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Abstract

In this paper, we report for the first time a one-pot reaction enabling total transformation of lactic acid to acetic
acid over a Mo-V-Nb mixed oxide catalyst having an optimal atomic ratio 19:5:1. The mechanism of the reaction
consists in two parallel ways leading to acetic acid: (i) oxi-dehydrogenation of lactic acid to pyruvic acid followed
by decarboxylation and (ii) decarbonylation of lactic acid to acetaldehyde followed by oxidation. In the operating
conditions we used, the catalyst is very active (total conversion of lactic acid) and selective towards acetic acid
(100% selectivity). A 100% yield into acetic acid is hence obtained.
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Introduction
The announced depletion of oil along with the problem
of global warming have shown up the urgent need for
using processes based on bio-derived renewable re-
sources for the production of fuels and starting materials
of the chemical industry [1,2]. Most of these processes
need a catalyst to orientate the reaction and accelerate
its rate. Therefore, the development of new catalysts is
of main importance to set up the processes of the tomor-
row chemical industry that will make use of biomass-
derived feedstocks [3]. As examples, the synthesis of
hydrogen, of liquid fuels and of precursors for plastics
from renewable resources, catalysis plays a very important
role [4,5]. In this context, lactic acid, which is often re-
ferred as a “sleeping giant”, has attracted much attention
as an alternative resource for the production of important
chemicals such as acrylic acid, 1,2-propanediol, 2,3-
pentanedione, pyruvic acid, [6] acetaldehyde [7] and
mainly the polylactic acid (PLA) polymer [8,9]. Lactic
acid can be easily be obtained by fermentation of renew-
able sources such as sugars and starches or even waste
streams (cheesy whey for instance) [10-12].
Acetic acid is a bulk chemical which is produced today

in an amount exceeding 10 million tons per year world-
wide [13]. It is one of the most used organic acids in the
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chemical industry [14]. The largest consumption of
acetic acid is for the production of vinyl acetate [15],
which is a monomer building block. About 33% of the
world production of acetic acid in 2008 was used for the
manufacture of vinyl acetate. The latter is mainly poly-
merized to polyvinyl acetate which finds application in
paints and coatings or for poly vinyl alcohol and plastics.
Acetic acid is furthermore employed in the synthesis of
cellulose acetate, which is used to produce acetate fibres.
Finally, acetic acid also finds application as food addi-
tives due to its role as acidity regulator.
As a matter of fact, nowadays more than 60% of the

world acetic acid is produced by the carbonylation of
petro-derived methanol [16]. On the other hand, the car-
bonylation method has a significant drawback due to
catalyst solubility limitations and the loss of expensive
Rh metal during the separation section. As an alterna-
tive, the biological transformation of lactic acid to acetic
acid is well reported. Elferink et al. reported the conver-
sion of lactic acid to acetic acid and 1,2-propanediol
using Lactobacillus buchneri whereby one mole of lactic
acid yielded equimolar amount of acetic acid and 1,2-
propanediol [17]. Concerning the chemical conversion
of lactic acid to acetic acid, the latter is notably reported
as a side reaction in the oxidative dehydrogenation of
lactic acid to pyruvic acid and dehydration of lactic acid
to acrylic acid. For instance, Ai et al. obtained 9.2% yield
is an Open Access article distributed under the terms of the Creative Commons
org/licenses/by/4.0), which permits unrestricted use, distribution, and
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Figure 1 Temperature programmed XRD pattern of dry Mo-V-Nb.
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in acetic acid form lactic acid using an iron phosphate
catalyst doped with molybdenum [18]. The formation of
acetic acid (0.7%) during dehydration of lactic acid was
reported by Zhang et al. over NaY zeolite modified by
alkali phosphate as a catalyst [19]. Tang et al. reported
1.3% acetic acid yield over barium phosphate catalysts
in the lactic acid dehydration reaction [20]. Peng et al.
observed 3.3% yield in acetic acid as a by-product in the
barium sulphate catalysed dehydration of lactic acid
[21]. Lingoes have reported the formation of 2% acetic
acid in the lactic acid dehydration using barium based
catalysts [22]. Much higher yield in acetic acid by
chemo-catalysis were observed by Wang et al. from glu-
cose via lactic acid using copper oxide catalyst (32%)
[23]. Here, we report efficient and highly selective cata-
lysts for the production of acetic acid. In this process,
the catalytic oxidation of lactic acid is carried out over a
multi-component Mo-V-Nb mixed oxide catalyst. To
the best of our knowledge, this simple single-step cata-
lytic process has not yet been reported and would
provide a way to produce “green” acetic acid. The Mo-
V-Nb is a versatile catalyst for the oxidative dehydro-
genation. This catalyst mostly used in the oxidative
dehydrogenation of ethane and propane [24,25]. The
catalytic behaviour of this catalyst also investigated for
Table 1 Textural, redox and acid properties of the Mo-V-Nb c

BET surface area (m2/g) Pore volume (cm3/g) Pore size

10 0.022 31.5
the ammoxidation of propane to acrylonitrile [26-28].
The catalyst structure and catalytic properties of Mo-V-
Nb catalyst also investigated for selective oxidation of
propane to acrylic acid [29-31]. Mo-V-Nb oxide were
examined in bulk and supported form for the oxidation
of ethane to ethane and acetic acid [32].

Experimental
Catalyst synthesis
A molybdenum-vanadium-niobium mixed oxide catalyst
with the following molar ratio Mo:V:Nb = 19:5:1 was
prepared as follows: 10 mmol of niobium pentachloride
(Aldrich 99%) were dissolved in water (50 mL), and am-
monium hydroxide (Aldrich) was added until neutral pH
was reached. The white precipitate (niobium hydroxide)
was then filtered, washed with water and dissolved in a
hot solution of oxalic acid dihydrate (50 mmol; Aldrich
99%). Then, an aqueous solution of ammonium metavana-
date (50 mmol; Aldrich 99%) was added at 90°C followed
by an aqueous solution of ammonium paramolybdate
(27.14 mmol; Aldrich 99%). The obtained green slurry was
heated under stirring until the water was evaporated. The
residue was dried for 16 h at 120°C followed by a calcin-
ation step under static air at 400°C for 4 h (heating ramp
2°C/min).
atalyst

(Å) Total acidity (mmol/g) H2 consumption mmol/g

0.161 6.47



C

Table 2 Atomic composition of the catalyst measured by
XPS and XRF

Atomic ratio Mo V Nb

Theoretical 19 5 1

XPS 19.1 4.6 1.2

XRF 16 3 1
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Experimental set-up
The evaluation of the catalyst activity was carried out
under atmospheric pressure in a gas phase down-flow
fixed-bed reactor (stainless steel, 15 mm inner diameter,
180 mm length). 2 g of catalyst were loaded in the re-
actor and the remaining reactor volume was filled with
SiC (VWR, 0.5 mm) to avoid the presence of any dead
volume. The lactic acid (LA) aqueous solution (20 wt.%)
was fed by a HPLC pump at a flow-rate of 3 mL/h, pre-
vaporized at 190°C and diluted with air (30 mL/min STP).
The resulting feed molar composition was 0.6:13.3:1 (LA:
H2O:Air) (GHSV = 3075 h−1). The reaction temperature
was varied between 250 and 300°C. The products were
collected in a cold trap filled with water at 3°C and the
analysis of the collected liquid was performed by HPLC
on a Phenomenex column (ROA, organic acid H+; 300 ×
7.8 mm). Sulphuric acid (5 mmol/L) was used as a mobile
phase at a flowrate of 0.450 mL/min and the products
Figure 2 EDX mapping on the Mo-V-Nb catalyst.
were detected on a Shodex RI-101 detector at 35°C. The
conversion of lactic acid and selectivity of products were
calculated as follows:

Selectivity;% ¼ Moles of acetic acid formed
Moles of lactic acid reacted

� 100 ð1Þ

onversion;% ¼ Moles of LA fed–Moles of LA recovered
Moles of LA fed

� 100

ð2Þ

The carbon balance was always found greater than 91%.
Blank tests were done at 250°C using SiC only. No con-
version was observed for lactic acid.

Catalyst characterization
The Mo-V-Nb oxide catalyst was characterised by different
physico-chemical techniques, as described in the followings.
Powder in-situ temperature X-ray diffraction measurement
was performed (RT to 500°C) on a Bruker D8 advance dif-
fractometer, using the CuKα radiation (λ = 1.5506 Å) as an
X-ray source, in the 2θ range of 10-80° with steps of 0.02°
per second. The composition and oxidation state of the
elements present on the catalyst surface was deter-
mined by X-ray photoelectron spectroscopy (XPS). The XPS
experiments were performed on a KRATOS Ultra instru-
ment using a hemispherical energy analyzer. Monochromatic
AlKα X-rays (hν= 1486 eV) were used as the excitation



Figure 3 XPS spectra of the Mo-V-Nb catalyst.
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Figure 4 Raman spectra of the Mo-V-Nb catalyst.
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source. The source was operated at 150 W. All the spectra
were acquired at normal incidence, takeoff angle set at 90°,
with the charge neutralizer switched on. The base pres-
sure of the instrument was maintained at less than
6.66 × 10−13 bar. All the survey scans were collected
with a pass energy of 160 eV and a step size of 1 eV/step
while thigh-resolution spectra were collected with a
pass energy of 40 eV and a step size of 0.1 eV/step. All
the binding energies were referenced to the carbon 1 s
CHx component set to 285 eV.
Ammonia temperature-programed desorption (NH3-TPD)

was carried out to measure the surface acidity of the catalyst.
First, 50 mg of catalyst were treated under helium flow
(30 mL/min) at 250°C for 2 h. After the pre-treatment,
the catalyst was saturated with ammonia at 130°C using
pulse-wise injection. Finally, NH3-TPD desorption was
carried out in helium at a heating rate of 10°C/min within
the temperature range of 130 to 700°C. The signal was re-
corded by a thermo-conductive detector (TCD).
For the elemental analysis by energy dispersive X-Ray

Fluorescence (XRF) a M4 Tornado from Bruker was
employed. This tool is used for element characterization
using small-spot Micro X-ray Fluorescence (Micro-XRF)
analysis. For each sample 30 points were measured for
in order to cover whole sample surface, with spot sizes
of 200 μm for each point.
The atomic composition of the catalyst was further evalu-

ated by EDX analysis. Elemental analysis was performed by
Table 3 Catalytic performance of Mo-V-Nb catalyst

LA
conversion (%)

Selectivities (%)

Pyruvic acid Acetaldehyde Acetic acid

200°C 80 32 13 55

225°C 90 20 13 67

250°C 100 0 0 100

Conditions: 2 g cat., GHSV 3075 h−1, ratio LA:H2O:Air 0.6:13.3:1.
energy dispersive X-ray spectroscopy on a Hitachi S3600N
electron microscope equipped with a Thermo Ultradry
EDX detector using an acceleration voltage of 30 kV.
The specific surface area and pore volume of the catalyst

were measured through nitrogen adsorption at the liquid
nitrogen temperature (77 K) using a Micrometrics ASAP
2010 instrument. The specific surface area (SBET) was
evaluated by using the multi-point BET method, while
the pore size distribution was calculated according to
the Barrett–Joyner–Halenda (BJH) formula applied to
the desorption branch. The total pore volume (Vp) was
calculated using the isotherms at the relative pressure
(P/P0) of 0.98.
The reducibility of the catalysts was evaluated by

temperature-programmed reduction (TPR) using gaseous
hydrogen as reducing agent. A typical experiment was
performed with 100 mg of catalyst loaded into a quartz
reactor and pre-treated in a He flow (30 mL/min) at
100°C for 2 h. Afterwards, the catalyst was heated from
100°C to 700°C (heating rate of 5°C/min) under the re-
ductive gas H2/He (5 mol.% H2 in He; 30 mL/min).
The effluent gas was analysed by a thermal conductiv-
ity detector (TCD).
Raman measurements were performed on a HORIBA

HT Raman with a confocal microscope Raman system
using an excitation wavelength of 532 nm supplied by a
Renishaw HPNIR laser (10 mW). The Raman spectra
were collected at room temperature in air in the region
of 100–1100 cm−1.
Results and discussion
Catalyst characterization
XRD of the dried Mo-V-Nb catalyst was performed in
the range of 100 -500°C and the pattern are shown in
Figure 1. From the observed patterns one can see that
all nitrate species were decomposed at 400°C, meaning
that he employed calcination temperature of 400°C was
sufficient to obtain metal oxide species. Intense characteristic
peaks were observed for the α-MoO3 orthorhombic phase
[33]. On the other hand, no signals were detected for
niobium species. This can be explained by i) the low
content of niobium compared to molybdenum (Mo:V:
Nb = 19:5:1), ii) the formation of microcrystals, iii) the for-
mation of amorphous phases [34]. In fact, for niobium
oxide, the formation of an amorphous phase was reported
for a calcination at >400°C [35,36]. Concerning vanadium,
small peaks for V5O9 and V2O5 [JCPDS 18–1450, 45–1074]
was observed, accompanied with mixed oxide phases
of vanadium and molybdenum V0.95Mo0.97O5 [JCPDS
50–0535] [26].
The textural properties were determined by nitrogen

physisorption. The specific surface of the catalyst was
10 m2/g with a pore volume of 0.022 cm3/g and an



Figure 5 Proposed pathway for the acetic acid formation from lactic acid.
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average pore diameter of 3 nm, which is characteristic
for a classical bulk catalyst.
The amount of acid sites determined by ammonia TPD

is presented in Table 1. The catalyst shows two peaks of
ammonia desorption, one at low temperature (between
200 and 400°C) - corresponding to weak acid sites - and
another one at high temperature (700°C) corresponding to
strong acid sites. The quantification clearly indicates that
the majority of sites were weak (0.101 mmol/g) rather
than strong (0.06 mmol/g).
The reducibility was also studied using temperature-

programmed reduction (TPR). The results are reported
in Table 1. The reduction peak of the Mo-V-Nb catalyst
occurred at high temperature (650°C) and showed a
hydrogen consumption of 6.47 mmol/g.
The atomic compositions of the bulk and of the surface

of the catalyst were measured by XRF and XPS respect-
ively (Table 2). From the results, one can see that the bulk
elemental ratio determined by XRF shows a slightly lower
content of vanadium (3), whereas the surface elemental
ratio is nearly identical (4.6) to the theoretical value (5).
Similar observations can be drawn up for the molyb-
denum content determined by XRF which is again lower
than the theoretical value (16% vs. 19%). On the other
hand, for XPS and XRF, the experimental niobium con-
tent is exactly the same as the theoretical one.
The distribution of the elements was verified by EDX

mapping. The corresponding images are shown in Figure 2.
From the images it is clear that the niobium content is low,
but the distribution is nevertheless uniform. The same con-
clusion can be drawn for molybdenum and vanadium,
which are homogeneously dispersed in the catalyst.
XPS was employed to determine the oxidation states
of Mo, V and Nb from the respective binding energies,
as shown in Figure 3. For molybdenum (Mo 3d peak),
the binding energies were 235.1 eV (3d3/2) and 231.9 eV
(3d3/2) corresponding to the exclusive presence of Mo+VI

oxidation state [37]. For vanadium (using the V 2p3/2
signal), the binding energy peak at 516 eV is ascribed to
V+4 whereas the peak at 518 eV corresponds to V+5. The
deconvolution of the V 2p3/2 peak showed that 94% of
vanadium are in V+4 state and 6% in V+5 [38,39]. Finally,
the niobium was exclusively in the Nb+V oxidation state
with a binding energy of 206.1 eV corresponding to Nb
3d3/2 [40,41].
Raman spectra of calcined Mo-V-Nb catalyst were re-

corded to determine the metal species in the catalyst.
The pattern for the Raman spectra is shown in Figure 4,
The phases observed by XRD were also confirmed by
Raman spectroscopy. In fact, the catalyst shows charac-
teristic peaks at 139 and 282 cm−1 for the orthorhombic
vanadium oxide (V2O5) [42,43]. For the orthorhombic
MoO3, more intense characteristic peaks are observed at
114, 129, 281, 665, 819 and 997 cm−1 [44,45].

Catalytic activity
The catalytic activity of the Mo-V-Nb catalyst was inves-
tigated in the temperature range of 200-250°C. From the
results (Table 3), one can see that the conversion in-
creased from initially 80% (200°C) to full conversion at
250°C. The main product was always acetic acid with
even 100% selectivity at 250°C. At lower temperatures,
the other observed products were pyruvic acid and acet-
aldehyde. The selectivity to acetaldehyde remained
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constant at 200°C and 225°C (13%), but decreased to 0%
at the increased temperature of 250°C. The selectivity to
pyruvic acid followed the same trend since it decreased
from 32% at 200°C to 20% at 225°C, and then dropped
to 0% at 250°C, meaning that both are potential interme-
diates for the formation of acetic acid.
Concerning the reaction mechanism, the one-step re-

action of lactic acid to acetic acid can proceed via two
parallel pathways, namely i) the decarbonylation to acet-
aldehyde and consecutive oxidation of the latter to acetic
acid and ii) the oxidative dehydrogenation (ODH) to
pyruvic acid with consecutive decarboxylation of the latter
to acetic acid (Figure 5) [46]. Both pathways seem possible
over a bi-functional catalyst exhibiting redox and acidic
properties – as Mo-V-Nb does. In fact, Desponds et al.
already demonstrated that Mo-V-Nb is a very efficient
catalyst for the oxidative dehydrogenation of ethane with
77% selectivity for ethylene at 7% conversion [47]. On the
other hand, Iglesias et al. demonstrated that Mo-V-Nb
was also highly active in the oxidation of ethanol to acetic
acid [48]. In order to provide proof, an additional reaction
was performed using acetaldehyde as reactant over Mo-
V-Nb at 250°C. The corresponding reaction showed a
selectivity of 89% for acetic acid at full conversion of
acetaldehyde. These results strongly suggest that the
formation of acetic acid from lactic acid proceeds via de-
carboxylation/decarbonylation to acetaldehyde, followed by
the oxidation of the latter to acetic acid.

Conclusion
In the present work, a Mo-V-Nb mixed oxide catalyst
having an atomic ratio of 19:5:1 was synthesized and
used for the direct oxidation of lactic acid to acetic acid.
The catalyst was extensively characterized by nitrogen
adsorption-desorption, XRD, EDX, XRF, XPS, TPR and
ammonia TPD. The results show that the Mo-V-Nb mixed
oxide catalyst presents both redox and acid properties en-
abling the parallel formation of acetaldehyde and pyruvic
acid as intermediates, which give acetic acid at higher lac-
tic acid conversion. Thus at 250°C, a remarkable yield into
acetic acid is obtained (100%).
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