between PF and OKMC results for low dislocation densities but differences are observed at high densities. This discrepancy can be explained by the fact that the radius r 0 of the PD capture region used in the OKMC simulations is equal to 2b while in the present study it is 4b. In our PF model, r 0 = w where w is the width of the dislocation core which is modelled as a diffuse interface. For numerical reasons it is difficult to simulate an interface with less than 3 or 4 cells, hence the value chosen for r 0 .

Low-angle symmetric tilt grain boundary (STGB)

The STGB is modeled by an array of edge dislocations as illustrated in Fig. 1-b). The array is characterized by 2 distances:

i. distance h between dislocations, related to the tilt angle θ: h = b/θ.

ii. distance d between the 2 STGBs in the simulation domain.

Each dislocation has the same characteristics listed in section 3. x 2 (nm)

x 1 (nm) 

= J 2 1 + J 2 2 .
width of the capture region 2r 0 in our simulations. They are represented in sink strength is higher when full elastodiffusion (case 3) is taken into account compared to the cases 1 and 2, like in the case of isolated dislocations. In Al, the normalized sink strengths calculated in cases 1 to 3 are close for both PDs and 265 the biases are then almost the same for all the simulations. In the case of Ni, full elastodiffusion effects are more significant especially for vacancies and induce a strong decrease of the bias compared to the other cases. In Fe, elastodiffusion in case 2 has no effect on the sink strength for vacancies, but in case 3 an increase is observed for small STGB inter-spacings. For dumbbells, elastodiffusion does not change the sink strengths when dumbbells are considered isotropic at saddle point. However, with full elastodiffusion, the sink strength increases strongly for small STGB inter-spacings and leads to strong variations of the STGB bias as shown in Fig. 5 (bias 70 % for d 5 nm).

The misorientation angle effect on the sink strength was also investigated by performing simulations with various values of the dislocation spacing h. Figure 6 shows the normalized sink strength and the sink bias for all the metals as a function of the misorientation angle θ, for a chosen GB inter-spacing. The results are qualitatively the same in all the metals. For both PDs, there is an increase followed by a decrease of the sink strength with θ, the maximum is obtained for a value of θ around 3 • , the maximum being less visible for vacancies in Al and Fe. The representation of the bias given in Fig. 6-c) shows a decrease with the misorientation angle. These results concerning the influence of θ are very similar to those obtained in fcc Cu [START_REF] Jiang | Effect of grain boundary stresses on sink strength[END_REF]. In this latter study, the maximum of the sink strength for dumbbells is around θ = 2 • . As explained in [START_REF] Jiang | Effect of grain boundary stresses on sink strength[END_REF], the maximum observed on the curve representing the STGB sink strength as a function of θ is the result of 2 antagonistic effects:

i. The sink strength increases with the dislocation density ρ and consequently with θ as obtained in the case of isolated edge dislocations. Since in the case of STGB, ρ = 1/hd = θ/bd, the sink strength should also increase with θ.

ii. However, for high dislocation densities (small h or high θ), the stress fields of neighboring STGB dislocations overlap strongly which leads to a mutual cancellation for the considered spatial arrangement. Thus, the STGB tends to act as a neutral continous planar sink without elastic stress 295 field for high dislocation densities (high misorientation angles).

The maximum is less visible for vacancies due to their smaller relaxation volume than the one of dumbbells (see table 1) which implies weaker elastic interactions (c) means that vacancies are more absorbed than dumbbells.

Spherical cavity System description

A spherical cavity is located at the center of a 3D cubic PF simulation domain as illustrated in Fig. 1-c). The cavity radius was set at R cav = 1 nm (4a 0 ). The cavity surface was modelled as a diffuse interface with a width of 1 nm (w = 4a 0 ). The radius of the capture region thus corresponds to r 0 = 2 nm (r 0 = R cav + w). The cavity density corresponds to ρ = 1/N x 2 (nm)

x 1 (nm) Fe, without elastodiffusion in blue (case 1) and with full elastodiffusion in red (case 3) for a spherical cavity according to the x 1 x 2 -plane passing through the center of the cavity. The length of the vector is proportional to the norm of the flux

J = J 2 1 + J 2 2 .
to the surface of the cavity in all the simulation cases and for all the metals.

The dumbbell trajectory does not change remarkably with the saddle point anisotropy in all the systems, as well as the trajectory of vacancies in Fe. On the other hand, a significant change is noted in the vacancy flow near the cavity in Al and Ni. As shown in Figs. 8-b) and 8-d) the vacancy trajectory is deflected in the vicinity of the cavity with the PD anisotropy at saddle point. The same effects of the P ij -tensor anisotropy at saddle point on the PD trajectories near a spherical cavity in Al were obtained in [START_REF] Carpentier | Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities[END_REF].

The sink strengths and bias are plotted in Fig. 9. The sink strengths for PDs have been normalized by the sink strength of a neutral cavity without elastic interactions given by the Wiedersich formula:

k 2 /ρ = 4πr 0 (1 -f 3/2 d ) 1 -1.8f 1/2 d + f 3/2 d -0.2f 3 d ( 32 
)
where f d = (r 0 /R) 2 and ρ = ( 43 πR 3 ) -1 , R being the reservoir radius. The sink strengths obtained for both PDs in cases 1 and 2 are close to the Wiedersich solution for all the systems. The bias in these cases is less than 5%. The results in the case of full elastodiffusion (case 3) show an increase of the sink strength for dumbbells and a decrease for vacancies compared to cases 1 and 2. As a consequence, the sink bias increases and is between 13% and 20% in Al, and around 10% in Ni and Fe for the corresponding cavity radius and cavity densities investigated (10 22 -10 24 m -3 ). Thus, a cavity cannot be considered as a neutral sink when all the elastic effects are taken into account. It should also be noted that the bias varies slightly with the cavity density because a cavity produces a short-range strain field.

The bias evolution with the cavity radius R cav was investigated and the results are represented in figure 10 along with the analytical solution of Borodin [START_REF] Borodin | Void bias factors due to the anisotropy of the point defect diffusion[END_REF]. In Borodin solution, the radius of the capture region corresponds to the radius of the cavity (r 0 = R cav ). In our study, the capture radius of cavity is with its radius. This can be explained by the fact that the eigenstrain of the cavity is proportional to 1/R cav (see Eq. 9) and the corresponding strain field decreases with R cav . As a consequence the bias decreases with the cavity radius, since the elastic interactions decrease. In the cases of Al and Ni, we obtain a better agreement with the Borodin solution for large cavities than for small cavities. In Fe, there is a large difference between our results and the analytical solution of Borodin. Several reasons may explain these discrepancies:

r 0 = R cav +
i. The Borodin solution depends only on the elastic dipole tensor at saddle point and varies as 1/R cav .

ii. Dumbbells and vacancies are assumed to have the same P ij -tensor symmetry at the saddle point in the Borodin solution. In our simulations, this is not the case for vacancies and dumbbells in Fe.

iii. The strain field around the cavity given in the Borodin solution corresponds to the one obtained considering an infinite isotropic medium.

iv. In our PF model, the cavity radius R cav is different from the capture radius, which is not the case in the model of Borodin. However, when increasing R cav , this difference becomes relatively less significant. Besides, figure 10 shows that the results are closer for higher radii.

Discussion

In classical PF models, an interface energy for precipitate/cavity (or equivalently a core energy for the dislocation) is introduced in Eq. 1 and can be expressed as a function of the order parameter η s . The expression of this term is then required to calculate the temporal evolution of η s but not the ones of the other order parameters, in particular the diffusion equations of the PD site fractions X d (the surface energy does not depend on X d , and then gives no contribution to µ d in Eq. 13 and 14). In our work, η s does not evolve with time, in other words, the sink is supposed immobile and its expansion/regression is neglected during the simulation time (the idea is to make a correlation between the sink size and its strength), like in other approaches (Object Kinetic Monte Carlo [START_REF] Malerba | Object kinetic Monte Carlo study of sink strengths[END_REF][START_REF] Jansson | Sink strength calculations of dislocations and loops using OKMC[END_REF][START_REF] Carpentier | Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities[END_REF][START_REF] Clouet | Elastic modeling of point-defects and their interaction[END_REF][START_REF] Vattré | Non-random walk diffusion enhances the sink strength of semicoherent interfaces[END_REF]) to calculate the sink strengths. As a consequence, since we do not calculate the temporal evolution of η s , we do not need to express the interface energy in Eq. 1. This approach is the same as the one proposed in [START_REF] Rouchette | Quantitative phase field model for dislocation sink strength calculations[END_REF][START_REF] Rouchette | Influence of shape anisotropy of self-interstitials on dislocation sink efficiencies in Zr : Multiscale modeling[END_REF][START_REF] Rouchette | Numerical evaluation of dislocation loop sink strengths: A phase-field approach[END_REF][START_REF] Thuinet | 3D phase-field modelling of dislocation loop sink strengths[END_REF].

It has been shown that elastodiffusion modifies the flow of PD toward the sinks and the sink absorption bias. The magnitude of these effects depends strongly on the PD anisotropy at saddle point. In particular, the sink strength increases by taking into account the PD anisotropy at saddle point (case 3) compared to the other cases simulated (cases 1 and 2).

In all the metals and in the case of isolated edge dislocations, vacancies are more affected by elastodiffusion which induces a decrease of the sink bias around PDs are very close. Significant differences are observed for the ratio D 22 /D 0 , which is higher for dumbbells than for vacancies in some points (see Fig. 11), but overall a small decrease of the sink bias is observed with full elastodiffusion in Fe.

GBs are usually considered as neutral sinks in the literature [START_REF] Was | Fundamentals of radiation materials[END_REF]. The results obtained here show that for high STGB inter-spacings, the sink strengths for both PDs are weakly affected by the elastic stress field. As a consequence the STGB can be considered as neutral for high inter-spacings. However for low GB inter-spacings, this assumption is no longer valid and GBs act as biased sinks (see Fig. 5). The sink strength of STGBs can reach large values but for very low interspacings between them. However, these results are not so surprising if compared with some results of [START_REF] Vattré | Non-random walk diffusion enhances the sink strength of semicoherent interfaces[END_REF], in which a high enhancement of the sink were obtained for a fixed value of θ = 9.55 • , which has been arbitrarily chosen.

In [START_REF] Jourdan | A continuous model including elastodiffusion for sink strength calculation of interfaces[END_REF], it is shown that the evolution of the bias with the grain boundary misorientation θ in Cu is not monotonous: for θ values between 3 and 10 • , the bias increases with θ when the calculations include anisotropic elasticity and elastodiffusion, but this increase is very weak, the curve being almost a plateau in this range (the bias varies between 2 and 4%). Between 1 and 3 • , the bias strongly increases when the misorientation decreases. This results in the presence of a shallow minimum in the curve B(θ) at θ around 3 • . In figure 6 of our paper, we also plotted the curves B(θ) for each material under investigation Al, Fe and Ni but for none of them we obtained a minimum, instead B significantly decreases when θ increases for all the materials. Moreover, even in the θ-range [3 • -10 • ], there is a more significant impact of elasticity than in [START_REF] Jourdan | A continuous model including elastodiffusion for sink strength calculation of interfaces[END_REF] (for example, the bias varies between 5% and 30% for Al). This is mainly due to the distance between grain boundaries d, which is around 20 nm in our case whereas it is 70 nm in [START_REF] Jourdan | A continuous model including elastodiffusion for sink strength calculation of interfaces[END_REF]. It means that the bulk volume fraction affected by the elastic field is larger in our case, which explains why the elasticity effects on the bias are more important in our study than in [START_REF] Jourdan | A continuous model including elastodiffusion for sink strength calculation of interfaces[END_REF], even for larger values of θ. So it is possible that the minimum exhibited in figure 2 of [START_REF] Jourdan | A continuous model including elastodiffusion for sink strength calculation of interfaces[END_REF] is erased in regimes where the elasticity effects are stronger. When comparing the data at the same value of d (around 60-70nm) and θ (around 10 • ), we observe that the bias is around 2% for Ni and Al and 6% for Fe (see figure 5 case 3: full elas-todiffusion), which corresponds to the order of magnitude of the bias obtained in [START_REF] Jourdan | A continuous model including elastodiffusion for sink strength calculation of interfaces[END_REF] (around 4%). This tends to confirm the importance of the parameter d in these calculations. The nature of the material may also play a role. In [START_REF] Jourdan | A continuous model including elastodiffusion for sink strength calculation of interfaces[END_REF],

the presence of a shallow minimum in the curve B(θ) is due to the fact that the maximum of the sink strength is not reached for the same misorientation for interstitials (θ = 1.5 • ) and vacancies (θ = 3 • ). In our case, the maximum of the sink strength for interstitials is always reached for the same value of θ (around 3 • ) whatever the material. For vacancies, the maximum of the sink strength is also reached at 3 • for Ni but it is much less marked for Fe, and completely disappears for Al.

One limitation of our model is that the dislocations are supposed immobile.

Gu et al [START_REF] Gu | Point defect sink efficiency of low-angle tilt grain boundaries[END_REF] proposed an analytical approach to take into account the effect of climb on the sink strength of low-angle tilt grain boundaries, in the simplified case where only vacancies are considered and without taking into account the elastic interactions between PDs and dislocations. Their results clearly show that, for small misorientations, the GB sink strength drops rapidly to zero. The effect of the misorientation angle has also been investigated in our work, as shown in figure 6 and we observe the same tendency. However, the obtained curves are generally not monotonous in our case, but exhibit a maximum. This is due to the elastic interactions between PDs and dislocations, which are more significant when the misorientation angle is low, since the elastic fields of the dislocations in the STGB impinge on each other in a lesser extent. In [START_REF] Gu | Point defect sink efficiency of low-angle tilt grain boundaries[END_REF], the specific contribution of climbing (in comparison to immobile dislocations) on the sink strength in not addressed.

In [START_REF] Liu | Point defect sink strength of low-angle tilt grain boundaries: A phase field dislocation climb model[END_REF], a PF method is also developed to calculate the sink strength of lowangle symmetrical tilt grain boundaries. It is based on a different approach to describe the network of dislocations [START_REF] Shen | Predicting structure and energy of dislocations and grain boundaries[END_REF], and a PF dislocation climb model parameters. The first one is the quantity of PDs created in the bulk. In [START_REF] Liu | Point defect sink strength of low-angle tilt grain boundaries: A phase field dislocation climb model[END_REF], it must be emphasized that the irradiation rate adopted in their simulations are quite high and it could be interesting to investigate if such an effect remains for lower values of K 0 . The second one is the presence of self-interstitials, which are not considered in [START_REF] Liu | Point defect sink strength of low-angle tilt grain boundaries: A phase field dislocation climb model[END_REF]. Then, the application of this model in its present form to dislocation evolution under irradiation is not straightforward and it still needs to be generalized in order to take into account both vacancies and interstitials.

However, this type of models offers promising perspectives for a large panel of phenomena involving dislocations under irradiation and our work should in the future include climbing at least when the dislocation density is low in the grain boundary.

The results of the sink strength and bias computations of a spherical cavity with elastodiffusion show that the PD anisotropy at saddle point leads to a significant change of the sink strength and bias in all the metals. Especially, the sink strength for SIAs increases, while the one for vacancies decreases when full elastodiffusion is considered. Therefore a cavity can no longer be considered as a neutral sink. This decrease of the cavity sink strength for vacancies is surprising, since in the case of an edge dislocation and a STGB we found an increase of the sink strength for both PDs when full elastodiffusion is taken into account. The diffusion coefficients hardly change with full elastodiffusion due to the small strain field generated by the cavity as illustrated on Fig. 13.

A condensed summary of all these results is given in table 2.

Conclusion

A PF model allowing to calculate the sink strength and bias of microstructural defects by taking into account the elastic interactions between sink and PDs is presented in this work. The added value of this model compared to the one presented in [START_REF] Rouchette | Quantitative phase field model for dislocation sink strength calculations[END_REF] is the incorporation of elastodiffusion effects, which allows a more precise sink strength calculation. A particular emphasis was placed on the role of the anisotropy of the PD elastic dipole tensors at saddle point on the sink trength and bias calculations. The simulations were performed for edge dislocations, STGBs and spherical cavities in pure fcc Al, Ni and bcc Fe metals.

The results show for all metals that the sink strengths of an edge dislocation and a low-angle STGB increase for both PDs with full elastodiffusion compared to the other cases of simulations, while the sink strength of a spherical cavity increases for dumbbells and decreases for vacancies with full elastodiffusion.

The increase of the edge dislocation sink strength with full elastodiffusion is more important for vacancies than dumbbells in all the metals. This leads to 540 the decrease of the dislocation sink bias. Furthermore, for all the simulation cases, the solution of Rauh and Simon systematically underestimates the sink strength, especially for dumbells in Ni and Fe. In the case of a low-angle STGB, the increase of the sink strength with full elastodiffusion is almost the same close to 10% for small radius which is not negligible. Thus cavities with small radii can no longer be considered as neutral sinks. There is a decrease of the cavity bias with the increase of the radius in all the metals, but this decrease is not marked. The comparison of the cavity sink bias with the solution of Borodin reveals important discrepancies in the case of Fe.

The results are qualitatively the same for all the metals as shown in table 2. These results can have direct consequences on dislocation loop and cavity growth or shrinkage rates. These quantities are essential in the understanding of several phenomena occurring during irradiation ageing such as irradiation creep or swelling. The prediction of the radiation induced segregation (RIS) a phenomenon that results from the coupling between PD and atom fluxes can be also affected by elastodiffusion and will be investigated in future works.
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  ab initio calculations. The calculations were performed in a periodic simulation box with 256 and 250 atoms for Ni and Fe respectively (4 × 4 × 4 and 5 × 5 × 5 unit cells). The projector augmented wave method (PAW) was used and the exchange-correlation functional was evaluated with the Perdew-Burke-Ernzerhof Dumbbell ξ = [100] to ψ = [010], h = [110] for Al and Ni;

  [100] dumbbell in Al and Ni (respectively the [110] dumbbell in Fe) is a mechanism of translation-rotation from the [100] (respectively [110]) to the [010] (respectively [011]) orientation. The elastic dipole tensors for all the possible PD migration directions are deduced from each other by space rotations. As shown in Fig. 1, the choice of the PF basis B PF (e 1 , e 2 , e 3 ) is dictated by the orientation of the dislocations dipoles, and then does not correspond to the crystallographic basis B 0 ([100],[010],[001]

Figure 1 : 1 √ 3 [ 1 √ 2 [ 1 √ 3 [ 1 √ 3 [ 1 √ 6 [

 11312131316 Figure 1: Simulation box containing a) a dipole of edge dislocations (2D), b) an array of edge dislocation dipoles (2D) or equivalently a low angle STGB, and c) a spherical cavity (3D).

Figure 2 :

 2 Figure 2: (Color online) Fluxes of dumbbells and vacancies in Al, Ni, and Fe, without elastodiffusion in blue (case 1) and with full elastodiffusion in red (case 3) for a dipole of edge dislocations. The length of the vector is proportional to the norm of the flux J = J 2 1 + J 2 2 .

  relaxation volume of vacancies in Al and Ni at saddle state is significantly lower than the one at stable point. This leads to a strong decrease of the elastic interactions and thus to a decrease of the sink strength in case 2 in comparison to case 1.The comparison between cases 1, 2 and 3 shows an increase of the sink

Figure 3 :

 3 Figure 3: (Color online) Sink strength for dumbbells and vacancies, and bias as a function of the dislocation density in Al, Ni and Fe. Case 1: no elastodiffusion, case 2: elastodiffusion with isotropic PD at saddle point, case 3: full elastodiffusion.

2 .

 2 The interspacing between dislocations h was set at 6b which corresponds to a misorientation angle of θ = 9.55 • . The radius r 0 of the capture zone is still equal to 4b for each dislocation like in section 3.2. The notation (hkl)[uvw] where (hkl) refers to the normal of the STGB plane and [uvw] to the tilt axis is adopted. Thus, the STGB in Al and Ni corresponds to the ( 110)[ 112 ] GB and in Fe to the ( 111)[ 11 2] GB.The PD fluxes towards the GB are plotted in Fig.4. Like in the case of isolated straight edge dislocations (θ → 0 • ), dumbbells migrate preferentially in the tension region of each dislocation for all simulation cases and metals.On the contrary, vacancies migrate preferentially to the compression zone. The dumbbell trajectory changes very little in Al and Ni when full elastodiffusion is taken into account (case 3) compared to the case without (case 1). The same result is obtained for vacancies in Fe. However, in Ni the vacancy trajectory is strongly affected near the low angle STGB with full elastodiffusion. This is also the case for dumbbells in Fe.The sink strength for PDs have been calculated and normalized by the sink strength of a neutral continuous planar sink without elastic interactions k 2 ps = 12/(d -e) 2[START_REF] Jiang | Effect of grain boundary stresses on sink strength[END_REF], e being the width of the planar sink which corresponds to the

Figure 4 :

 4 Figure 4: (Color online) Fluxes of dumbbells and vacancies in Al, Ni, and Fe, without elastodiffusion in blue (case 1) and with full elastodiffusion in red (case 3) for low angle STGB. The length of the vector is proportional to the norm of the flux J = J 2 1 + J 2 2 .

Fig. 5

 5 Fig. 5 as well as the resulting sink bias. The sink strengths for both PDs, 255

Figure 5 :

 5 Figure 5: (Color online) Sink strength normalized by the sink strength of a neutral continuous planar sink for dumbbells and vacancies, and bias as a function of STGB inter-spacing in Al, Ni and Fe. Case 1: no elastodiffusion, case 2: elastodiffusion with isotropic PD at saddle point, case 3: full elastodiffusion.

Figure 6 :

 6 Figure 6: (Color online) Normalized sink strength for a) dumbbells, b) vacancies and c) sink bias as a function of the misorientation angle for a given STGB inter-spacing d in Al (red circle), Ni (blue triangle) and Fe (green square).

[ 23 ]

 23 . It can be concluded that the results of Figs. 5 for θ = 9.55 • are in fact a low estimation of the bias: considering STGB with smaller misorientation angle of around 3 • can lead to biases 2 to 3 times larger than the one obtained for 9.55 • . The crystal anisotropy effect was studied by changing the plane orientation i.e. its normal n which is parallel to the Burgers vector b. The STGB orientation was changed from ( 110)[ 112 ] to (100)[001] in Al, Ni and from ( 110)[ 112 ] to (100)[001] in Fe. The results of the STGB bias calculations with full elastodiffusion are given in Fig. 7. In Al, the bias does not change much with

Figure 7 :

 7 Figure 7: (Color online) Sink bias as a function of the STGB inter-spacing for different STGB orientations with full elastodiffusion in a) Al, b) Ni and c) Fe, θ = 9.55 degree.

3 Figure 8 :

 38 Figure8: (Color online) Fluxes in the x 1 x 2 -plane of dumbbells and vacancies in Al, Ni, and Fe, without elastodiffusion in blue (case 1) and with full elastodiffusion in red (case 3) for a spherical cavity according to the x 1 x 2 -plane passing through the center of the cavity. The length of the vector is proportional to the norm of the flux J = J 2 1 + J 2 2 .

Figure 9 :

 9 Figure 9: (Color online) Sink strength normalized by the Wiedersich solution as a function of the cavity density for dumbbells and vacancies, and bias in Al, Ni and Fe. Case 1: no elastodiffusion, Case 2: isptropic PD at stable and saddle points, Case 3: full elastodiffusion (real P ij -tensors).

Figure 10 :

 10 Figure 10: (Color online) Sink bias as a function of the cavity capture radius r 0 with full elastodiffusion in a) Al, b) Ni and c) Fe.

5%

  or less, except in the case of Ni: taking into account full elastodiffusion or only isotropic elastodiffusion modifies the bias by more than 10%. The saddle point anisotropy effects on the sink strength have been investigated by Skinner and Woo [21] in fcc Cu and bcc Fe at 500 K. Similar to what we find, they concluded that the sink strengh increases by a small amount for each PD and in each material. It should be noted that in the study of Skinner, <100>dumbbells are considered as SIA in Cu and Fe while a <110>-dumbbell is considered in Fe for this study. The results obtained for Cu are very similar to those obtained in this study for Al and Ni. The normalized diffusion coefficients D ij /D 0 are plotted in figure 11 to better investigate the elastodiffusion effects on PD diffusion. As shown by equation 24, the diffusion coefficients depend on the coupling between the P ij -tensors at stable and saddle points and the strain field due to the sink. The profiles of Fig. 11 show stronger variations of the ratios D ij /D 0 for vacancies than for dumbbells in Al and Ni, especially in Ni. These higher variations of the ratios D ij /D 0 for vacancies allow to explain the decrease of the sink bias in Al and Ni with full elastodiffusion compared to the case without. In Fe, the magnitudes of the ratios D 11 /D 0 and D 12 /D 0 for both

AlFigure 11 :

 11 Figure 11: (Color online) Profiles of the normalized diffusion coefficients D 11 /D 0 along L 1 (see fig. 1-a)) at x 2 = 21.22 nm, D 22 /D 0 along L 2 (see fig. 1-a)) at x 1 = 21.22 nm and D 12 /D 0 along L 1 (x 2 = 21.22 nm) with full elastodiffusion (case 3) respectively a), b) and c) in Al, d), e) and f) in Ni, g), h) and ji) in Fe for a dipole of edge dislocations.

Figure 12 :

 12 Figure 12: (Color online) Profiles of the normalized diffusion coefficients along L 1 (see Fig. 1-b)) at x 2 = 10.75 nm, with full elastodiffusion (case 3) D 11 /D 0 , D 22 /D 0 and D 12 /D 0 respectively a), b) and c) in Al, d), e) and f) in Ni, g), h) and i) in Fe for a low angle STGB.

[ 51 -

 51 53], which allows to take into account the mobility of the dislocations due to climb. Dislocation climb is simulated by means of non-conserved dislocation dynamics to calculate the temporal evolution of the parameter η s . In this work, the dimensionless parameter L * = Lb 2 /M 0 is introduced, with L a kinetic coefficient associated to the mobility of the dislocation, b the norm of the Burgers vector and M 0 the mobility of the vacancies. This parameter measures the difference between the speed of absorption of the vacancy in the core of the dislocation and the speed of arrival at the core. L * 1 means that the PDs are absorbed as soon as they arrive. When L * 1, their results are close to the ideal sink model based on an immobile array of dislocations (which corresponds to our work) for a misorientation angle θ of the grain greater than 4 • . On the other hand, for lower values of θ there are significant deviations. This is due to the fact that during the climb there is a drag of vacancies, which is not the case in the static model. Thus the concentration of vacancies along the grain boundary is less important when the fast dislocation climb is included in the model and therefore the sink strength is greater. This phenomenon is closely related to the effective climb rate of the dislocations, which depends on several

Figure 13 :

 13 Figure 13: Maps of the normalized diffusion coefficient D 11 /D 0 in the x 1 x 2 -plane passing through the center of the cavity with full elastodiffusion for dumbbells and vacancies respectively a) and b) in Al, c) and d) in Ni, e) and f) in Fe.

1 Figure A- 2 :+

 12 Figure A-2: 2D reprentation of the staggered grid used to compute the PD flux and its divergence. The superscirpts ( * , d) have been omitted for clarity.

  elastic dipole tensors at stable and saddle points) Atomic input data for phase-field calculations Symmetric tilt grain boundary (STGB) Mesoscale phase-field modelling of microstructures generating elastic fields Results Normalized sink strengths and bias as a function of STGB interspacing in Ni. Case 1: no elastodiffusion, case2: elastodiffusion with isotropic PD at saddle point, case 3: full elastodiffusion

Table 1 :

 1 Elastic parameters for the simulations. The elastic dipole tensors are given in the basis B

	-0.6864	2.8725	22.5000
	2.8725	21.0942	2.8725
		2.8725	-0.6864

0 ([100],[010],[001]

). h is the migration direction of PD, ξ and ψ are respectively the initial and final configuration of the dumbbell.

[ 11 2] (bcc)

vacancies is approximately twice times greater than k 2 ps for all the cases, and the increase of the sink strength for dumbbells is even more significant. The
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STGBs with low misorientation angle and low inter-spacing are biased sinks in all the metals and all the cases of the simulation. Spherical cavities are biased sinks in the case 3 of the simulation, in all the metals.

Al

Ni Fe case 3 compared to cases [START_REF] Horton | A TEM study of neutron-irradiated iron[END_REF] for both PDs in Al and Fe which leads to a small change of the sink bias in this two metals. Contrariwise, vacancies are more affected by the increase of the sink strength with full elastodiffusion in Ni and this leads to the STGB sink bias decrease. The STGB sink bias in all the metals increases significantly with the decrease of the STGB inter-spacing on the one hand, and with the decrease of the misorientation angle on the other hand. An important issue to emphasize is that STGBs with high density and low misorientation angle have high sink strengths and are strongly biased. Moreover, the STGB sink bias changes significantly with the STGB orientation in Ni and Fe, while the change is not so remarkable in Al. As with full elastodiffusion the sink strength of the cavity decreases for vacancies in all the metals, the cavity bias increases and is

Appendix A

An explicit Euler scheme is used to solve Eq. 30:

A finite difference scheme is used for the spatial discretization involving the following dimensionless classical derivative operators:

where ∇ * ,c 1 is the Fourier transform of the gradient operator ∇ * ,c 1 , φ any field, q the wave vector and i c the imaginary complex number defined as (i c ) 2 = -1. 

An important fact about using staggered grids is that one staggered grid is dedicated to the diagonal components of the strain tensor, and others to each To prevent also the appearance of artifact oscillations during the resolution of the PD evolution equation, a staggered grid is employed to compute the PD flux as done in [START_REF] Piochaud | Atomicbased phase-field method for the modeling of radiation induced segregation in Fe-Cr[END_REF]. This new scheme allows to handle numerical instabilities which can occur due to sharp variations of the diffusion tensor when elastodiffusion is taken into account. The PD flux is rewritten using the shifted derivative operators:

where