S. Suresh, A. Mortensen, A. Needleman, and P. , Fundamentals of Metal-Matrix Composites, 1993.

. Fig, Fractured surfaces of Ti reinforced composite after ageing at 600 ? C for 1 h, showing (a-b) fractured voids typically with some sudden deformation signature between 10 to 40 ?m in the matrix, vol.13

I. A. Ibrahim, F. A. Mohamed, and E. J. Lavernia, Particulate reinforced metal matrix composites -a review, J. Mater. Sci, vol.26, pp.1137-1156, 1991.

S. C. Tjong and Z. Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng. R Rep, vol.29, pp.49-113, 2000.

S. Dadbakhsh, R. Mertens, L. Hao, J. Van-humbeeck, and J. Kruth, Selective laser melting to manufacture "In situ" metal matrix composites: a review, Adv. Eng. Mater, vol.21, p.1801244, 2019.

S. Dadbakhsh, L. Hao, P. G. Jerrard, and D. Z. Zhang, Experimental investigation on selective laser melting behaviour and processing windows of in situ reacted Al/ Fe2O3 powder mixture, Powder Technol, vol.231, pp.112-121, 2012.

S. Dadbakhsh and L. Hao, Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites, J. Alloys Compd, vol.541, pp.328-334, 2012.

F. Chang, D. Gu, D. Dai, and P. Yuan, Selective laser melting of in-situ Al4SiC4+SiC hybrid reinforced Al matrix composites: influence of starting SiC particle size, Surf. Coat. Technol, vol.272, pp.15-24, 2015.

S. Dadbakhsh, R. Mertens, K. Vanmeensel, J. Vleugels, J. V. Humbeeck et al., In situ alloying and reinforcing of Al6061 during selective laser melting, Procedia CIRP, vol.74, pp.39-43, 2018.

D. Gu, C. Hong, and G. Meng, Densification, microstructure, and wear property of in situ titanium nitride-reinforced titanium silicide matrix composites prepared by a novel selective laser melting process, Metall. Mater. Trans. A, vol.43, pp.697-708, 2012.

D. Gu, Y. Shen, and Z. Lu, Preparation of TiN-Ti5Si3 in-situ composites by selective laser melting, Mater. Lett, vol.63, pp.1577-1579, 2009.

H. Attar, M. Bönisch, M. Calin, L. C. Zhang, K. Zhuravleva et al., Comparative study of microstructures and mechanical properties of in situ Ti-TiB composites produced by selective laser melting, powder metallurgy, and casting technologies, J. Mater. Res, vol.29, pp.1941-1950, 2014.

H. Attar, M. Bönisch, M. Calin, L. Zhang, S. Scudino et al., Selective laser melting of in situ titanium-titanium boride composites: processing, microstructure and mechanical properties, Acta Mater, vol.76, pp.13-22, 2014.

H. Attar, K. G. Prashanth, L. Zhang, M. Calin, I. V. Okulov et al., Effect of powder particle shape on the properties of in situ Ti-TiB composite materials produced by selective laser melting, J. Mater. Sci. Technol, vol.31, pp.1001-1005, 2015.

B. Vrancken, S. Dadbakhsh, R. Mertens, K. Vanmeensel, J. Vleugels et al., Selective Laser Melting process optimization of Ti-Mo-TiC metal matrix composites, CIRP Ann, 2019.

S. Dadbakhsh, R. Mertens, K. Vanmeensel, G. Ji, and J. Kruth, In situ transformations during SLM of an ultra-strong TiC reinforced Ti composite, Sci. Rep, vol.10, p.10523, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02922333

A. M. Ribeiro, T. H. Flores-sahagun, and R. C. Paredes, A perspective on molybdenum biocompatibility and antimicrobial activity for applications in implants, J. Mater. Sci, vol.51, pp.2806-2816, 2016.

M. Brama, N. Rhodes, J. Hunt, A. Ricci, R. Teghil et al., Effect of titanium carbide coating on the osseointegration response in vitro and in vivo, Biomaterials, vol.28, pp.595-608, 2007.

G. Longo, C. A. Ioannidu, A. Scotto-d'abusco, F. Superti, C. Misiano et al., Improving osteoblast response in vitro by a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon, PLoS One, vol.11, p.152566, 2016.

P. C. Collins, R. Banerjee, S. Banerjee, and H. L. Fraser, Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys, Mater. Sci. Eng. A, vol.352, pp.909-916, 2003.

A. Almeida, D. Gupta, C. Loable, and R. Vilar, Laser-assisted synthesis of Ti-Mo alloys for biomedical applications, Mater. Sci. Eng. C, vol.32, pp.1190-1195, 2012.

B. Vrancken, L. Thijs, J. P. Kruth, and J. Van-humbeeck, Microstructure and mechanical properties of a novel ? titanium metallic composite by selective laser melting, Acta Mater, vol.68, pp.150-158, 2014.

F. Langmayr, P. Fratzl, G. Vogl, and W. Miekeley, Crossover from ?-phase to ?-phase precipitation in bcc Ti-Mo, Phys. Rev. B, vol.49, pp.11759-11766, 1994.

D. Rhea-trinkle and . Iii, A Theoretical Study of the HCP to Omega Martensitic Phase Transition in Titanium, 2003.

H. Attar, S. Ehtemam-haghighi, D. Kent, X. Wu, and M. S. Dargusch, Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes, Mater. Sci. Eng. A, vol.705, pp.385-393, 2017.

B. Wysocki, P. Maj, A. Krawczy?ska, K. Ro?niatowski, J. Zdunek et al., Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM), J. Mater. Process. Technol, pp.13-23, 2017.

Z. Q. Chen, Y. G. Li, and M. H. Loretto, Role of alloying elements in microstructures of beta titanium alloys with carbon additions, Mater. Sci. Technol, vol.19, pp.1391-1398, 2003.

J. Nie, X. Liu, and X. Ma, Influence of trace boron on the morphology of titanium carbide in an Al-Ti-C-B master alloy, J. Alloys Compd, vol.491, pp.113-117, 2010.

D. Gu, Y. Shen, and G. Meng, Growth morphologies and mechanisms of TiC grains during selective laser melting of Ti-Al-C composite powder, Mater. Lett, vol.63, pp.2536-2538, 2009.

P. Cao, F. Tian, and Y. Wang, Effect of Mo on the phase stability and elastic mechanical properties of Ti-Mo random alloys from ab initio calculations, J. Phys. Condens. Matter, vol.29, p.435703, 2017.

M. J. Lai, C. C. Tasan, J. Zhang, B. Grabowski, L. F. Huang et al., Origin of shear induced ? to ? transition in Ti-Nb-based alloys, Acta Mater, vol.92, pp.55-63, 2015.

F. Sun, D. Laillé, and T. Gloriant, Thermal analysis of the ? nanophase transformation from the metastable ? Ti-12Mo alloy, J. Therm. Anal. Calorim, vol.101, pp.81-88, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00761777

J. Ruzic, S. Emura, X. Ji, and I. Watanabe, Mo segregation and distribution in Ti-Mo alloy investigated using nanoindentation, Mater. Sci. Eng. A, vol.718, pp.48-55, 2018.

W. F. Ho, Effect of omega phase on mechanical properties of Ti-Mo alloys for biomedical applications, J. Med. Biol. Eng, vol.28, pp.47-51, 2008.

M. C. Jon, H. Fujimura, and R. J. De-angelis, Omega-phase formation in Beta III titanium alloy, Metallography, vol.5, pp.90051-90052, 1972.

O. P. Solonina and N. M. Ulyakova, Effect of carbon on the mechanical properties and structure of titanium alloys, Met. Sci. Heat Treat, vol.16, pp.310-312, 1974.

L. A. Petrova, E. V. Dyomina, and V. S. Khlomov, The effect of carbon on the behavior of the Beta-titanium alloys, Titanium and Titanium Alloys: Scientific and Technological Aspects, vol.3, pp.2217-2227, 1982.

R. Banoth, R. Sarkar, A. Bhattacharjee, T. K. Nandy, and G. V. Rao, Effect of boron and carbon addition on microstructure and mechanical properties of metastable beta titanium alloys, Mater. Des, vol.67, pp.50-63, 2015.