H. A. Elfawy and B. Das, Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies, Life Sci, vol.218, pp.165-184, 2019.

J. S. Bhatti, G. K. Bhatti, and P. H. Reddy, Mitochondrial dysfunction and oxidative stress in metabolic disorders -A step towards mitochondria based therapeutic strategies, Biochim Biophys Acta Mol Basis Dis, vol.1863, issue.5, pp.1066-1077, 2017.

M. Lagouge, C. Argmann, and Z. Gerhart-hines, Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha, Cell, vol.127, issue.6, pp.1109-1122, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188005

I. Ramirez-sanchez, C. Mansour, and V. Navarrete-yañez, Epicatechin induced biological relevance of 5-(3',4'-dihydroxyphenyl)-?-valerolactone, a microbial metabolite derived from the catabolism of dietary flavan-3-ols, J Agric Food Chem, vol.59, issue.13, pp.7083-7091, 2011.

J. I. Ottaviani, G. Borges, and T. Y. Momma, The metabolome of

L. Actis-goretta, A. Lévèques, and F. Giuffrida, epicatechin in humans: implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives, Free Radic Biol Med, vol.6, p.29034, 2016.

, , vol.53, pp.787-795

Y. Steffen, C. Gruber, T. Schewe, and H. Sies, Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase, Archives of Biochemistry and Biophysics, vol.469, issue.2, pp.933-956, 1996.

G. Borges, J. I. Ottaviani, J. Van-der-hooft, H. Schroeter, and A. Crozier, Absorption, metabolism, distribution and excretion of (-)-epicatechin: A review of recent findings

M. Panneerselvam, S. S. Ali, and J. C. Finley, Epicatechin regulation of mitochondrial structure and function is opioid receptor dependent, Mol Nutr Food Res, vol.57, issue.6, pp.1007-1014, 2013.

M. Hüttemann, I. Lee, and M. H. Malek, Epicatechin maintains endurance training adaptation in mice after 14 days of detraining, FASEB J, vol.26, issue.4, pp.1413-1422, 2012.

N. A. Schwarz, Z. J. Blahnik, S. Prahadeeswaran, S. K. Mckinley-barnard, S. L. Holden et al., Epicatechin Supplementation Inhibits Aerobic Adaptations to Cycling Exercise in Humans, Front Nutr, vol.5, p.132, 2018.

I. Lee, M. Hüttemann, and M. H. Malek, Epicatechin Attenuates Degradation of Mouse

, Oxidative Muscle Following Hindlimb Suspension, J Strength Cond Res, vol.30, issue.1, pp.1-10, 2016.

A. Moreno-ulloa, A. Cid, I. Rubio-gayosso, G. Ceballos, F. Villarreal et al.,

, Effects of (-)-epicatechin and derivatives on nitric oxide mediated induction of mitochondrial proteins, Bioorg Med Chem Lett, vol.23, issue.15, pp.4441-4446, 2013.

A. Moreno-ulloa, N. Nájera-garcía, and M. Hernández, A pilot study on clinical

S. Santos, L. F. Stolfo, A. Calloni, C. Salvador, and M. , Catechin and epicatechin reduce mitochondrial dysfunction and oxidative stress induced by amiodarone in human lung fibroblasts, J Arrhythm, vol.33, issue.3, pp.220-225, 2017.

F. Shaki, Y. Shayeste, M. Karami, E. Akbari, M. Rezaei et al., The effect of epicatechin on oxidative stress and mitochondrial damage induced by homocycteine using isolated rat hippocampus mitochondria, Res Pharm Sci, vol.12, issue.2, pp.119-127, 2017.

I. Ramirez-sanchez, P. R. Taub, and T. P. Ciaraldi,

M. B. Svensson, B. Ekblom, and I. A. Cotgreave, Adaptive stress response of glutathione and uric acid metabolism in man following controlled exercise and diet, Acta Physiol Scand, vol.168, issue.4, pp.397-408, 2002.

M. A. Aon, S. Cortassa, and B. O'rourke, Redox-optimized ROS balance: a unifying hypothesis, Biochim Biophys Acta, vol.1797, issue.6-7, pp.865-877, 2010.

B. Wacquier, L. Combettes, G. T. Van-nhieu, and G. Dupont, Interplay Between Intracellular Ca(2+) Oscillations and Ca(2+)-stimulated Mitochondrial Metabolism, Sci Rep, vol.6, p.19316, 2016.

T. Briston, M. Roberts, and S. Lewis, Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury, Front Endocrinol, vol.117, issue.3, pp.793-805, 2016.

D. E. Kelley, J. He, E. V. Menshikova, and V. B. Ritov, Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes, Diabetes, vol.51, issue.10, pp.2944-2950, 2002.

C. Aguer and M. Harper, Skeletal muscle mitochondrial energetics in obesity and type 2 diabetes mellitus: endocrine aspects, Best Pract Res Clin Endocrinol Metab, vol.26, issue.6, pp.805-819, 2012.

G. N. Ruegsegger, A. L. Creo, T. M. Cortes, S. Dasari, and K. S. Nair, Altered mitochondrial function in insulin-deficient and insulin-resistant states, J Clin Invest, vol.128, issue.9, pp.3671-3681, 2018.

M. T. Lin and M. F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, vol.443, issue.7113, pp.787-795, 2006.

S. Missiroli, I. Genovese, M. Perrone, B. Vezzani, V. Vitto et al., The Role of

, Mitochondria in Inflammation: From Cancer to Neurodegenerative Disorders, J Clin Med, vol.9, issue.3, 2020.

Q. Xu, M. Langley, A. G. Kanthasamy, and M. B. Reddy, Epigallocatechin Gallate Has a

, Neurorescue Effect in a Mouse Model of Parkinson Disease, J Nutr, vol.147, issue.10, pp.1926-1931, 2017.

C. A. Galloway and Y. Yoon, Mitochondrial Morphology in Metabolic Diseases

, bovine coronary artery endothelial cells

, LRC, low running capacity. ?, increase; ?, unchanged. Bold type: supraphysiological dose of EPI 5 (>10µM)

, making ATP), state 3 represent oxygen consumption in presence of ADP (mitochondria actively making ATP)

;. Pm,

P. Pc,

R. Gsh and . Glutathione,

O. Gssg and . Glutathione,

, SIRT3, p.3

T. Trx, ?, increase; ?, decrease; ?, unchanged. Bold type: supraphysiological dose of EPI (>10µM)