M. W. Ammann, J. P. Brodholt, and D. P. Dobson, Simulating diffusion, Rev. Mineral. Geochem, vol.71, pp.201-224, 2010.

J. Bardeen and C. Herring, Diffusion in alloys and the Kirkendall effect, Imperfections in Nearly Perfect Crystals, 1952.

F. Boioli, A. Tommasi, P. Cordier, S. Demouchy, and A. Mussi, Steady state and low stresses in lithospheric mantle inferred from dislocation modelling of creep in olivine, Earth Planet. Sci. Lett, vol.432, pp.232-242, 2015.

F. Boioli, P. Carrez, P. Cordier, B. Devincre, and M. Marquille, Modeling the creep properties of olivine by 2.5-D dislocation dynamics simulations, Phys. Rev. B, vol.92, p.14115, 2015.

F. Boioli, P. Carrez, P. Cordier, B. Devincre, K. Gouriet et al., Pure climb creep mechanism drives flow in the Earth's lower mantle, Sci. Adv, vol.3, 2017.

J. Brodholt, Ab initio calculations on point defects in forsterite (Mg 2 SiO 4 ) and implications for diffusion creep, Am. Mineral, vol.82, pp.1049-1053, 1997.

S. Chang and A. M. Ferreira, Interference on water content in the mantle transition zone near subducted slabs from anisotropy tomography, Geochem. Geophys. Geosyst, vol.20, pp.1189-1201, 2019.

R. L. Coble, A model for boundary-diffusion controlled creep in polycrystalline materials, J. Appl. Phys, vol.34, pp.1679-1683, 1963.

P. Cordier, P. Raterron, and Y. Wang, TEM investigation of dislocation microstructure of experimentally deformed silicate garnet, Phys. Earth Planet. Inter, vol.97, pp.121-131, 1996.

H. Couvy, P. Cordier, and J. Chen, Dislocation microstructures in majorite garnet experimentally deformed in the multi-anvil apparatus, Am. Mineral, vol.96, pp.549-552, 2011.

K. Danas and V. S. Deshpande, Plane-strain discrete dislocation plasticity with climb-assisted glide motion of dislocations, Model. Simul. Mater. Sci. Eng, vol.21, p.45008, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00870887

S. Demouchy, A. Tomassi, F. Barou, D. Mainprice, and P. Cordier, Deformation of olivine in torsion under hydrous conditions, Phys. Earth Planet. Inter, pp.56-70, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00745170

S. Demouchy, D. Mainprice, A. Tommasi, H. Couvy, F. Barou et al., Forsterite to wadsleyite phase transformation under shear stress and consequences for the Earth's mantle transition zone, Phys. Earth Planet. Inter, vol.184, pp.91-104, 2011.

D. P. Dobson and E. Mariani, The kinetics of the reaction of majorite plus ferropericlase to ringwoodite: implications for mantle upwellings crossing the 660 km discontinuity, Earth Planet. Sci. Lett, vol.408, pp.110-118, 2014.

M. Drilleau, É. Beucler, A. Mocquet, O. Verhoeven, G. Moebs et al., A Bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves, Geophys. J. Int, vol.195, pp.1165-1183, 2013.
URL : https://hal.archives-ouvertes.fr/insu-02285325

A. M. Dziewonski and D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter, vol.25, pp.297-356, 1981.

R. Farla, G. Amulele, J. Girard, N. Miyajima, and S. Karato, High-pressure and high-temperature deformation experiments on polycrystalline wadsleyite using the rotational Drickamer apparatus, Phys. Chem. Miner, vol.42, pp.541-558, 2015.

H. Fei, D. Yamazaki, M. Sakurai, N. Miyajima, H. Ohfuji et al., A nearly water-saturated mantle transition zone inferred from mineral physics viscosity, 2017.

A. M. Ferreira, M. Faccenda, W. Sturgeon, S. Chang, and L. Schardong, Ubiquitous lower-mantle anisotropy beneath subduction zones, Nat. Geosci, vol.12, pp.301-306, 2019.

K. M. Fischer and D. A. Wiens, The depth distribution of Mantle Anisotropy beneath the Tonga Subduction Zone, Earth Planet. Sci. Lett, vol.142, pp.253-260, 1996.

S. W. French and B. Romanowicz, Broad plumes rooted at the base of the Earth's mantle beneath major hotspots, Nature, vol.525, pp.95-99, 2015.

Y. Fukao, S. Widiyantoro, and M. Obayashi, Stagnant slabs in the upper and lower mantle transition region, Rev. Geophys, vol.39, pp.291-323, 2001.

Y. Fukao and M. Obayashi, Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity, J. Geophys. Res, vol.118, pp.5920-5938, 2013.

P. Gli?ovi?, A. M. Forte, and M. W. Ammann, Variations in grain size and viscosity based on vacancy diffusion in minerals, seismic tomography, and geodynamically inferred mantle rheology, Geophys. Res. Lett, vol.42, pp.6278-6286, 2015.

S. P. Grand, Mantle shear-wave tomography and the fate of subducted slabs, Philos. Trans, vol.360, pp.2475-2491, 2002.

C. Herring, Diffusional viscosity of a polycrystalline solid, J. Appl. Phys, vol.21, p.437, 1950.

G. Hirth and D. L. Kohlstedt, Rheology of the Upper Mantle and the Mantle Wedge: A View from Experimentalists, Geophysical Monograph Series, vol.138, pp.83-105, 2003.

C. Holzapfel, S. Chakraborty, D. C. Rubie, and D. J. Frost, Fe-Mg interdiffusion in wadsleyite: the role of pressure, temperature and composition and the magnitude of jump in diffusion rates at 410 km discontinuity, Phys. Earth Planet. Inter, vol.172, pp.28-33, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00532177

M. Huang, Z. Li, and J. Tong, The influence of dislocation climb on the mechanical behaviour of polycrystals and grain size effect at elevated temperature, Int. J. Plast, vol.61, pp.112-127, 2014.

Q. Huang, N. Scherr, L. Waszek, and C. Beghein, Constraints on Seismic Anisotropy in the Mantle Transition Zone from long-period SS precursors, J. Geophys. Res, vol.124, pp.6779-6800, 2019.

S. A. Hunt, D. P. Dobson, L. Li, D. J. Weidner, and J. P. Brodholt, Relative strength of the pyrope-majorite solid solution and the flow-law of majorite containing garnets, Phys. Earth Planet. Inter, vol.179, pp.87-95, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00616890

J. Hustoft, G. Amulele, J. Ando, K. Otsuka, and Z. Du, Plastic deformation experiments to high strain on mantle transition zone minerals wadsleyite and ringwoodite in the rotational Drickamer apparatus, Earth Planet. Sci. Lett, vol.361, pp.7-15, 2013.

T. Inoue, H. Yurimotot, and Y. Kudoh, Hydrous modified spinel, Mg 1.75 SiH 0.5 O 4 : a new water reservoir in the mantle transition region, Geophys. Res. Lett, vol.22, pp.117-120, 1995.

J. Ita and L. Stixrude, Petrology, elasticity, and composition of the Mantle Transition Zone, J. Geophys. Res, vol.97, pp.6849-6866, 1992.

S. Karato, Z. Wang, B. Liu, and K. Fujino, Plastic deformation of garnets: systematics and implications for the rheology of the mantle transition zone, Earth Planet. Sci. Lett, vol.130, pp.13-30, 1995.

S. Karato, M. R. Riedel, and D. A. Yuen, Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes, Phys. Earth Planet. Inter, vol.127, pp.83-108, 2001.

S. Karato, H. Jung, I. Katayama, and P. Skemer, Geodynamic significance of Seismic Anisotropy of the Upper Mantle: new insights from laboratory studies, Annu. Rev. Earth Planet. Sci, vol.36, pp.59-95, 2008.

A. Kavner and T. S. Duffy, Strength and elasticity of ringwoodite at upper mantle pressures, Geophys. Res. Lett, vol.28, pp.2691-2694, 2001.

A. Kavner, S. V. Sinogeikin, R. Jeanloz, and J. D. Bass, Equation of state and strength of natural majorite, J. Geophys. Res, vol.105, pp.5963-5971, 2000.

T. Kawazoe, S. Karato, J. Ando, Z. Jing, K. Otsuka et al., Shear deformation of polycrystalline wadsleyite up to 2100 K at 14-17 GPa using a rotational Drickamer apparatus (RDA), J. Geophys. Res, vol.115, p.8208, 2010.

T. Kawazoe, T. Ohuchi, Y. Nishihara, N. Nishiyama, K. Fujino et al., Seismic anisotropy in the mantle transition zone induced by shear deformation of wadsleyite, Phys. Earth Planet. Inter, vol.216, pp.91-98, 2013.

S. M. Keralavarma, T. Cagin, A. Arsenlis, and A. A. Benzerga, Power-law creep from discrete dislocation dynamics, Phys. Rev. Lett, vol.109, p.265504, 2012.

L. Kerschhofer, T. G. Sharp, and D. C. Rubie, Intracrystalline transformation of Olivine to Wadsleyite and Ringwoodite under Subduction Zone conditions, Science, vol.274, pp.79-81, 1996.

D. T. Knight and B. Burton, The climb behaviour of a dislocation which is pinned at two points, Philos. Mag, vol.59, pp.1027-1044, 1989.

M. D. Long and R. D. Van-der-hilst, Shear wave splitting from local events beneath the Ryukyu arc: trench-parallel anisotropy in the mantle wedge, Phys. Earth Planet. Inter, vol.155, pp.300-312, 2006.

C. Lynner and M. D. Long, Heterogeneous seismic anisotropy in the transition zone and uppermost lower mantle: evidence from South America, Izu-Bonin and Japan, Geophys. J. Int, vol.201, pp.1545-1552, 2015.

D. Mainprice, Seismic anisotropy of the Deep Earth from a mineral and rock physics perspective, Mineral Physics, vol.2, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00408321

J. L. Martin and D. Caillard, Thermally Activated Mechanisms in Crystal Plasticity, 2003.

C. A. Mccammon, D. J. Frost, J. R. Smyth, H. M. Laustsen, T. Kawamoto et al., Oxidation state of iron in hydrous mantle phases: implications for subduction and mantle oxygen fugacity. Phys. Earth Planet, pp.157-169, 2004.

C. Meade and R. Jeanloz, The strength of mantle silicates at high pressure and room temperature: implications for the viscosity of the mantle, Nature, vol.348, pp.533-535, 1990.

J. X. Mitrovica and A. M. Forte, A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data, Earth Planet. Sci. Lett, vol.225, pp.177-189, 2004.

L. Miyagi, G. Amulele, K. Otsuka, Z. Du, R. Farla et al., Plastic anisotropy and slip systems in ringwoodite deformed to high shear strain in the Rotational Drickamer Apparatus, Phys. Earth Planet. Inter, vol.228, pp.244-253, 2014.

A. Mohiuddin, S. Karato, and J. Girard, Slab weakening during the olivine to ringwoodite transition in the mantle, Nat. Geosci, vol.13, pp.170-174, 2020.

D. Mordehai, E. Clouet, M. Fivel, and M. Verdier, Introducing dislocation climb by bulk diffusion in discrete dislocation dynamics, Philos. Mag, vol.88, pp.899-925, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00354629

P. Moulik and G. Ekström, An anisotropic shear velocity model of the Earth's mantle using normal modes, body waves, surface waves and long-period waveforms, Geophys. J. Int, vol.199, pp.1713-1738, 2014.

F. R. Nabarro, Report of a Conference on Strength of Solids, Phys. Soc. London, pp.75-90, 1948.

F. R. Nabarro, Steady-state diffusional creep, Philos. Mag, vol.16, pp.231-237, 1967.

Y. Nishihara, D. Tinker, T. Kawazoe, Y. Xu, Z. Jing et al., Plastic deformation of wadsleyite and olivine at high-pressure and hightemperature using a rotational Drickamer apparatus (RDA), Phys. Earth Planet. Inter, vol.170, pp.156-169, 2008.

N. Nishiyama, Y. Wang, T. Uchida, T. Irifune, M. L. Rivers et al., Pressure and strain dependence of the strength of sintered polycrystalline Mg 2 SiO 4 ringwoodite, Geophys. Res. Lett, vol.32, p.4307, 2005.

B. C. Nzogang, S. Thilliez, A. Mussi, T. Kawazoe, N. Miyajima et al., Application of scanning precession electron diffraction in the transmission electron microscope to the characterization of deformation in wadsleyite and ringwoodite, vol.8, p.153, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01774968

D. G. Pearson, F. E. Brenker, F. Nestola, J. Mcneil, L. Nasdala et al., Hydrous mantle transition zone indicated by ringwoodite included within diamond, Nature, vol.507, pp.221-224, 2014.

J. P. Poirier, Creep of Crystals, 1985.

R. Reali, J. Van-orman, J. Pigott, J. M. Jackson, F. Boioli et al., The role of diffusion-driven pure climb creep on the rheology of bridgmanite under lower mantle conditions, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02181730

A. E. Ringwood, Composition and Petrology of the Earth's Mantle, 1975.

S. Ritterbex, P. Carrez, K. Gouriet, and P. Cordier, Modeling dislocation glide in Mg 2 SiO 4 ringwoodite: towards rheology under transition zone conditions, Phys. Earth Planet. Inter, vol.248, pp.20-29, 2015.

S. Ritterbex, P. Carrez, and P. Cordier, Modeling dislocation glide and lattice friction in Mg 2 SiO 4 wadsleyite in conditions of the Earth's transition zone, Am. Mineral, vol.101, pp.2085-2094, 2016.

A. D. Rosa, N. Hilairet, S. Ghosh, J. Perrillat, G. Garbarino et al., Evolution of grain sizes and orientations during phase transitions in hydrous Mg 2 SiO 4, J. Geophys. Res., Solid Earth, vol.121, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01601646

M. L. Rudolph, V. Leki?, and C. Lithgow-bertelloni, Viscosity jump in Earth's midmantle, Nature, vol.350, pp.1349-1352, 2015.

A. Shimojuku, T. Kubo, E. Ohtani, and H. Yurimoto, Silicon self-diffusion in wadsleyite: implications for the rheology of the mantle transition zone and subducting plates, Geophys. Res. Lett, vol.31, p.13606, 2004.

A. Shimojuku, T. Kubto, E. Ohtani, T. Nakamura, R. Okazaki et al., Si and O diffusion in (Mg, Fe) 2 SiO 4 wadsleyite and ringwoodite and its implications for the rheology of the mantle transition zone, Earth Planet. Sci. Lett, vol.284, pp.103-112, 2009.

A. Shimojuku, T. Kubo, E. Ohtani, T. Nakamura, and R. Okazaki, Effects of hydrogen and iron on the silicon diffusivity of wadsleyite, Phys. Earth Planet. Inter, vol.183, pp.175-182, 2010.

J. R. Smyth, ?-Mg 2 SiO 4 : a potential host for water in the mantle?, Am. Mineral, vol.72, pp.1051-1055, 1987.

J. R. Smyth, C. M. Holl, D. J. Frost, S. D. Jacobsen, F. Langenhorst et al., Structural systematics of hydrous ringwoodite and water in the Earth's interior, Am. Mineral, vol.88, pp.1402-1407, 2003.

V. S. Solomatov, Can hotter mantle have a larger viscosity?, Geophys. Res. Lett, vol.23, pp.937-940, 1996.

V. Solomatov, R. El-khozondar, and V. Tikare, Grain size in the lower mantle: constraints from numerical modelling of grain growth in two-phase systems, Phys. Earth Planet. Inter, vol.129, pp.265-282, 2002.

R. D. Van-der-hilst, R. Engdahl, W. Spakman, and G. Nolet, Tomographic imaging of subducted lithosphere below northwest Pacific island arcs, Nature, vol.386, pp.578-584, 1991.

W. L. Van-mierlo, F. Langenhorst, D. J. Frost, and D. C. Rubie, Stagnation of subducting slabs in the transition zone due to slow diffusion in majorite garnet, Nat. Geosci, vol.6, pp.400-403, 2013.

V. Voegelé, P. Cordier, F. Langenhorst, and S. Heinemann, Dislocations in meteoritic and synthetic majorite garnet, Eur. J. Mineral, vol.12, pp.695-702, 2000.

V. Voegelé, J. I. Ando, P. Cordier, and R. C. Liebermann, Plastic deformation of silicate garnets, I: high-pressure experiments, Phys. Earth Planet. Inter, vol.108, pp.305-318, 1998.

V. Voegelé, P. Cordier, V. Sautter, T. G. Sharp, J. M. Lardeaux et al., Plastic deformation of silicate garnets, II: deformation microstructures in natural samples, Phys. Earth Planet. Inter, vol.108, pp.319-338, 1998.

J. Weertman, Steady-state creep through dislocation climb, J. Appl. Phys, vol.28, pp.362-364, 1957.

R. M. Wentzcovitch, Y. G. Yu, and Z. Wu, Thermodynamic properties and phase relations in Mantle minerals investigated by first principles quasiharmonic theory, Rev. Mineral. Geochem, vol.71, pp.59-98, 2010.

D. Yamazaki, T. Inoue, M. Okamoto, and T. Irifune, Grain growth kinetics of ringwoodite and its implications for rheology of the subducting slab, Earth Planet. Sci. Lett, vol.236, pp.871-881, 2005.

Y. G. Yu, R. M. Wentzcovitch, V. L. Vinograd, and R. J. Angel, Thermodynamic properties of MgSiO 3 majorite and phase transitions near 660 km depth in MgSiO 3 and Mg 2 SiO 4 : a first principles study, J. Geophys. Res, vol.116, p.2208, 2011.

B. Zhang, X. Wu, and R. Zhou, Calculation of oxygen self-diffusion coefficients in Mg 2 SiO 4 polymorphs and MgSiO 3 perovskite based on the compensation law. Solid State Ion, vol.186, pp.20-28, 2011.

D. Zhao, Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics, Phys. Earth Planet. Inter, vol.146, pp.3-34, 2004.