

Chemical Looping Selective Oxidation of H2S using V2O5 Impregnated over Different Supports as Oxygen Carriers

Tanushree Kane, Jesús Guerrero Caballero, Axel Löfberg

► To cite this version:

Tanushree Kane, Jesús Guerrero Caballero, Axel Löfberg. Chemical Looping Selective Oxidation of H2S using V2O5 Impregnated over Different Supports as Oxygen Carriers. ChemCatChem, 2020, ChemCatChem, 12 (9), pp.2569-2579. 10.1002/cctc.201902031. hal-02965559

HAL Id: hal-02965559 https://hal.univ-lille.fr/hal-02965559v1

Submitted on 13 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Chemical looping selective oxidation of H₂S using V₂O₅ impregnated over different supports as oxygen carriers

Tanushree Kane^[a], Jesús Guerrero Caballero^[a] and Axel Löfberg*^[a]

Abstract: Chemical looping concept is proposed to improve the efficiency of selective oxidation of H₂S into elemental sulfur. V₂O₅ as an active oxygen carrier, is impregnated on different supports and exposed cyclically to reductant (H₂S) and to oxidant (O₂). Among all, TiO₂ and SiO₂ proved as better supports for V₂O₅ as they provided more formation of elemental sulfur than undesired SO₂ in the reductant step. Results indicate that the support can either directly react and provide oxygen to the process like for CeO₂ or indirectly affect the properties of the active phase, leading either into the improvement, as for TiO₂ and SiO₂, or worsening, as in case of Al₂O₃ and ZrO₂. Oxygen carriers with partially reduced species, i.e., the combination of V⁵⁺ and V⁴⁺, show better performances than carriers containing mostly highly oxidized V⁵⁺ species. Interaction between the active phase and support plays a vital role for the controls of the formation of these partially reduced species.

Introduction

Current strict environmental regulations force to treat the H_2S emissions from the petroleum refineries and gas plants. Claus and super Claus processes are well-known desulfurization processes; however, due to the thermodynamic limitations, only 98% of H_2S is converted into S. Hence, selective oxidation of hydrogen sulfide, avoiding the formation of SO₂, is attractive according to the reaction:

$$H_2S + 1/2 O_2 \rightarrow 1/n S_n + H_2O \qquad (1)$$

Selective oxidation to S is an exothermic reaction with no equilibrium limitations, unlike the Claus process. However, side reactions such as sulfur deposition on the catalyst and complete oxidation of H_2S to SO_2 are responsible for the loss of sulfur yield in co-feed oxidation processes. These strongly depend upon the nature of the catalysts.

Different vanadium-based catalysts have already been studied in the past. Mainly, the bulk V₂O₅ phase has been reported to have a better performance than other bulk oxides like magnesium oxide, bismuth oxide, and molybdenum oxide, iron oxide.^[1-5] Supported,^[1,6-8] and unsupported^[9] vanadium oxides have been considered as catalysts for the selective oxidation of H₂S. Vanadium oxides supported on silica,^[10,11] alumina,^[8,12,13]

 [a] Dr T. Kane, Dr J. Guerrero, Dr A. Löfberg UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide Univ. Lille, CNRS, Centrale Lille, Univ. Artois F-59000 Lille (France) E-mail: axel.lofberg@univ-lille.fr titania,^[5,11] zeolite,^[14] and Ti pillared mormorillonite have been recently reported.^[15] Vanadium based catalysts are thus active and selective for the oxidation of H₂S to sulfur at relatively low temperatures. Acidic properties of the support and their effect on the interactions with the active phase were studied. ^[7,16,17] Supported vanadium oxide catalysts are significant in industrial processes. In many cases, they are doped with promoters to improve their activity and/or selectivity, and supports are used to improve mechanical strength, thermal stability, and lifetime.^[18] Various studies^[5, 8, 19, 20] showed that the dispersion of vanadium on different supports plays a vital role in the selective oxidation reaction of H₂S. It has been reported that the TiO₂-supported vanadium catalyst displayed much better redox characteristics compared to those supported on SiO₂, resulting in better stable catalytic activity.

The chemical looping approach is well known for different oxidation reactions. This process involves an oxygen carrier, which is reduced in the presence of the reductant and produces the desired product. The reduced solid is subsequently exposed to an oxidant, which allows the carrier to be re-oxidized and regenerated. It should be underlined that the oxygen carrier material is an actual reactant and not catalysts.^[21, 22] With respect to classical co-feed fixed systems, original reactor designs are necessary. Circulating fluidized bed systems or fixed bed switching reactors have mostly been used in the case of solid oxygen carriers and gas-phase reactants chemical looping.^[23] For experimental studies in the laboratory scale, a fixed bed reactor fed alternatively with the gas reactants is usually the most appropriate.

Chemical looping processes have been studied for various application reactions of industrial interest, such as reforming ^[24,25] or combustion. ^[26, 27] We have recently extended the concept to selective oxidation of H₂S to elemental.^[22] It consists of separating equation (1) in two steps:

$$H_2S + OC_{ox} \rightarrow S + H_2O + OC_{red}$$
(2)
$$OC_{red} + \frac{1}{2}O_2 \rightarrow OC_{ox}$$
(3)

where "OC" represents the oxygen carrier.

With respect to direct, co-feed, oxidation reaction (1), chemical looping approach offers significant advantages:

- selectivity can be improved by avoiding direct reactions between H₂S and oxygen from the gas phase offering better selectivity by favoring the reactivity of lattice oxygen species;
- sulfur deposited on the surface of the carrier can be removed during regeneration step thus limiting the deactivation;
- safety of the process is improved due to the absence of H₂S: O₂ mixing.

We have shown that V_2O_5 can act as an efficient oxygen carrier due to its oxygen mobility and storage capacity. However, due to

the low temperature at which the reaction is carried out (typically between 150 and 200 °C), it was shown that a limited amount of oxygen species from the carrier were involved in the redox process due to the large size of particles. For instance, a few monolayers were concerned and not bulk species.^[20]

The use of supported V₂O₅ is therefore expected to provide better usage of oxygen species from the carrier. In this work, we propose a survey of several potential support materials (TiO₂, SiO₂, Al₂O₃, ZrO₂, CeO₂). This is performed by studying the reactivity of several supported V₂O₅ to that of bulk oxide in given reaction conditions (T = 150 and 200 °C, 2000 ppm of H₂S, H₂S: O₂ ratio at 1:5).

A detailed description of experimental procedures for carrier synthesis, sample characterizations, and chemical looping reaction is provided in the Experimental Section.

Results and Discussion

The active phase (V_2O_5) was impregnated on synthesized or commercial supports. Impregnated solids were then characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N_2 adsorption/desorption measurements (BET), Temperature programmed reduction (TPR), and by Raman analysis.

Characterization of bulk and supported oxygen carriers

Textural and structural characterization

Table 1 summarizes the properties of the different supports. SiO_2 and TiO_2 present the lowest surface areas and, coherently, the largest pore size. The silica surface area is rather low for such support, but the preparation method was not optimized to obtain high specific surface area materials. Commercial alumina shows the highest surface area.

As expected for such high active phase loading, i.e., 25 wt%, surface area and pore volume of the solids decrease after impregnation of V_2O_5 on all supports. Whereas in the case of pore size, it increases after loading, but the trend is almost similar as in for the respective supports. Figure 1 shows the XRD diffractograms of samples and reveals the presence of V_2O_5 species on all support irrespective of their surface area and nature. This is because of the high loading of the V_2O_5 present in the systems. It is observed that the Al₂O₃, CeO₂, and ZrO₂ based solids present almost the same average crystallite size of V_2O_5 (around 50-60 nm) irrespective of the crystallite size or surface area of the Support (Table 2). For SiO₂ based carrier, the crystallite size of the V_2O_5 is 87 nm.

Before reaction, V₂O₅ over TiO₂ exhibits a sharp peak at $2\Theta = 25.28^{\circ}$, which represents the (1 0 1) plane of the tetrahedral structure of TiO₂, with reference to the JCPDF file (PDF 00-021-1272). Vanadium present on the support is in the orthorhombic structure of V₂O₅ (PDF 00-041-1426) with the peak present at 20.7° corresponding to the plane (0 0 1). A low intense peak at 21.5° corresponding to the (2 0 0) plane and at 27.7 attributed to the V₄O₉ with (PDF 23-0720) also shown by M.D. Soriano et al.,^[28]

J.A. Cecilia et al.^[29] and by J.P. Holgado et al^[30] and R. Nilsson et al.^[31] or also coincide with the 2Θ =27.7° can be observed and could be attributed to VO₂ (0 1 0) plane according to JCPDF file PDF 04-003-2035.^[22]

After reaction, V_2O_5 over TiO₂ exhibits similar peaks as before reaction; however, the peak at 28.1° appears which is attributed to the (1 0 3) plane of V₄O₉.

Before reaction, V_2O_5 over SiO_2 exhibits the intense peaks of only V_2O_5 due to the amorphous nature of support SiO_2 .

After the reaction, SiO₂ supported carrier shows a significant lowering of the intensity of peak of V₂O₅ and the appearance of the intense peaks at 27.7° attributed to the (2 0 2) plane and 56.02° attributed to the V₄O₉ with PDF 23-0720. Other less intense peaks at 2 Θ = 13.7, 21.3, 21.7, 28.1 also suggest the presence of V₄O₉, as shown by J.P. Holgado et al. ^[30] and R. Nilsson et al. ^[31]

For the V₂O₅-Al₂O₃ sample before reaction, peaks at 37.6° and 67.5° illustrate the presence of the cubic form of the Al₂O₃ with coincides with the PDF 46-1215. Apart from that, the XRD pattern shows the peaks for orthorombic V₂O₅ with an intense peak at $2\Theta^{\circ} = 20.26$. The intense peak represents the typical plane of (1 0 1) PDF 00-041-1426.However, the intense peak of the V₂O₅ disappears after the reaction, whereas intense peaks of V₄O₉ are present PDF 23-0720.

In the case of ZrO₂ supported carrier, the peaks present at 34.5° and 35.2° are representative of the (0 0 2) and (1 1 0) planes of ZrO₂ with reference to PDF 79-1769. Presence of V₂O₅ characteristic peaks with reference to the PDF 00-041-1426 are observed before and after the reaction, while reduced form of vanadium oxide cannot be observed even after the chemical looping reaction.

Ceria-based solid XRD shows sharp peaks at 18.12° and 24.03° corresponding to (1 0 1) to (2 0 0) planes, respectively, of the tetragonal structure of CeVO₄ PDF 00-012-0757. This is an evidence for the formation of the mixed oxide of Ce and V. Along with it, strong intense peaks of the CeO₂ are also present at 28.55° and 33.08° representing the (1 1 1) and (2 0 0) planes of cubic structure, respectively. V₂O₅ is also present on the support in the form of the orthorhombic structure with diffraction peaks at 20.3° and 26.3°.

After the reaction, zirconia based solid shows the presence of the identical peaks, indicating that no considerable evolution of the solid occurs during the reaction.

Figure 1. XRD study for bulk or supported (25 wt% V₂O₅) oxygen carriers before and after the reaction, (\dots) VO₂, (-) V₄O₉, (--) V₂O₅, (\diamond) CeVO₄, (*) Support,

Table 1. XRD Study for different oxygen carriers

Oxygen Carrier	Surface area	Pore volume	Pore size	average crystallite size (nm)	
	(m²/g)	(cm³/g)	(nm)	Support	V_2O_5
TiO ₂	11.3	0.07	26.6	-	-
SiO ₂	7.0	0.014	14.4	-	-
AI_2O_3	153.9	0.508	9.3	-	-
ZrO ₂	22.3	0.012	3.0	-	-
CeO ₂	61.6	0.099	5.5	-	-
V ₂ O ₅ /TiO ₂	7.2	0.058	61.5	88	51
V ₂ O ₅ /SiO ₂	1.6	0.025	46.0	-	87
V_2O_5/AI_2O_3	118.8	0.365	9.0	10	59
V_2O_5/ZrO_2	21	0.025	5.2	32	57
V ₂ O ₅ /CeO ₂	23.0	0.062	7.6	12	51

 (\downarrow) SiC; "AR" indicates samples after reaction (in red).

Temperature programmed reduction

TPR of bulk and supported V₂O₅ show the presence of several peaks at different temperatures that suggest the stepwise reduction of the V₂O₅ species which is present initially^[18] but at a lower temperature with respect to bulk V₂O₅. Bond et al. ^[32] stated that at high loading of the vanadium on TiO₂ generates paracrystalline V₂O₅ species, which show reduction at a lower temperature.

On the other hand, A. Klisińska et al. explained ^[33] that multiple reduction peaks located at 461, 661, 698 and 860 °C could be attributed to successive steps of the reduction to V₂O₃ via V₆O₁₃ and V₂O₄, or/and to the heterogeneity of V–O which are reduced. The TiO₂ based solid exhibits four different peaks at 478 °C, 588 °C, 654 °C, and 750 °C which can represent the successive steps of the reduction of the V⁵⁺ to V⁴⁺. However, peaks at 480° C can be due to the reduction of the V⁵⁺ or the slightly impure TiO₂, as suggested by Bond et al. ^[32]

Ceria based solid exhibits a peak at 573 °C, which can correspond to the reduction of polyvanadate or crystalline V₂O₅ whereas peaks at high temperatures at 719 °C and 828 °C corresponds to the reduction of the ceria species as shown by X.Gu et al.^[34] Lian et al.^[35] also attributes the reduction at the high temperature to bulk ceria, whereas Yasyerli et al.^[36] proposed that the broad peak obtained at high temperature corresponds to the removal of oxygen from CeVO₄, resulting in the reduction of V⁵⁺.

Zirconia based solid shows a peak at 448 °C, illustrating the reduction of the V₂O₅ species. However, the peak at high temperature represents the reduction at ZrO₂.^[37]

For the alumina-based solid, in the TPR profile shows a peak present at the 570 °C attributed to the reduction of V⁵⁺ to V⁴⁺ (V₂O₄). The reduction peak for Al₂O₃ is absent in the spectrum. ^[38,39] Al-Ghamdi et al. ^[37,39] assigned the peak at 570 °C to the reduction of bulk V₂O₅-like surface species.

Finally, the TPR profile of SiO_2 based solid shows the presence of only one broad peak centered at 651 °C.

The reduction temperature of vanadium species supported on all supports is lower than that of bulk V_2O_5 , which indicates that even if high loadings are considered, the interaction between active

phase and support are critical factors in the reducibility of vanadium species.

Table 2. H₂ Consumption for supported oxygen carriers

Oxygen Carrier (25 wt % V ₂ O ₅)	H ₂ consumption		
Support	(mmol/g)		
TiO ₂	1.26		
SiO ₂	2.81		
Al ₂ O ₃	2.36		
ZrO ₂	1.14		
CeO ₂	3.50		
TiO ₂ SiO ₂ Al ₂ O ₃ ZrO ₂ CeO ₂	1.26 2.81 2.36 1.14 3.50		

Figure 2. TPR study for bulk of supported (25 wt% V2O5) oxygen carriers.

XPS analysis

The V 2p_{3/2} and the O 1s XPS spectra were analyzed to determine the oxidation state of the vanadium impregnated on different supports. After deconvolution of the peaks for the different solids, it is evident that only V⁵⁺ and V⁴⁺ species are present in the systems. For example, in the case of SiO₂ based solid, two peaks are observed at a binding energy of 517.4 eV, which represents the V⁵⁺ species, and at 516.0 eV, illustrating the presence of V⁴⁺ species (Figure 3). TiO₂ based solid presents the highest amount of V⁴⁺ compared to other solids, followed by SiO₂, ZrO₂, CeO₂, and finally, Al₂O₃.

V/Support ratio for TiO₂, SiO₂, Al₂O₃ are almost the same. It is slightly higher for ZrO_2 , but the maximum ratio is observed in the case of the ceria based solid (around 2.65) (Table 3), which

correlates well with the presence of the big particle size of the vanadium phase on the surface of this support.

Regarding oxygen, three species are observed. However, the explanation is not as simple as the total oxygen content is not straightforward. Generally, peak at 530.6 eV is attributed to O in vanadium oxide.^[40] In the case of the SiO₂ supported carrier, different oxygen species are present. From the deconvolution of the spectra, two components representing different chemical states are recognized. The peak at 532.6 eV illustrates the presence of the oxygen connected to the Si in SiO₂. ^[40,41] So, detected oxygen is mostly involved in the SiO₂ than V₂O₅. In the case of TiO₂ based carrier, peak at 531.3 eV exhibits the presence of the O in TiO₂ or indicates the presence of Ti₂O₃ ^[43,44] while 533 eV is due to adsorbed molecular water.^[5] In case of alumina-based catalyst, 531.4 eV peak is attributed to the oxygen from Al₂O₃.

Figure 3. XPS study of the V $2p_{3/2}$ and the O 1s of bulk of supported (25 wt% $V_2O_5)$ oxygen carriers.

Table 3. XPS study of the V 2p3/2 and the O 1s XPS on supported (25 wt% V2O5) carriers

Support	B.E. (eV) O 1s		V ⁴⁺ / (V ⁴⁺ +V ⁵⁺)	V ⁵⁺ / (V ⁴⁺ +V ⁵⁺)	V/support	V/O	
	O 1s	O 1s	0 1s	_ 、 ,	()		
TiO ₂	529.3	531.3	533	0.23	0.7	0.21	0.09
SiO ₂	530	-	533.1	0.10	0.9	0.18	0.44
Al ₂ O ₃	-	531.4	-	*	1	0.19	0.1
ZrO ₂	530.1	531.3	533	0.07	0.9	0.35	0.18
CeO ₂	530.3	531.4	-	0.06	0.9	2.65	0.36

Raman

The narrow peak at 996 cm⁻¹, due to the symmetric stretching vibrations of V-O groups, is characteristic of crystalline V_2O_5 (dashed lines, Figure 4). Additional bands observed near 705 cm⁻¹ arise from the stretching vibrations of V–O in the square octahedron of V_2O_5 . The peaks at 284, 304, 483, 702, and 997 cm⁻¹ observed on all supports are thus attributable to different crystalline V_2O_5 species.

For the ZrO₂ solid, peak present at 996 cm⁻¹ can also coincide with the formation of the ZrV₂O₇.^[37] Nevertheless, the presence of the surface V₂O₅ can reasonably be supposed. The peak present at 469 cm⁻¹ on CeO₂ supported carrier can be attributed to the presence of the CeVO₄, which is also confirmed by a low-intensity peak at 866 cm⁻¹.^[45,46]

Figure 4. Raman study for bulk or supported (25 wt% V₂O₅) oxygen carriers before and after the reaction, (...) VO₂, (-) V₄O₉, (--) V₂O₅, (-) CeVO₄ "AR" indicates samples after reaction (in red).

For TiO₂ based carrier, the bands at 195, 400, 530, and 640 cm⁻¹ are due to anatase. These coincide with the 133, 393, and 530 cm⁻¹ peaks of V_2O_5 and make it difficult to distinguish between the prominent species present for anatase and crystalline V_2O_5 .

Overall solid shows the presence of the formation of the dominant crystalline V_2O_5 in all cases due to the presence of the high loading of the active phase over the surface of all the supports.

After the reaction, for SiO₂ based carrier, new peaks appear at 942 cm⁻¹ attributed to the stretching of vanadyl bonds V(b)=O(1b). The new peak at 950 cm⁻¹ is attributed to the stretching vibrations of V⁴⁺=O bonds. After reaction SiO₂ carrier shows the presence of the more V₄O₉ species (solid lines, Figure 4) than before reaction. A higher oxygen deficiency is associated with an increase in the number of V⁴⁺=O bonds as studied and explains by P. Shvets et al. ^[47] The asymmetric stretching of V–O–V bridges occur at 753 cm⁻¹. A small intense peak present at 464 cm⁻¹ is assigned to V–O–V stretching modes from VO₂ species. After reaction, alumina supported carrier exhibits bands attributed to V₂O₅ species only. Reduced VO_x species (V₄O₉ or VO₂) are not observed contrary to the XRD. This would suggest that V₂O₅ species are most abundant but in the amorphous form together with some crystallized reduced VO_x.

Zirconia-based carrier shows a similar peak before and after the reaction, with the exception of a peak at 642 cm^{-1} attributed zirconia species.^[48]

Reactivity in chemical looping H₂S selective oxidation

Reactivity of supports

Before studying the properties of supported carriers, experiments were performed on supports without the active phase. Results on the last stable cycle on TiO_2 , SiO_2 , and CeO_2 , Al_2O_3 and ZrO_2 are summarized in Table 4 and Figure 5.

 CeO_2 shows almost total conversion with very high selectivity towards SO_2 in the reductant step. This demonstrates that ceria support itself plays the role of the oxygen carrier, although it is unselective.

Figure 5. Overall reactivity (%ages) of unloaded supports at 150 °C

Table 4	Popotivity	of cupporte	(150 °C)
rable 4.	Reactivity	01 \$11000115	(1:)() ()

	· · · · · · · · · · · · · · · · · · ·	
Unloaded support	H ₂ S Conversion (%)	SO ₂ Selectivity (%)
TiO ₂	7 (28 cy)	22 (28 cy)
SiO ₂	3 (9 cy)	13 (9 cy)
Al ₂ O ₃	74 (10 cy)	10 (28 cy)
ZrO ₂	14 (10 cy)	61 (10 cy)
CeO ₂	98 (28 cy)	52 (28 cy)

 Al_2O_3 shows a high conversion of H_2S with very low production of SO_2 in both steps. In this case, support plays a vital role in adsorbing the H_2S due to its high surface area but shows low reactivity suggesting that sulfur species could accumulate on the support.

 ZrO_2 shows the very low conversion of H_2S with high selectivity towards SO_2 . This demonstrates that the ZrO_2 can also act directly as an unselective oxygen carrier but to a lower extent than CeO_2 .

Reactivity of the TiO₂ and SiO₂ supports are almost the same as illustrated in Figure 5. Low conversion of H₂S and rather a low selectivity towards SO2 are observed. However, in the case of TiO₂, SO₂ is principally formed in the reductant step, which indicates that TiO₂ can act, to some extent, as an oxygen carrier. On the contrary, for SiO₂, SO₂ is most formed in the oxidant step suggesting the oxidation by dioxygen of adsorbed sulfur containing species. In terms of selectivity to S, values should be taken with caution. Indeed, the formation of the elemental sulfur is not observed directly but calculated by a mass balance between consumed H₂S and SO₂ produced (see Experimental Section). For instance, at such low conversion, adsorption and accumulation of S species on the support cannot be excluded, in particular for Al₂O₃. For SiO₂ support, the conversion of H₂S is low (around 5%), whereas, for TiO₂ support, H₂S conversion reaches 10% by the end of the cycling.

Reactivity of supported V₂O₅

Figure 6 summarizes the conversions and selectivity at 150 °C (expressed in percentage) of the different solids, while Table 5 provides quantitative results expressed in net amounts of reactant converted or products for a single cycle. In both cases, values correspond to last cycle performed. The detailed evolution of the reactivity with respect to the number of cycles for different supported and bulk V_2O_5 is shown in Figure 7.

Corresponding results obtained at 200 °C are presented in Figures 8 and 9 together with Table 6.

With the exception of temperature, all experiments have been done in similar conditions, i.e., with 2000 ppm of H_2S , 10000 ppm of O_2 and 1-minute exposure to each reactant. Carriers were mixed to SiC to reach similar bed volume for all samples. SiC was checked to exhibit no reactivity.

Reactivity at 150°C

H₂S conversion is very high for all solids, as they all exhibit initial conversions above 90% except for the Al₂O₃ supported carrier (80%). The conversion evolves with cycling differently according to the nature of the support. The activity of the Al₂O₃ supported carrier is stable, that on CeO₂ support increases. In other cases, the activity decreases progressively. This is particularly the case for ZrO₂, while TiO₂ and SiO₂ show very similar evolutions from 100% to approx. 92-93% H₂S conversion.

The singular behavior of ceria, for which conversion of H_2S increases with cycles, could be due to the presence of CeVO₄ species in the solid, which may participate in the reaction and contribute to the over-oxidation to SO₂ as seen in Figure 7(B). Indeed, this solid exhibit the worst (highest) selectivity to SO₂ formation during the reductant step (SO₂R = 10%). At the same

time, this solid also shows the highest amount of SO₂ formed during the oxidant step as can be seen in Figure 7(C), and thus the worst overall selectivity to S formation (Figure 7(D)).

 SO_2 production is observed in the reductant step for Al_2O_3 , ZrO_2 and CeO_2 supported V_2O_5 as well as for bulk V_2O_5 . As mentioned, the amount is slightly higher for CeO_2 supported V_2O_5 , which suggests a contribution of the support as active carrier coherently with the reactivity observed on the bare support.

Interestingly very low amounts of SO_2R are formed using TiO_2 and SiO_2 supports. These solids show nearly full selectivity to elemental S if one considers only the reductant step.

The amount of lattice oxygen involved in TiO₂ supported V₂O₅ is slightly higher than that of bulk V₂O₅ but is coherent with the lower amount of active phase used (80 mg for bulk and 200mg containing 25 wt% for supported samples, i.e. 50 mg V₂O₅) and the higher activity of the supported sample. For other samples, this amount decreases logically with decreasing conversion and/or increasing amount of SO₂ formed during oxidant step.

Figure 6. Overall reactivity (%ages) of bulk or supported V2O5 at 150 °C.

Figure 7. Evolution of the reactivity of bulk or supported V₂O₅ at 150°C. A: H₂S conversion, B: SO₂ selectivity in reductant step, C: SO₂ selectivity in oxidant step, D: overall SO₂ selectivity.

Bulk or supported V ₂ O ₅						
150 °C	V_2O_5	TiO ₂	SiO ₂	Al ₂ O ₃	ZrO ₂	CeO ₂
H ₂ S feed (µmol)	8.6	8.6	8.6	8.6	8.6	8.6
% Conv H ₂ S	82	99	92	76	74	90
n converted (µmol)	7.05	8.74	7.94	6.94	6.36	7.92
S (µmol)	5.95	8.08	6.91	5.33	5.29	4.62
SO ₂ R (µmol)	0.37	0.01	0.06	0.26	0.25	0.46
SO ₂ O (µmol)	0.73	0.66	0.99	0.95	0.83	2.85
(S/S+SO ₂ R) (%)	94	99	99	95	96	91
%O _{latt} (V ⁵⁺ to V ⁴⁺)	1.60	2.8	2.45	2.14	2.11	2.06

Table 5. Overall reactivity chemical looping (expressed in absolute amounts) at 150 °C.

Reactivity at 200°C

Figures 8 and 9 provide the reactivity results observed at 200 °C. Apart from Al₂O₃ supported V₂O₅, H₂S conversion increases for all carriers with respect to reaction performed at 150 °C. Generally, the selectivity to elemental S decreases significantly. SO₂ formed during reductant step increases for all samples, but particularly for TiO₂ and SiO₂ supported V₂O₅. At this temperature, bulk V₂O₅ shows the best overall selectivity but suffers from significant deactivation contrary to supported samples.

As more lattice oxygen is required to form SO₂ than elemental S in the reductant step, the percentage of O_{latt} logically increases in line with the lower selectivity (Table 6). This time, the amount of $\%O_{latt}$ involved increases more for the supported sample than for bulk V₂O₅, even considering the lower amount of active phase used. The supports seem to induce higher oxygen mobility or reactivity compared to bulk V₂O₅.

Figure 8. Overall reactivity (%ages) of bulk or supported V2O5 at 200 °C.

General discussion

Results show that the choice of support is crucial for the development of V2O5 oxygen carriers for chemical looping selective oxidation of H₂S. It will influence the reactivity of the active phase but can also play a role in the adsorption and activation of H₂S. Indeed, H₂S can form H-bond with surface OH groups of all the adsorbents. This adsorption phenomenon was studied and explained in detail by Travert et al. [49] for different supports like SiO₂, Al₂O₃, TiO₂, and ZrO₂. This is the only way of adsorption of the H₂S on SiO₂, while other supports may lead to coordination as well as dissociative adsorption, which further leads to the formation of OH groups and molecular water. Specifically, on Titania, coordination to surface cations is predominant. These adsorbed H₂S species can then either remain on the surface and be oxidized during the oxidant step of chemical looping, in this case producing SO₂ primarily or be oxidized by the support if it has some redox capacity. This is clearly seen in the case of TiO₂, ZrO₂ and, mostly, CeO₂.

Otherwise, the support mostly modifies the reactivity of V₂O₅. This is seen in TPR experiments for which, in case of all the supports, the reduction temperature is significantly lowered by the presence of support even if the crystallite size of V₂O₅ is in the same range as that of bulk V₂O₅.

It was observed that the Al₂O₃ supported V₂O₅ shows the lowest initial reactivity (at 150 °C) and, with the exception of CeO₂ supported carrier, the highest selectivity towards SO₂ in reductant step compared to other supports (Figure 7b). This solid also exhibits the highest V⁵⁺/ (V⁴⁺ + V⁵⁺) initial ratio, as practically no V⁴⁺ species were detected on the calcined solid by XPS. After the reaction, Al₂O₃ supported carrier shows, by XRD, the disappearance of V₂O₅ crystallites and the appearance of V₄O₉ ones which indicates a strong reduction of the carrier during the chemical looping process. In contrast, Raman study on this support suggests that most vanadium species remain in V⁵⁺ oxidation state. A possible explanation could be that most vanadium species are well dispersed at the surface of the support and in strong interaction with Al₂O₃ thus remaining at high

oxidation state and exhibiting low reactivity. This is corroborated by the fact that the lowest amount of lattice oxygen (O_{latt}) is actually involved on this sample, in particular at 200 °C (Table 6). Simultaneously, small crystallites presenting mostly reduced vanadium species are formed which could be responsible for the high reactivity but rather low selectivity towards partial oxidation of this carrier.

Interestingly, other supports show the presence of V⁴⁺ species after calcination and high initial activity. In this respect, TiO₂ supported V₂O₅ carrier has the highest proportion of V⁴⁺ species and best initial activity. This carrier also exhibits among the best stability and selectivity in the reductant step. This suggests that the ability to maintain a good balance between V⁵⁺ and V⁴⁺ species between during the reaction is a crucial characteristic in order to achieve high performances in chemical looping. This is also observed in the case of SiO₂ supported V₂O₅ although the decrease of V₂O₅ phase and increase of V₄O₉ phase are more intense which lowers the V⁵⁺/(V⁴⁺ + V⁵⁺) ratio during reaction.

As mentioned, the CeO₂ supported V₂O₅ behaves singularly compared to other supports. Contrary to others, the activity increases with time, but also selectivity worsens. This can evidently be attributed to the reactivity of CeO₂ but also CeVO₄ species.

These results are in line with those of Yasyerli et al. $^{[50]}$ and with M.Y Shin et al, $^{[10]}$ who showed that fully oxidized vanadium species lead to over oxidation to SO₂ whereas partially reduced V²⁺ and V⁴⁺ species lead to selective oxidation to elemental sulfur in classical (co-feed) catalytic reaction. Furthermore, Holgado et al. $^{[30]}$ have also proposed that V₄O₉ phase characterized by V⁴⁺- O-V⁵⁺ bonds is the most active, selective and stable for this reaction. Chemical looping reactivity agrees with these observations thus highlighting the importance of partially reduced vanadium species for this reaction.

Figure 9. Evolution of the reactivity of bulk or supported V₂O₅ at 200°C. A: H₂S conversion, B: SO₂ selectivity in reductant step, C: SO₂ selectivity in oxidant step, D: overall SO₂ selectivity.

Bulk or supported V ₂ O ₅						
200 °C	V ₂ O ₅	TiO ₂	SiO ₂	Al ₂ O ₃	ZrO ₂	CeO ₂
H ₂ S feed (µmol)	8.6	8.6	8.6	8.6	8.6	8.6
% Conv H ₂ S	85	98.4	99	76	99	98
n converted (µmol)	7.31	8.71	8.51	6.54	8.51	8.62
S (µmol)	4.69	5.01	4.99	2.30	3.25	4.12
SO ₂ R (µmol)	1.09	1.75	2.41	1.47	1.74	2.72
SO ₂ O (µmol)	1.53	1.95	1.11	2.76	3.52	1.78
(S/S+SO ₂ R) (%)	81	74	67	61	65	60
%O latt (V ⁵⁺ to V ⁴⁺)	1.81	3.60	4.23	2.36	2.99	4.23

Table 6. Overall reactivity chemical looping (expressed in absolute amounts) at 200 °C.

Conclusions

Selective oxidation of H₂S in chemical looping mode offers interesting perspectives for improving the efficiency of existing H₂S treatment processes. In previous work, V₂O₅ had already been identified as a potential oxygen carrier for such a process. Here we have shown that supporting such an active phase can induce positive or detrimental effects according to the nature of the support and its interactions with the active phase. For instance, it appears clearly that TiO₂ and SiO₂ are the most interesting supports for V₂O₅ for chemical looping selective oxidation of H₂S. In both cases, the reactivity is increased as compared to bulk V₂O₅. In the case of TiO₂ support similar selectivity could also be reached while the amount of lattice O species involved increased meaning a better utilization of the oxygen capacity of the carrier. On other supports formation of some SO₂ during the reductant step could not be avoided.

A correlation between the presence of V⁴⁺ and V⁵⁺ species in the calcined samples and their reactivity in chemical looping H₂S oxidation was found. Highly oxidized vanadium containing samples are less reactive and less selective to elemental sulfur while partially reduced species are more reactive but still maintain enough redox capacity to oxidize selectively H₂S to elemental S. The best performances have been obtained on carriers in which both V₂O₅ and V₄O₉ coexist after reaction suggesting that selective oxidation occurs through the looping between V⁵⁺ and V⁴⁺ within these phases. The V₂O₅-support interactions appear to be determining to reach optimal balances between these phases as observed for TiO₂ and SiO₂ supports.

From these results, perspectives for the further development of selective vanadium-based oxygen carriers can be designed with an attention for TiO_2 and SiO_2 supported systems.

Experimental Section

Synthesis of the carriers

The active phase was impregnated on synthesized or commercial supports. Different supports were considered for the synthesis of catalysts like TiO₂, CeO₂, ZrO₂, Al₂O₃, and SiO₂. ^[7,17,38,51,52] Among these, TiO₂ and Al₂O₃ are commercial supports from Sigma Aldrich. Other supports were synthesized in the laboratory with precipitation method using different hydrolysis additives.

Commercial support from Sigma-Aldrich shows traces of K which can have a strong effect on the Vanadium dispersion and its activity. Before using the support for the solid preparation, it was washed in water to remove this impurity. Support was mixed with water and stirred for 3 hours vigorously. The slurry was then centrifuged and dried at 100 °C overnight.

Ceria support was prepared in the laboratory by precipitation method using TEA (Tetraethyl ammonia). The ratio for Ce (NO₃): TEA was 1:4 whereas that for methanol: TEA was maintained at 1:4. Solution (A) is Ceria nitrate and water whereas solution (B) is TEA with methanol. Initially, both solutions were stirred separately to form clear solutions. Solution A was then added to solution B dropwise with continuous stirring. The brown colored precipitate was observed in the beaker. This solution (slurry) was then stirred continuously for 24 hours. to form a uniform slurry. After 24 hours. Stirring, water was evaporated by continuous stirring at 80 °C. The sample was then dried at 80 °C overnight and then calcined at 500 °C for 5 hours in the presence of air.

Zirconia support was prepared by precipitation method using an ammonia solution (25%). The required amount of Zr (NO₃) was dissolved in water and stirred for 15 mins to form a clear homogenous solution. 25% concentrated ammonia was then added slowly and dropwise into this clear solution. The dark brown precipitate was then observed. This solution

(slurry) was then stirred continuously for 24 hrs. to form a uniform slurry, which was then filtered and washed with water several times. The sample was then dried at 80 °C overnight and then calcined at 500 °C for 10 hours in the presence of air.

SiO₂ support was prepared in the laboratory by precipitation method using ammonia solution. The required amount of TEOS was dissolved in ethanol-water mixture and stirred for 30 mins to form a clear homogenous solution. 25% concentrated ammonia was then added slowly and dropwise into this clear solution. The White colored precipitate was then observed. This solution (slurry) was then stirred continuously for 2 hours to form a uniform slurry. The obtained slurry was then filtered and washed with water several times till to have a neutral pH of the filtrate. The final sample was then dried at 80 $^\circ$ C overnight and then calcined at 500 $^\circ$ C for 10 hours in presence of air.

An active phase was deposited by the impregnation method. Ammonium metavanadate was used as a precursor for the synthesis process. The desired amount of precursor was mixed in 20 mL of distilled H₂O. Then 1g of support was mixed with water and stirred. The precursor solution was then added to the solution which was stirred for 2 hrs. Continuously for aging and to make a uniform slurry. Afterward, water was evaporated, and the remaining slurry dried at 80 °C. Finally, the sample was calcined for 10 hrs. in the air at 500 °C using a ramping rate of 2°C/ min. In all cases, 25 Wt. % of V₂O₅ was used for different supports.

Characterization techniques

Oxygen carriers were analyzed before and after a chemical looping reaction to evaluate the structural or chemical changes.

For this purpose, a set of samples were submitted to 20 cycles of chemical looping in the following conditions: 2000 ppm of H₂S in reductant step, 10000 ppm of O₂ in oxidant step, T= 200 °C. After the 20th cycle, the reaction was stopped (after the O₂ step) and the reactor was closed and cooled to room temperature. Samples collected after reaction are marked "AR".

The XRD patterns of the different catalysts were obtained by using a D8 Advanced Bruker AXS diffractometer. The wavelength of CuKa1 X-ray radiation used was 1.5418 Å. The configuration for Bragg-Brentano diffractometer was theta-2 theta. The samples were immobilized over the ceramic glass (Macor) holders. The angle (20) of XRD was varied between 10 and 80° with a step size of 0.02° and an integration time of 3 s.

 N_2 physisorption at 77 K data were collected on a multipoint and monopoint equipment to obtain the surface area of the different catalysts before and after the test.

XPS analysis was performed using a Kratos Analytical AXIS UltraDLD spectrometer. A monochromatized aluminum source (AlK α =1486.6 eV) was used for excitation. The X-ray beam diameter is around 1 mm. The analyzer was operated in constant pass energy of 40 eV using an analysis area of approximately 700×300 µm. Charge compensation was applied to compensate for the charging effect occurring during the analysis. The C 1s (2848 eV) binding energy (BE) was used as an internal reference. The spectrometer BE scale was initially calibrated against the Ag 3d5/2 (368.2 eV) level. The pressure was in the 10⁻¹⁰ Torr range during the experiments. Simulation of the experimental photopeak was carried out using Casa XPS software. Quantification considered a nonlinear Shirley background subtraction.

Raman spectra were recorded at room temperature with the 647.1 nm excitation line from a Spectra Physics krypton ion laser with 3 mW laser power at the sample. The beam was focused on the compounds using the macroscopic configuration. The scattered light was analyzed with an XY 800 Raman Dilor spectrometer equipped with an optical multichannel detector (liquid nitrogen-cooled charge coupled device). The spectral resolution was approximately 0.5 cm⁻¹ in the investigated 200-1000 cm⁻¹ range.

Chemical looping reactivity experiments

Chemical looping reaction was performed by exposing the solid alternatively to diluted H₂S (2000 ppm) and O₂ (10000 ppm) maintaining a H₂S:O₂ ratio of 1:5. Helium gas is mixed in the reactant as a diluent, and its overall concentration varies according to the change in the concentration of the reactant. Reactivity tests were done at 150 and 250 °C using either 200 mg of the supported carrier or 80 mg of bulk V2O5, diluted in inert material like SiC (800 and 900 mg SiC for supported or bulk V2O5, respectively).

In practice, between experiments, temperature treatments of the solids were performed by exposing the solid to diluted O2 (1%) and heating the sample to 400 °C to remove adsorbed sulfur species and fully re-oxidize the carrier. In reaction conditions, premixed gas cylinders containing 1 mol% H_2S in He and 10 mol% O_2 in He were used as well as pure Ar. Helium gas serves as a diluent as well as a tracer for conversion calculations as its overall concentration varies according to the change in the concentration of the reactants during cycling operations. Thus, a significant gas stream of H_2S/He (5 mL.min⁻¹) was passed through the reactor together with 85 mL.min⁻¹ of Ar during the so-called "reductant step" and O₂/He (10 mL.min⁻¹) together with 85 mL.min⁻¹ of Ar during so-called "oxidant step". Between these steps, a total of 100 mL.min⁻¹ Ar was passed through the reactor in order to maintain the reactor under a constant flow (FT = 100 ml.min⁻¹). All flow rates were set using mass flow controllers (5980 Brooks).

A glass tube maintained at room temperature was placed at the outlet of the reactor in order to condensate the elemental sulfur produced and to avoid plugging of the mass spectrometer inlet.

Every single cycle involves the exposure of the sample to reductant (H₂S) and oxidant (O₂) for 1 min each with an interval of 2 min in Ar. Cycles were repeated 20 or 30 times. The reactor was closed during first and the last cycle of the reaction to get the reference bypass value for background definition and sensitivity determination for Ar, He, H₂S and O₂ of the online quadrupole mass analyzer (Omnistar 200, Pfeiffer Vacuum). SO2 sensitivity was determined and checked regularly using a calibrated gas mixture.

In reductant step, H₂S conversion X_{H2S} (%) is obtained by integrating the outlet H₂S flow and comparing this to the theoretical H₂S inlet calculated from the He tracer.

$$XH_2S = \frac{(H_2S \text{ (inlet } (\mu \text{mol})) - H_2S \text{ (outlet } (\mu \text{mol})))}{H_2S \text{ (inlet } (\mu \text{mol}))} X 100$$

In oxidant step, O₂ conversion Xo₂ (%) is obtained by integrating the outlet O2 flow and comparing this to the theoretical O2 inlet calculated from the He tracer.

$$XO_2 = \frac{(O_2 \text{ (inlet } (\mu \text{mol})) - O_2 \text{ (outlet } (\mu \text{mol})))}{O_2 \text{ (inlet } (\mu \text{mol}))} X 100$$

SO2 can be produced in both reductant and oxidant steps. Sso2R (%) represents SO₂ selectivity in reductant step (amount of SO₂ formed in presence of H₂S and following inert gas divided by amount of converted H₂S) and is indicative of direct unselective oxidation of H₂S by the oxygen carrier.

SO_{2(R)} (µmol) Sso2R (%) = X 100 (H₂S (inlet (µmol)) - H₂S (outlet (µmol)))

Sso2 O (%) represents SO2 selectivity in the oxidant phase (amount of SO2 formed in presence of O2 and following inert gas divided by amount of converted H₂S and represents the oxidation of sulfur species which remain adsorbed at the surface of the carrier after the reductant step.

$$S_{S02}O(\%) = \frac{SO_{2(O)} (\mu mol)}{(H_2S (inlet (\mu mol))) - H_2S (outlet (\mu mol)))} X 100$$

As S formation cannot be monitored directly from the mass spectrometer, the selectivity towards S can only be calculated indirectly considering the total SO₂ formed on the overall cycle and considering that no S accumulates on the carrier along cycling. Thus, S_{SO2}T (%) represents the total SO₂ selectivity:

$$S_{SO2}T = S_{SO2}R + S_{SO2}O$$

And selectivity to S is obtained as follows:

$$S_{S} = 100 - S_{SO2}T$$

The amount of lattice oxygen (Olatt) involved in the reductant step can be calculated considering the amount of S and SO₂ produced during the reductant step and taking into account the theoretical amount of corresponding H₂O which should be produced which is an actual oxygen involved during the reduction of V^{5+} to V^{4+} .

Acknowledgements

The Fonds Européen de Développement Régional (FEDER), CNRS, Région Hauts-de-France, Ministère de l'Education Nationale de l'Enseignement Supérieur et de la Recherche and Institut Chevreul are acknowledged for funding of XPS spectrometers and XRD instruments. TK and JGC are grateful to Univ. Lille and Région Hauts-de-France for providing financial support.

Keywords: H₂S selective oxidation • V₂O₅ • supported carriers• chemical looping • TiO₂

- [1] X. Zhang, Y. Tang, S. Qu, J. Da, Z. Hao, ACS Catal. 2015, 5, 1053–1067.
- K.T. Li, C.H. Huang, *Can. J. Chem. Eng.* **1999**, 77, 1141–1145. A. Corma, H. García, *Chem. Rev.* **2002**, *102*, 3837–3892. [2]
- [3]
- [4] A.A. Davydov, V.I. Marshneva, M.L. Shepotko, App. Cat. A: Gen. 2003, 244, 93-100.
- [5] B. Pongthawornsakun, S. Phatyenchuen, J. Panpranot, P. Praserthdam, J. Environ. Chem. Eng. 2018, 6, 1414–1423. M.D. Soriano, J.A. Cecilia, A. Natoli, J. Jiménez-Jiménez, J.M. López Nieto,
- [6] E. Rodríguez-Castellón, *Catal. Today* 254 **2015**, *254*, 36–42.
 X. Zhanga, G. Doua, Z. Wanga, L. Li, Y. Wanga, H. Wanga, Z. Haoa, *Catal.*
- Sci. Technol. 2013, 260, 104-111.
- K.-T. Li, T.-Y. Chien, Catal. Let. 1999, 57, 77-80.
- R.D. Solunke, G. Veser, Energy and Fuels 2009, 23, 4787–4796. [9]
- [10] M.Y. Shin, C.M. Nam, D.W. Park, J.S. Chung, *App. Catal. A: Gen.* **2001**, 211, 213–225.
- [11] M.Y. Shin, D.W. Park, J.S. Chung, Appl. Catal. B Environ. 2001, 30, 409-419.
- [12] P. Kalinkin, O. Kovalenko, O. Lapina, D. Khabibulin, N. Kundo, J. Mol. Catal. A Chem. 2002, 178, 173-180.
- [13] M.W. Song, M Kang, Kyung L K, React. Kinet. Catal. Lett. 2002, 52, 1–5.
- [14] J.D. Lee, N. Park, K.B. Han, S.O. Ryu, T.J. Lee, Stud. Surf. Sci. Catal. 2006, 159, 425-428. [15] K. V. Bineesh, D.R. Cho, S.Y. Kim, B.R. Jermy, D.W. Park, *Catal. Commun.*
- 2008. 9. 2040-2043.
- [16] J.S. Eow, Environ. Prog. 2002, 21, No.3, 143-162.
- [17] B.K. Vijayan, K.M. II, L.G. Hwa, S. Manickam, P.D. Won, Appl. Clay Sci. 2013, 74, 127-134.
- [18] G.C. Bond, S.F. Tahir, Appl. Catal. 1991, 71,1-31.
- [19] D.W. Park, B.K. Park, D.K. Park, H.C. Woo, Appl. Catal. A, Gen. 2002, 223, 215-224
- [20] M. León, J. Jiménez-Jiménez, A. Jiménez-López, E. Rodríguez-Castellón, D. Soriano, J.M.L. Nieto, Solid State Sci. 2010, 12, 996-1001.
- [21] T. Mattisson, Martin Keller, C. Linderholm, P. Moldenhauer, M. Ryden, H. Leion, A. Lyngfelt, Fuel Process. Technol. 2018, 172, 1-12
- [22] T. Kane, J. Guerrero-Caballero, A. Löfberg, Appl. Catal. B: Environ. 2020, 265,118566.

- [23] Z. Guo, B. Liu, Q. Zhang, W. Deng, Y. Wang, Y. Yang, Chem. Soc. Rev. 2014, 43, 3480-3524.
- [24] A. Löfberg, J. Guerrero-Caballero, T. Kane, A. Rubbens, L. Jalowiecki-Duhamel, Appl. Catal. B: Environ. 2017, 212, 159–174.
- [25] S. Bhavsar, M. Najera, G. Veser, Chem. Eng. Technol. 2012, 35, No 7, 1281-1290.
- [26] J. Ma, C. Wang, H. Zhao, X. Tian, Energy & Fuels 2018, 32, 4493-4501. [27] R.F. Pachler, K. Mayer, S. Penthor, M. Kollerits, H. Hofbauer, Int. J. Greenh.
- Gas Control. 2018, 71, 86-94. [28] M.D. Soriano, A. Vidal-Moya, E. Rodríguez-Castellón, F. V. Melo, M.T.
- Blasco, J.M.L. Nieto, Catal. Today 2016, 259, 237-244. [29] J. Cecilia, M. Soriano, A. Natoli, E. Rodríguez-Castellón, J. López Nieto,
- Materials 2018,11, 1562-1579.
- [30] J.P. Holgado, M.D. Soriano, J. Jiménez-Jiménez, P. Concepción, A. Jiménez-López, A. Caballero, E. Rodríguez-Castellón, J.M.L. Nieto, Catal. Today 2010, 155, 296-301.
- [31] R. Nilsson, T. Lindblad, A. Andersson, Chem. Lett. 1994, 29, 409-420.
- [32] G.C. Bond, J.P. Zurita, S. Flamerz, P.J. Gellings, H. Bosch, J.G. Van Ommen, B.J. Kip, *Appl. Catal.* **1986**, 22, 361–378.
- [33] A. Klisińska, S. Loridant, B. Grzybowska, J. Stoch, I. Gressel, App. Cat. A: Gen. 2006, 309, 17-27.
- [34] X. Gu, J. Ge, H. Zhang, A. Auroux, J. Shen, Thermochim. Acta 2006, 451, 84–93.
- [35] Z. Lian, F. Liu, H. He, Catal. Sci. Technol. 2015, 5, 389-396.
- [36] S. Yasyerli, G. Dogu, T. Dogu, *Catal. Today* 2006, *117*, 271–278.
 [37] F. Roozeboom, M.C. Mittelmeijer-Hazeleger, J.A. Moulijn, J. Medema,
- V.H.J. De Beer, P.J. Gellings, *J. Phys. Chem.* **1980**, *84*, 2783–2791. [38] E.P. Reddy, R.S. Varma, *J. Catal.* **2004**, *221*, 93–101.
- [39] S.A. Al-Ghamdi, H.I. De Lasa, Fuel. 2014, 128, 120-140.
- [40] L.G. Gerling, C. Voz, R. Alcubilla, J. Puigdollers, J. Mater. Res. 2017, 32, 260-268.
- [41] P.A. Zhdan, A.P. Shepelin, Z.G. Osipova, V.D. Sokolovskii, J. Catal. 1979, 58, 8-14
- [42] R.P. Netterfield, P.J. Martin, C.G. Pacey, W.G. Sainty, D.R. McKenzie, G. Auchterlonie, J. Appl. Phys. **1989**, 66, 1805–1809.
 [43] J. Mendialdua, R. Casanova, Y. Barbaux, J. Electron Spectros. Relat. Phenomena **1995**, 71, 249–261.
- [44] B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Sci. Rep. 2016, 6, 1-12.
- [45] M. V. Martínez-Huerta, J.M. Coronado, M. Fernández-García, A. Iglesias-
- [46] M. V. Mandel Andre, J.M. Scholman, M. Forhalder, Caroli, A. 19651a5
 Juez, D. G., J.L. Fierro, G, M.A. Bañares, J. Catal. 2004, 225, 240–248.
 [46] P. Intaphong, S. Jonjana, A. Phuruangrat, P. Pookmanee, S. Artkla, S. Thongtem, T. Thongtem, *Dig. J. Nanomater. Biostructures* 2015, 10, No 4, 1281-1287.
- [47] P. Shvets, O. Dikaya, K. Maksimova, A. Goikhman, J. Raman Spectrosc. 2019, 50, 1226-1244.
- [48] S. Benomar, A. Massó, B. Solsona, R. Issaadi, J.M. López Nieto, Catalysts 2018, 8, 126-144
- [49] A. Travert, O. V. Manoilova, A.A. Tsyganenko, F. Maugé, J.C. Lavalley, J. Phys. Chem. B. 2002, 106, 1350–1362.
- [50] S. Yasyerli, G. Dogu, I. Ar, T. Dogu, Chem. Eng. Sci. 2004, 59, 4001–4009. [51] R.J.A.M. Terorde, P.J. Van Den Brink, L.M. Visser, A.J. Van Dillen, J.W.
- Geus, Catal. Today 1993, 17, 217-224. [52] S. Sadasivan, A.K. Dubey, Y. Li, D.H. Rasmussen, J. Sol-Gel Sci. Technol. **1998**, *12*, 5–14.

Entry for the Table of Contents (Please choose one layout)

Chemical looping is an innovative approach that allows the selective oxidation of H_2S to elemental sulfur without contact between O_2 containing stream and molecular oxygen opening the path for improved and safer processes. The utilization of supported oxygen carriers provides new opportunities for better selectivity towards sulfur.

Tanushree Kane, Jesùs Guerrero, Axel Löfberg

Page No. – Page No.

 $\label{eq:chemical looping selective oxidation of H_2S using V_2O_5 impregnated over different supports as oxygen carriers V_2O_5 impregnated over V_2O_5 impregnated V_2O_5 impregnated$