S. Dadbakhsh, R. Mertens, L. Hao, J. Van-humbeeck, and J. Kruth, Selective laser melting to manufacture "in situ" metal matrix composites: a review, Adv. Eng. Mater, vol.21, 2019.

S. Dadbakhsh and L. Hao, In situ formation of particle reinforced Al matrix composite by selective laser melting of Al/Fe 2 O 3 powder mixture, Adv. Eng. Mater, vol.14, pp.45-48, 2012.

S. Dadbakhsh and L. Hao, Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites, J. Alloys Compd, vol.541, p.97, 2012.

S. Dadbakhsh, L. Hao, P. G. Jerrard, and D. Z. Zhang, Experimental investigation on selective laser melting behaviour and processing windows of in situ reacted Al/Fe 2 O 3 powder mixture, Powder Technol, vol.231, p.61, 2012.

F. Chang, D. Gu, D. Dai, and P. Yuan, Selective laser melting of in-situ Al 4 SiC 4 +SiC hybrid reinforced Al matrix composites: influence of starting SiC particle size, Surf. Coat. Technol, vol.272, p.29, 2015.

S. Dadbakhsh, In situ alloying and reinforcing of Al6061 during selective laser melting, Procedia CIRP, vol.74, pp.39-43, 2018.

B. Almangour, D. Grzesiak, and J. Yang, In-situ TiC particle reinforced 316L stainless steel matrix nanocomposites: powder preparation by mechanical alloying and selective laser melting behavior, Solid Freeform Fabrication Symposium, 2016.

B. Almangour, D. Grzesiak, and J. Yang, In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting, J. Alloys Compd, vol.706, pp.409-418, 2017.

D. Gu, Y. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe, Selective laser melting of in-situ TiC/Ti 5 Si 3 composites with novel reinforcement architecture and elevated performance, Surf. Coat. Technol, vol.205, pp.3285-3292, 2011.

D. Gu, C. Hong, and G. Meng, Densification, microstructure, and wear property of in situ titanium nitride-reinforced titanium silicide matrix composites prepared by a novel selective laser melting process, Metall. Mater. Trans. A, vol.43, pp.697-708, 2012.

D. Gu, Y. Shen, and Z. Lu, Preparation of TiN-Ti 5 Si 3 in-situ composites by selective laser melting, Mater. Lett, vol.63, pp.1577-1579, 2009.

H. Attar, Comparative study of microstructures and mechanical properties of in situ Ti-TiB composites produced by selective laser melting, powder metallurgy, and casting technologies, J. Mater. Res, vol.29, 1941.

H. Attar, Selective laser melting of in situ titanium-titanium boride composites: processing, microstructure and mechanical properties, Acta Mater, vol.76, pp.13-22, 2014.

H. Attar, Effect of powder particle shape on the properties of in situ Ti-TiB composite materials produced by selective laser melting, J. Mater. Sci. Technol, vol.31, pp.1001-1005, 2015.

S. Wang, Significantly enhanced creep resistance of low volume fraction in-situ TiBw/Ti6Al4V composites by architectured network reinforcements, 2017.

P. C. Collins, R. Banerjee, S. Banerjee, and H. L. Fraser, Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys, Mater. Sci. Eng. A, vol.352, issue.02, pp.909-916, 2003.

A. Almeida, D. Gupta, C. Loable, and R. Vilar, Laser-assisted synthesis of Ti-Mo alloys for biomedical applications, Mater. Sci. Eng., C, vol.32, pp.1190-1195, 2012.

B. Vrancken, L. Thijs, J. P. Kruth, and J. Van-humbeeck, Microstructure and mechanical properties of a novel ? titanium metallic composite by selective laser melting, Acta Mater, vol.68, pp.150-158, 2014.

K. Vanmeensel, 8 -Additively manufactured metals for medical applications, Additives Manufacturing, pp.8-14, 2018.

C. C. Gomes, Assessment of the genetic risks of a metallic alloy used in medical implants, Genet. Mol. Biol, vol.34, p.18, 2011.

D. Zaffe, C. Bertoldi, and U. Consolo, Accumulation of aluminium in lamellar bone after implantation of titanium plates, Ti-6Al-4V screws, hydroxyapatite granules, Biomaterials, vol.25, p.20, 2003.

D. Iijima, T. Yoneyama, H. Doi, H. Hamanaka, and N. Kurosaki, Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses, Biomaterials, vol.24, issue.02, pp.533-534, 2003.

A. M. Ribeiro, T. H. Flores-sahagun, and R. C. Paredes, A perspective on molybdenum biocompatibility and antimicrobial activity for applications in implants, J. Mater. Sci, vol.51, pp.2806-2816, 2016.

M. Brama, Effect of titanium carbide coating on the osseointegration response in vitro and in vivo, Biomaterials, vol.28, pp.595-608, 2007.

G. Longo, Improving osteoblast response in vitro by a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon, PLoS ONE, vol.11, p.66, 2016.

Z. Ahmad, Chapter 9-Selection of materials for corrosive environment, Principles of Corrosion Engineering and Corrosion Control, pp.479-549, 2006.

H. Attar, S. Ehtemam-haghighi, D. Kent, X. Wu, and M. S. Dargusch, Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes, Mater. Sci. Eng. A, vol.705, pp.385-393, 2017.

B. Wysocki, Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM), J. Mater. Process. Technol, vol.241, p.22, 2016.

L. C. Zhang, D. Klemm, J. Eckert, Y. L. Hao, and T. B. Sercombe, Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy, Scripta Mater, vol.65, pp.21-24, 2011.

S. R. Shatynski, The thermochemistry of transition metal carbides, Oxid. Met, vol.13, pp.105-118, 1979.

Z. Q. Chen, Y. G. Li, and M. H. Loretto, Role of alloying elements in microstructures of beta titanium alloys with carbon additions, Mater. Sci. Technol, vol.19, p.999, 2003.

S. D. Dunmead, D. W. Readey, C. E. Semler, and J. B. Hol, Kinetics of combustion synthesis in the Ti-C and Ti-C-Ni systems, J. Am. Ceram. Soc, vol.72, pp.2318-2324, 1989.

, Scientific RepoRtS |, vol.10, p.10523, 2020.

S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater, vol.108, pp.36-45, 2016.

M. J. Hamedi, M. J. Torkamany, and J. Sabbaghzadeh, Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment, Opt. Lasers Eng, vol.49, p.2, 2010.

S. Li, W. Xiang, H. Zhai, and Y. Zhou, Formation of TiC hexagonal platelets and their growth mechanism, Powder Technol, vol.185, pp.49-53, 2008.

Y. Chen and H. M. Wang, Growth morphologies and mechanism of TiC in the laser surface alloyed coating on the substrate of TiAl intermetallics, J. Alloys Compd, vol.351, issue.02, pp.1077-1077, 2003.

M. S. Song, Growth of TiC octahedron obtained by self-propagating reaction, J. Cryst. Growth, vol.311, p.65, 2008.

D. Gu, Y. Shen, and G. Meng, Growth morphologies and mechanisms of TiC grains during Selective Laser Melting of Ti-Al-C composite powder, Mater. Lett, vol.63, pp.2536-2538, 2009.

D. Gu, Y. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe, Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): densification, growth mechanism and wear behavior, Compos. Sci. Technol, vol.71, pp.1612-1620, 2011.

H. Xiong, Z. Li, and K. Zhou, Synthesis and growth mechanism of TiC whiskers by carbothermal reduction of titania/microcrystalline cellulose, J. Am. Ceram. Soc, vol.98, pp.1951-1958, 2015.

A. Arya and E. A. Carter, Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles, J. Chem. Phys, vol.118, pp.8982-8996, 2003.

C. Zhao, Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction, Sci. Rep, vol.7, 2017.

S. Dadbakhsh, Microstructural analysis and mechanical evaluation of Ti-45Nb produced by selective laser melting towards biomedical applications, TMS 2015 144th Annual Meeting & Exhibition, pp.421-428

T. Carbide, , 2019.

B. Vrancken, Selective Laser Melting process optimization of Ti-Mo-TiC metal matrix composites, CIRP Ann, vol.68, pp.221-224, 2019.

S. Dadbakhsh, M. Speirs, J. Kruth, and J. Van-humbeeck, Influence of SLM on shape memory and compression behaviour of NiTi scaffolds, CIRP Ann, vol.64, pp.209-212, 2015.

G. Roebben, B. Bollen, A. Brebels, J. Van-humbeeck, and O. Van-der-biest, Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature, Rev. Sci. Instrum, vol.68, pp.4511-4515, 1997.