A. Alhanash, E. F. Kozhevnikova, and I. V. Kozhevnikov, Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt, Appl. Catal. A Gen, vol.378, pp.11-18, 2010.

H. Atia, U. Armbrusterh, M. , and A. , Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds, J. Catal, vol.258, pp.71-82, 2008.

B. B. Bardin and R. J. Davis, Effect of water on silica-supported phosphotungstic acid catalysts for 1-butene double bond shift and alkane skeletal isomerization, Appl. Catal. A Gen, vol.200, pp.219-231, 2000.

O. Bayraktar and E. L. Kugler, Characterization of coke on equilibrium fluid catalytic cracking catalysts by temperature-programmed oxidation, Appl. Catal. A Gen, vol.233, pp.197-213, 2002.

J. D. Blackwood and F. K. Mctaggart, The oxidation of carbon with atomic oxygen, Aust. J. Chem, vol.12, pp.114-121, 1958.

A. Bogaerts, Effects of oxygen addition to argon glow discharges: a hybrid Monte Carlo-fluid modeling investigation, Spectrochim. Acta Part B Atom. Spectr, vol.64, pp.1266-1279, 2009.

S. Chai, H. Wang, Y. Liang, and B. Xu, Sustainable production of acrolein: investigation of solid acid-base catalysts for gasphase dehydration of glycerol, Green Chem, vol.9, pp.1130-1136, 2007.

S. Chai, H. Wang, Y. Liang, and B. Xu, Sustainable production of acrolein: gas-phase dehydration of glycerol over 12-tungstophosphoric acid supported on ZrO 2 and SiO 2, Green Chem, vol.10, pp.1087-1093, 2008.

L. Cheng, L. Liu, and X. P. Ye, Acrolein production from crude glycerol in sub-and super-critical water, J. Am. Oil Chem. Soc, vol.90, pp.601-610, 2013.

V. R. Deitz and J. L. Bitner, Interaction of ozone with adsorbent charcoal, Carbon, vol.11, pp.393-398, 1973.

Z. Falkenstein, Effects of the O 2 concentration on the removal efficiency of volatile organic compounds with dielectric barrier discharges in Ar and N 2, J. Appl. Phys, vol.85, pp.81-89, 1999.

A. Fridman, Plasma Chemistry, 2008.

F. Holzer, U. Roland, and F. D. Kopinke, Combination of nonthermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 1: accessibility of the intra-particle volume, Appl. Catal. B Environ, vol.38, pp.163-181, 2002.

B. Katryniok, S. Paul, V. Belliere-baca, P. Rey, A. F. Dumeignil et al., Glycerol dehydration to acrolein in the context of new uses of glycerol, Green Chem, vol.12, pp.2079-2098, 2010.

B. Katryniok, S. Paul, M. Capron, V. Bellière-baca, P. Rey et al., Regeneration of Silica-supported silicotungstic acid as a catalyst for the dehydration of glycerol, ChemSusChem, vol.5, pp.1298-1306, 2012.

B. Katryniok, S. Paul, M. Capron, and F. Dumeignil, Towards the sustainable production of acrolein by glycerol Dehydration, ChemSusChem, vol.2, pp.719-730, 2009.

B. Katryniok, S. Paul, and F. Dumeignil, Recent developments in the field of catalytic dehydration of glycerol to acrolein, ACS Catal, vol.3, pp.1819-1834, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01772483

M. A. Khan, A. , and A. A. , Enhanced decoking of a coked zeolite catalyst using a glow discharge in Ar-O 2 gas mixture, Appl. Catal. A Gen, vol.272, pp.141-149, 2004.

M. A. Khan, A. , and A. M. , Cumulative contributions of 3s-np (n >= 3) transitions in comparing O atom densities in low-pressure Ar-O 2 and He-O 2 glow discharges, Appl. Phys. Lett, vol.89, pp.171501-171503, 2006.

M. A. Khan, A. , and A. M. , Dissociation of O 2 in low pressure glow discharges in He-O 2 , Ne-O 2 , and Ar-O 2 gas mixtures, J. Appl. Phys, vol.104, pp.123302-123305, 2008.

U. Kogelschat, Dielectric-barrier discharges: their history, discharge physics, and industrial applications, Plasma Chem. Plasma Process, vol.23, pp.1-46, 2002.

I. V. Kozhevnikov, Sustainable heterogeneous acid catalysis by heteropoly acids, J. Mol. Catal. A Chem, vol.262, pp.86-92, 2007.

M. Kraus, B. Eliasson, U. Kogelschatz, and A. Wokaun, CO 2 reforming of methane by the combination of dielectric-barrier discharges and catalysis, Phys. Chem. Chemical Phys, vol.3, pp.294-300, 2001.

C. E. Li and T. C. Brown, Temperature-programmed oxidation of coke deposited by 1-octene on cracking catalysts, Energy Fuels, vol.13, pp.888-894, 1999.

L. Liu, Roles of Non-thermal Plasma in Gas-phase Glycerol Dehydration Catalyzed by Supported Silicotungstic Acid, 2011.

L. Liu, X. P. Ye, and J. J. Bozell, A comparative review of petroleumbased and bio-based acrolein production, ChemSusChem, vol.5, pp.1162-1180, 2012.

T. C. Manley, The electric characteristics of the ozonator discharge, Trans. Electrochem. Soc, vol.84, pp.83-96, 1943.

H. Marsh, E. O'hair, R. Reed, W. , and W. F. , Reaction of atomic oxygen with Carbon, Nature, vol.198, pp.1195-1196, 1963.

D. B. Mawhinney and J. T. Yates, FTIR study of the oxidation of amouphous carbon by ozone at 300K -Direct COOH formation, Carbon, vol.39, pp.1167-1173, 2001.

Y. S. Mok, D. J. Koh, D. N. Shin, and K. T. Kim, Gaseous ozone decomposition using a nonthermal plasma reactor with adsorbent and dielectric pellets, Kor. J. Chem. Eng, vol.26, pp.1613-1619, 2009.

M. Okumoto, H. H. Kim, K. Takashima, S. Katsura, and A. Mizuno, Reactivity of methane in nonthermal plasma in the presence of oxygen and inert gases at atmospheric pressure, IEEE Trans. Ind. Appl, vol.37, pp.1618-2001, 2001.

P. Pattabiraman, N. M. Rodriguez, B. Z. Jang, and R. T. Baker, A study of the interaction of atomic oxygen with various carbonaceous materials, Carbon, vol.28, pp.867-878, 1990.

C. L. Pieck, E. L. Jablonski, and J. M. Parera, Regeneration of coked Pt-Re/Al 2 O 3 catalyst by burning with oxygen and ozone, pp.289-295, 1994.

C. L. Pieck, C. R. Vera, C. A. Querini, and J. A. Parera, Differences in coke burning-off from Pt-Sn/Al 2 O 3 catalyst with oxygen or ozone, Appl. Catal. A Gen, vol.278, pp.173-180, 2005.

A. O. Silva, M. J. Souza, J. M. Aquino, V. J. Fernandes, and A. S. Araújo, Coke removal of the HZSM-12 zeolite with different silica/alumina ratio, J. Therm. Anal. Calorim, vol.75, pp.699-704, 2004.

D. M. Smith and A. R. Chughtai, The surface structure and reactivity of black carbon, Colloids Surf. A Physicochem. Eng. Aspects, vol.105, pp.47-77, 1995.

H. R. Snyder, A. , and G. K. , Effect of air and oxygen content on the dielectric barrier discharge decomposition of chlorobenzene, IEEE Trans. Plasma Sci, vol.26, pp.1695-1699, 1998.

C. Subrahmanyam, D. A. Bulushev, and L. Kiwi-minsker, Dynamic behaviour of activated carbon catalysts during ozone decomposition at room temperature, Appl. Catal. B Environ, vol.61, pp.98-106, 2005.

Y. M. Sung and T. Sakoda, Optimum conditions for ozone formation in a micro dielectric barrier discharge, Surf. Coat. Technol, vol.197, pp.148-153, 2005.

T. Takeuchi and T. Itoh, Removal of ozone from air by activated carbon treatment, Sep. Sci. Technol, vol.3, issue.93, pp.168-175, 1989.

K. Tanable, M. Misono, M. Ono, and H. Hattori, New Solid Acids and Bases. Their Catalytic Properties, 1989.

K. Teranishi, N. Shimomura, S. Suzuki, and H. Itoh, Development of dielectric barrier discharge-type ozone generator constructed with piezoelectric transformers: effect of dielectric electrode materials on ozone generation, Plasma Sour. Sci. Technol, vol.18, p.45011, 2009.

M. N. Timofeeva, Acid catalysis by heteropoly acids, Appl. Catal. A Gen, vol.256, pp.19-35, 2003.

E. Tsukuda, S. Sato, R. Takahashi, and T. Sodesawa, Production of acrolein from glycerol over silica-supported heteropoly acids, Catal. Commun, vol.8, pp.1349-1353, 2007.

F. Wang, J. Dubois, and W. Ueda, Catalytic dehydration of glycerol over vanadium phosphate oxides in the presence of molecular oxygen, J. Catal, vol.268, pp.260-267, 2009.

F. Wang, J. Dubois, and W. Ueda, Catalytic performance of vanadium pyrophosphate oxides (VPO) in the oxidative dehydration of glycerol, Appl. Catal. A Gen, vol.376, pp.25-32, 2010.

W. M. Weigert and H. Haschke, Acrolein and Derivatives, 1976.

Y. Wu, X. Ye, X. Yang, X. Wang, W. Chu et al., Heterogenization of heteropolyacids: a general discussion on the preparation of supported acid catalysts, Ind. Eng. Chem. Res, vol.35, pp.2546-2560, 1996.

B. Zou, S. Ren, and X. P. Ye, Glycerol dehydration to acrolein catalyzed by ZSM-5 Zeolite in Supercritical Carbon Dioxide Medium, ChemSusChem, vol.9, pp.3268-3271, 2016.