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▪ Tardi-magmatic precipitation of Martian Fe/Mg-rich clay
minerals via igneous differentiation

J.-C. Viennet1*, S. Bernard1, C. Le Guillou2, V. Sautter1, P. Schmitt-Kopplin3,
O. Beyssac1, S. Pont1, B. Zanda1, R. Hewins1, L. Remusat1

Abstract doi: 10.7185/geochemlet.2023

Mars is seen as a basalt covered world that has been extensively altered through
hydrothermal or near surface water-rock interactions. As a result, all the Fe/Mg-rich
clay minerals detected from orbit so far have been interpreted as secondary, i.e. as
products of aqueous alteration of pre-existing silicates by (sub)surface water. Based
on the fine scale petrographic study of the evolved mesostasis of the Nakhla mete-
orite, we report here the presence of primary Fe/Mg-rich clay minerals that directly
precipitated from a water-rich fluid exsolved from the Cl-rich parental melt of
nakhlites during igneous differentiation. Such a tardi-magmatic precipitation of clay
minerals requires much lower amounts of water compared to production via aque-
ous alteration. Although primary Fe/Mg-rich clay minerals are minor phases in
Nakhla, the contribution of such a process toMartian clay formationmay have been
quite significant during the Noachian given that Noachian magmas were richer in
H2O. In any case, the present discovery justifies a re-evaluation of the exact origin of
the clayminerals detected onMars so far, with potential consequences for our vision
of the early magmatic and climatic histories of Mars.
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Recent discoveries have provided direct evidence that chemically
evolved rocks formed over short timescales on planetesimals
early in the Solar System (Day et al., 2009; Bischoff et al.,
2014; Frossard et al., 2019). However, it is unclear if and how
much such evolved rocks contributed to the ancient crust of
Mars (Sautter et al., 2015, 2016; Udry et al., 2018; Bouley
et al., 2020).

Only rare exposures of evolved rocks containing hydrated
silica and/or quartz have been reported from orbit (Christensen
et al., 2005; Bandfield, 2006; Carter and Poulet, 2013; Wray et al.,
2013). In addition to the small depth analysed, that makes dust
and coatings dominate the signal, difficulties pertain to the
spectral featureless of the main constituents of evolved rocks
(e.g., feldspar and quartz), leading to some much discussed
ambiguities (Smith and Bandfield, 2012; Ehlmann and Edwards,
2014; Rogers and Nekvasil, 2015). Because of the presence of
Fe/Mg-rich clay minerals interpreted as secondary aqueous
alteration products (Gooding et al., 1991; Bridges et al., 2001;
Carter and Poulet, 2013; Wray et al., 2013; Hicks et al., 2014),
the rare evolved rocks detected from orbit have been interpreted
as resulting from the hydrothermal alteration or diagenesis of

mafic crustal materials (Smith and Bandfield, 2012; Ehlmann
and Edwards, 2014).

Yet, robotic missions evidenced that igneous differentia-
tion induced by fractional crystallisation occurred on Mars
(McSween et al., 1999, 2006; Stolper et al., 2013; Sautter et al.,
2015, 2016; Udry et al., 2018). The Spirit rover encountered alka-
line volcanic rocks, substantially enriched in Na/K-rich plagio-
clase relative to pyroxene and olivine (McSween et al., 2006),
while Curiosity found both fine grained alkali basalts known
as mugearites (Stolper et al., 2013) and coarse grained alkali feld-
spar-bearing lithologies (Sautter et al., 2015, 2016; Udry et al.,
2018). Consistently monzonitic clasts have been found in
Black Beauty (Humayun et al., 2013; Hewins et al., 2017), while
K-feldspar, SiO2 polymorphs (cristobalite, trydimite and quartz)
and even rhyolitic glass have been observed (in addition to apa-
tite and zircon) within nakhlites (Treiman, 2005; Nekvasil et al.,
2007; McCubbin et al., 2013; Giesting and Filiberto, 2016).

Here we investigate the paragenesis of the evolved meso-
stasis of Nakhla, the Martian meteorite eponym for nakhlites.
Nakhlites are augite cumulates that differ from each other in
the proportion and crystallinity of the mesostasis (Treiman,
2005). They were emplaced∼1.3 Gyr ago asmultiple flows, dikes
or sills close to the surface (Udry and Day, 2018). The consensus
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is that nakhlites and chassignites sampled different levels of
what may have been a single, large igneous complex
(McCubbin et al., 2013), with nakhlites having crystallised from
the residual melt having first produced chassignites (Udry and
Day, 2018).

Like the other nakhlites, Nakhla exhibits few olivine
grains and numerous large crystals of augite that are set in a
crystalline mesostasis (Fig. 1). All augite crystals in contact with
the mesostasis are zoned, from Mg-rich cores to Fe-rich rims.
The mesostasis is mainly composed of Na/Ca-plagioclase laths
and euhedral titanomagnetite (Fig. 1). In between the Na/Ca-
plagioclase laths, the mesostasis exhibits a vermicular texture
consisting of nanoscale Cl-apatite and Fe-sulfides together with
quartz, K-feldspar and Fe/Mg-rich clay minerals (Figs. 1, 2). In
contrast to iddingsite veins crosscutting olivine in nakhlites
(Gooding et al., 1991), these Fe/Mg-rich clay minerals display

a high porosity and can be found as masses in contact with or
within Na/Ca-plagioclase, Cl-apatite, K-feldspar or quartz
(Figs. 1, 2). The clay minerals are made of ∼40 to 100 nm
wide lamellar materials, with stacking height ranging from
∼10 to 20 nmand a d-spacing of∼10Å (Fig. 2). Theirmean struc-
tural formula, (K0.22Na0.30Ca0.07(Mg0.93Fe0.58Mn0.05Ti0.02□0.42)
(Fe0.93Al0.21Si2.86)(O10)[(OH,O)1.86,Cl0.14]) according to STEM-
EDS analyses, falls within the domain of interstratified or mix-
tures of Cl-rich saponite and celadonite (Meunier et al., 2008;
Meunier, 2010).

The inclusions of Fe/Mg-rich clay minerals within
K-feldspar grains (Fig. 2) and the absence of chlorite and/or
Al-rich layers are inconsistent with aqueous alteration processes
of K-feldspars (Meunier, 2010; Beaufort et al., 2015). None of the
Cl-apatite, K-feldspar and quartz grains composing the meso-
stasis of Nakhla display any alteration texture such as retreating
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Figure 1 SEM images of the investigated thin section of Nakhla in BSE mode. (a) BSE image of the augite cumulate texture of Nakhla.
(b,c) BSE image of the Nakhla mesostasis (b) and corresponding EDXS-based mineralogical map (c). (d–f) BSE images of the tardi-magmatic
Fe/Mg-rich clay minerals observed in the mesostasis of Nakhla in contact with Na/Ca-plagioclase, K-feldspar, quartz and Cl-apatite.
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surfaces or pitch-like material resulting from dissolution. In con-
trast, all these phases exhibit sharp boundaries, even when in
contact with the Fe/Mg-rich clay minerals. A halogen content
as high as that of these Fe/Mg-rich clay minerals has never been
reported for secondary clay minerals (Bailey, 1984). The high
chlorine content of the Fe/Mg-rich clay minerals observed in
Nakhla is more consistent with a precipitation from a Cl-rich,
magma derived fluid (Bailey, 1984), as is the case for the other
Cl-rich minerals previously reported in nakhlites, such as
apatite, scapolite and amphibole (Filiberto and Treiman,
2009a; McCubbin et al., 2013; Filiberto et al., 2014; Giesting
and Filiberto, 2016). In otherwords, the Fe/Mg-rich clayminerals
observed in Nakhla were not produced by aqueous alteration,
but rather have a tardi-magmatic origin. Tardi-magmatic pre-
cipitation of smectite and celadonite similar to that observed
here in Nakhla has been previously reported in terrestrial rocks
(Meunier et al., 2008, 2012; Meunier, 2010; Berger et al.,
2014, 2018).

Petrographic investigations reveal that the tardi-
magmatic Fe/Mg-rich clay minerals observed in Nakhla precipi-
tated at the end of the cooling sequence from a residual
water-rich, magma derived, Cl-rich fluid (Fig. 3). According to

previous studies, the parental melt of Nakhla results from a mix-
ture of different magmas with a Cl-rich fluid of some kind
(McCubbin et al., 2013; Giesting and Filiberto, 2016). The crys-
tallisation of Mg-rich augite cores followed by the overgrowth of
Fe-rich rims increased the relative concentrations of Na, Ca
and Al in the trapped, residual, evolved melt. Laths of Na/Ca-
plagioclase then nucleated together with euhedral titanomagne-
tite at the surface of the augite grains, before the crystallisation of
K-feldspar, quartz and Cl-apatite in between the laths of Na/Ca-
plagioclase (Fig. 3). Finally, the observed Fe/Mg-rich clay miner-
als directly precipitated from the leaving residual water-rich,
magma derived, Cl-rich fluid (Fig. 3). The differences in porosity
between different pockets of clay minerals might result from the
cooling history of the lava flow and/or the variable gas content of
the residual water-rich, magma derived, Cl-rich fluids from
which the clay minerals precipitated.

The precipitation of Fe/Mg-rich clay minerals after that of
quartz might be due the low H2O content of the parental melt of
nakhlites (Weis et al., 2017; Filiberto et al., 2019). In fact, early
experimental studies demonstrated that H2O-poor melts pro-
duce feldspar and quartz before phyllosilicates (Naney, 1983).
Of note, despite the low H2O content of the parental melt of
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Figure 2 TEM images of the FIB sections extracted from themesostasis of Nakhla in STEMmode. (a–e). Images of the magmatic Fe/Mg-rich
clayminerals minerals observed in themesostasis of Nakhla in contact with K-feldspar, quartz, Cl-apatite and in inclusions within K-feldspar.
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nakhlites (e.g., <100 ppm; Weis et al., 2017 and Filiberto et al.,
2019), the final mineral assemblage observed here (i.e.Cl apatite,
K feldspar, quartz and Fe/Mg-rich clay minerals) is typical of
evolved/granitic rocks, even though it has long been argued that
a significant H2O content is required to produce such rocks
(Campbell and Taylor, 1983). This apparent paradox can be
explained by the high Cl content of the parental melt of nakh-
lites. In fact, the presence of Cl in a magma affects its liquidus
temperature and increases pyroxene stability to lower pressures
as does H2O, permitting the residual melt to evolve to lower
temperatures before solidification (Filiberto and Treiman,
2009a,b), eventually leading to alkali-rich/felsic compositions
like those obtained from H2O-rich melts (Nekvasil et al., 2004;
Whitaker et al., 2008).

Altogether, the results of the present study portend that
some the Fe/Mg-rich clay minerals detected on Mars so far
may not be the products of the aqueous alteration of pre-existing
silicates by (sub)surface water but rather tardi-magmatic clays
minerals, as anticipated earlier (Meunier et al., 2012; Berger et al.,
2014, 2018). Similarly, some of the evolved units detected from
orbit and containing Fe/Mg-rich clayminerals (Christensen et al.,
2005; Bandfield, 2006; Carter and Poulet, 2013; Wray et al., 2013)
may not be mafic rocks having undergone aqueous alteration
processes but rather evolved/granitic materials containing
primary Fe/Mg clayminerals that formed via igneous differentia-
tion. Given that Noachian magmas were richer in H2O (Médard
and Grove, 2006; Filiberto et al., 2019), both igneous differentia-
tion and tardi-magmatic production of clay minerals may have
been quite significant during the Noachian. Determining the
exact contribution of these processes during the Noachian could
potentially resolve the origin of the Martian dichotomy (Watters
et al., 2007) and explain both the missing salt paradox (Milliken
et al., 2009) and the amorphous conundrum (Tosca and
Knoll, 2009).
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Materials and Methods 

 
SEM & TEM 

 

Scanning electron microscopy (SEM) and EDXS mapping was performed on a thin section of Nakhla using a SEM-FEG Ultra 55 Zeiss 

(IMPMC - Paris, France) microscope operating at a 15-kV accelerating voltage and a working distance of 7.5 mm for imaging with 

backscattered electrons and EDXS mapping. Transmission electron microscopy in scanning mode (STEM) was performed on FIB foils 

using a Thermofisher Titan Themis 300 microscope operated at 300 keV (CCM – Lille, France). TEM-based hyperspectral EDXS data 

were obtained using the super-X detector system equipped with four windowless silicon drift detectors with a high sensitivity for 

light elements. The probe current was set at maximum 200 pA with a dwell time at 10 µs per pixel. 

 
FIB 

 

Focused ion beam (FIB) ultrathin sections were extracted from the mesostasis of Nakhla using an FEI Strata DB 235 (IEMN, Lille, 

France). Milling at low Ga-ion currents minimises common artefacts including: local gallium implantation, mixing of components, 

creation of vacancies or interstitials, creation of amorphous layers, local compositional changes or redeposition of the sputtered 

material on the sample surface (Wirth, 2009). 

 
EDXS data processing 

 

A key aspect of this work is the post-processing of the collected EDXS hyperspectral data, performed using the Hyperspy python-

based package (De La Pena et al., 2017). The signal was first denoised using PCA and then fitted by a series of Gaussian functions 

and a physical model for background/bremsstrahlung. The integrated intensities of the Gaussian functions were used to quantify the 

compositions of the clay minerals thanks to the Cliff-Lorimer method, using experimentally determined k-factors. Absorption 
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correction was taken into account, which is mandatory to correct for the re-absorption within the sample of oxygen X-rays. These 

steps correct for the thickness of the sample. Finally, end-member phases were identified and their spectra used as inputs for linear 

combination fitting (multiple linear least square fits). Pixels of similar composition were given the same colors scaled as a function 

of the proportion of each phase. 
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