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Abstract

In this paper, we propose a new MIMO communication system in a time-varying multi-

path environment, using a Khatri-Rao space-time (KRST) coding combined with a multiple

Khatri-Rao product of symbol matrices (MKRSM). It is shown the signals received at the re-

ceiver form a tensor which satisfies a (M +2)-order nested PARAFAC model, where (M−1)

denotes the number of symbol matrices considered for MKRSM coding. Such a generaliza-

tion of the nested PARAFAC model to (M +N)-order tensors is first studied from a general

point of view, with the discussion of some parameter estimation methods depending on the a

priori knowledge on the model. Then, a semi-blind receiver composed of three stages, is de-

veloped for jointly estimating the transmitted symbols and the multipath parameters. In the

first stage, the transmitted symbols and a matrix unfolding of the effective channel including

the fading coefficients and the steering matrices, are estimated using closed-form algorithms

based on Khatri-Rao factorizations. In the second one, the channel estimation is refined

by means of a simplified least-squares algorithm which takes the column orthonormality as-

sumption on the coding matrix into account. In the third one, an alternating least-squares

algorithm, combined with a rectification for the Vandermonde factors containing the spatial

steering vectors at the transmitter and receiver sides, is applied to estimate the multipath

parameters from the estimated channel. A complexity analysis is made for the receivers,

and an expected Cramer-Rao bound related to channel estimation is established. Extensive
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Monte Carlo simulation results show that the semi-blind receiver which combines the channel

estimation refinement with the rectification technique exhibit very interesting performance.

Keywords: MIMO systems, Khatri-Rao space-time (KRST) coding, multiple Khatri-Rao

product of symbol matrices (MKRSM), multiple Khatri-Rao factorization (MKRF) based

decoding, generalized nested PARAFAC model, semi-blind receiver, rectification technique.

1. Introduction

As it is well known, multiple-input multiple-output (MIMO) wireless communication

systems allow to increase channel capacity. However, to maximize capacity gains a per-

fect knowledge of the channel state is needed, hence the importance of channel estimation.

Besides the space diversity brought by multi antenna arrays, space-time coding is used to

increase the redundancy of transmitted information symbols, and so the diversity gain.

During the last two decades, wireless communication systems have been one of the main

fields of application of high order tensor decompositions. A lot of works have proposed

tensor-based MIMO communication systems, first for point to point systems and then for

cooperative ones with relays. Most of systems are based on the PARAFAC model [1], or

variants like constrained and nested PARAFAC models [2], [3], [4], [5], [6]. Overviews of such

MIMO systems can be found in [7] and [8]. In the case of cooperative systems, new tensor

models have been recently developed such as nested Tucker [9], coupled nested Tucker [10],

and tensor train [11] ones.

High order tensors have been used for designing tensor codings like tensor space time

(TST) and tensor space time frequency (TSTF) ones ([12], [13]) for CDMA and OFDM sys-

tems, respectively. An advantage of tensor coding is that multiple diversities can be simul-

taneously taken into account, like space, time, frequency and coding diversities. Recently,

a new generalized Khatri-Rao coding has been proposed based on a multiple Khatri-Rao

product of symbol matrices (MKRSM), in the context of MIMO relays systems [14].

A specificity of tensor-based communication systems lies in the possibility of joint semi-

blind estimation of information symbols and channel. However, most of the systems do not

take a multipath environment into account, and consequently the problem of jointly esti-

mating propagation path loss coefficients with direction-of-departure (DoD) and direction-
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of-arrival (DoA) angles is not addressed.

Generally speaking, the problem of angle estimation plays a fundamental role in array

signal processing applications [15]. Two important fields of application concern bistatic

MIMO radar whose antennas in transmit and receive arrays are closely spaced, also called

colocated MIMO radar [16], and MIMO communication systems. Since the pioneering works

[17] [18] of Schmidt (1986) and Roy and Kailath (1989) who introduced the popular subspace-

based methods called MUSIC (multiple signal classification) and ESPRIT (estimation of

signal parameters via rotational invariance technique), a lot of MUSIC-based and ESPRIT-

based algorithms have been developed to solve the DoD and DoA estimation problem. In

recent years, tensor-based methods have been proposed for joint DoD and DoA estimation in

the context of bistatic MIMO radar [19], [20], [21], [22], [23], [24], [25], [26]. Several tensor-

based angle estimation methods have also been developed for multipath MIMO wireless

communication systems as in [27], [28], [29].

In the present paper, we propose a MIMO communication system in a time varying mul-

tipath environment, which combines a Khatri-Rao space-time (KRST) coding [30] with a

MKRSM [14]. It is shown the received signals satisfy a new generalized nested PARAFAC

model which is exploited to develop a semi-blind receiver for jointly estimating the infor-

mation symbols, the channel and the multipath parameters. This receiver is composed of

three stages. In the first one, a closed form algorithm based on a multiple Khatri-Rao factor-

ization (MKRF) is used for jointly estimating the symbol matrices and a matrix unfolding

of the third-order channel tensor. In the second one, the channel estimation is refined by

means of a simplified least-squares algorithm which takes into account both the information

symbols estimated in the first stage and the column orthonormality assumption on the cod-

ing matrix. This solution which combines the MKRF and LS algorithms for symbols and

refined channel estimation, will be called the MKRF/LS receiver. In the third stage, the

third-order PARAFAC model satisfied by the channel tensor is exploited in applying the

alternating least squares (ALS) algorithm to jointly estimate the fading coefficients, DoD

and DoA angles, using the channel estimated in the first or second stage. A rectification

algorithm [31] is employed to improve the DoD and DoA angles estimation in taking into

account the Vandermonde structure of the steering matrices. Indeed, in a noisy environment,
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each column of the steering matrices estimated using the ALS scheme is only approxima-

tively Vandermonde-structured. So, to enforce this structure, the RecALS method proposed

in [31], is used. This approach is based on the mapping of a Vandermonde vector toward a

rank-one Toeplitz matrix of which the non-zero eigenvalue is relied to the angular-frequency

of the closest Vandermonde structured vector.

The main contributions of this paper can be summarized as follows:

• A new MIMO communication system combining KRST/MKRSM codings is proposed

in a time varying multipath scenario, leading to a generalized nested PARAFAC model

for the tensor of received signals.

• This new nested PARAFAC decomposition is studied from a general point of view, and

some parameter estimation methods are discussed.

• Semi-blind MKRF/LS/ALS and MKRF/ALS receivers including a rectification method

are developed, with removal of ambiguities inherent to MKRF and ALS algorithms.

• Parameters identifiability conditions are established, and the computational complexity

of the proposed receivers is analyzed.

• An original expected Cramer-Rao bound (CRB) related to channel estimation using

the MKRF algorithm is derived exploiting both a column-orthonormal assumption for

the KRST coding matrix and QAM modulation for the information symbols.

• Extensive Monte Carlo simulation results show that the semi-blind receiver which

combines the channel estimation refinement with the rectification technique exhibit

very interesting performance.

The rest of this paper is organized as follows. Section 2 presents a new multipath MIMO

communication system combining KRST coding with MKRSM. It is shown the received

signals form a tensor which satisfies a generalized nested PARAFAC model. Uniqueness

conditions for this model are given. In Section 3, this new nested-PARAFAC decomposition

is studied for (M + N)-order tensors. Algorithms for parameter estimation are discussed

according to the a priori knowledge on matrix factors. Section 4 is dedicated to the derivation
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of two semi-blind receivers, called MKRF/ALS and MKRF/LS/ALS, assuming the coding

matrix is known at the receiver. In Section 5, the removal of ambiguities is discussed, and

the receivers complexity is anayzed. In Section 6, the expected CRB for channel estimation

is derived. Section 7 presents extensive Monte Carlo simulation results to illustrate the

performance of the proposed receivers, before concluding the paper in Section 8.

Notation: Scalars, vectors, matrices, and tensors of order higher than two are written

using lower-case, boldface lower-case, bold face upper-case, and calligraphic letters (e.g., a,

a, A, and A, respectively). AT ,A∗, AH and A† stand for transpose, complex conjugate,

Hermitian transpose, and Moore-Penrose pseudo-inverse of A. Outer, Kronecker, Khatri-

Rao and Hadamard products are denoted by ◦, ⊗, � and �, respectively. IR and IR,N denote

the identity matrix of dimension R × R and the identity tensor of order N and dimension

R × · · · × R, whereas Ai. and A.j represent the i-th row and the j-th column of A ∈ CI×J ,

and diag(λ1, · · · , λN) is the diagonal matrix with the elements λn, n ∈ 〈N〉 on the diagonal,

where 〈N〉 = {1, · · · , N} denotes the set of the first N natural integers,

Hereafter, we recall some useful properties which will be used in the paper.

• For A ∈ CI×J ,B ∈ CK×L,C ∈ CJ×K , we have:

vec(ACB) = (BT ⊗A)vec(C) ∈ CLI . (1)

• For A ∈ CI×J , B ∈ CM×N , C ∈ CJ×K , and D ∈ CN×P , we have:

(A⊗B)(C⊗D) = AC⊗BD ∈ CIM×KP . (2)

• For A ∈ CI×K ,B ∈ CJ×K ,C ∈ CI×L and D ∈ CJ×L, we have:

(A �B)H(C �D) = AHC�BHD ∈ CK×L. (3)

• Banachiewicz-Schur’ formula for the inverse of a partitioned matrix: A B

C D

−1

=

 A−1 + A−1BX−1
A CA−1 −A−1BX−1

A

−X−1
A CA−1 X−1

A

 (4)

XA = D−CA−1B. (5)
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• If the matrices A ∈ CI×J and B ∈ CK×L are full column rank, we have:

(A⊗B)† = A† ⊗B†. (6)

2. System model

We consider a MIMO communication system equipped with uniform linear arrays (ULAs)

at both the transmitter and the receiver, composed of MT and MR antennas, respectively.

The information symbols to be transmitted are coded using a KRST coding combined with

a MKRSM of symbol matrices S(m) =
[
s

(m)
1 , · · · , s(m)

MT

]
∈ CPm×MT , with m ∈ {2, · · · ,M}.

Defining
M∏
m=2

Pm = P , the coded signals can be written as:

U = C � S(2) � · · · � S(M) ∈ CKP×MT , (7)

where C ∈ CK×MT is the KRST coding matrix. Each symbol matrix S(m) contains Pm data

streams composed of MT symbols each. Defining S, �Mm=2 S(m), the coded signals matrix U

can be rewritten as:

U = C � S. (8)

The coded signals transmitted by the mT -th transmit antenna are given by:

uk,p2··· ,pM ,mT
= ck,mT

M∏
m=2

s(m)
pm,mT

. (9)

The transmission is composed of Ts blocks, the coded signals (9) being transmitted during

each time-block ts ∈ 〈Ts〉. We assume that there exists L paths between the transmit and

receive arrays, characterized by the DoD and DoA angles (ϕl, θl), with l ∈ 〈L〉, and fading

coefficients wts,l depending on the transmission block ts.

Let us define the steering matrices B(T ) at the transmitter and B(R) at the receiver as:

B(T ) = [b(T )(ϕ1), · · · ,b(T )(ϕL)] ∈ CMT×L (10)

B(R) = [b(R)(θ1), · · · ,b(R)(θL)] ∈ CMR×L (11)
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with (i2 = −1):

b(T )(ϕl) = [1, e−iπsin(ϕl), · · · , e−iπ(MT−1)sin(ϕl)]T ∈ CMT (12)

b(R)(θl) = [1, e−iπsin(θl), · · · , e−iπ(MR−1)sin(θl)]T ∈ CMR (13)

and the matrix W containing the random complex time varying fading coefficients of the L

paths during Ts transmission blocks:

W =


wT

1

...

wT
Ts

 ∈ CTs×L (14)

with wT
ts = [wts,1, · · · , wts,L], ts ∈ 〈Ts〉. Note that the DoD and DoA angles (ϕl, θl), with l ∈

〈L〉, are assumed constant during the Ts transmission blocks, whereas the fading coefficients

vary at each transmission block.

The coded signals (9) transmitted by the MT transmit antennas through the l-th path

are transformed as:

zk,p2,··· ,pM ,l =

MT∑
mT =1

uk,p2,··· ,pM ,mT
b

(T )
mT ,l

=

MT∑
mT =1

ck,mT

M∏
m=2

s(m)
pm,mT

b
(T )
mT ,l

. (15)

This (M + 1)-order tensor Z ∈ CK×P2×···×PM×L can be interpreted as the tensor of the

signals transmitted by the transmit array, after coding. It satisfies the rank-MT PARAFAC

model JC,S(2), · · · ,S(M),B(T );MT K.

After transmission through the L paths, the signals received at the mR-th receive antenna,

during the ts time block, form a (M + 2)-order tensor X of dimension K × P2× · · · × PM ×

MR × Ts, given by:

xk,p2,··· ,pM ,mR,ts =
L∑
l=1

zk,p2,··· ,pM ,lb
(R)
mR,l

wts,l. (16)

Replacing zk,p2,··· ,pM ,l by its expression (15) in the above equation, we obtain:

xk,p2,··· ,pM ,mR,ts =

MT∑
mT =1

L∑
l=1

ck,mT

( M∏
m=2

s(m)
pm,mT

)
b

(R)
mR,l

b
(T )
mT ,l

wts,l (17)

=

MT∑
mT =1

ck,mT

M∏
m=2

s(m)
pm,mT

hmR,ts,mT
(18)

7



where:

hmR,ts,mT
=

L∑
l=1

b
(R)
mR,l

wts,lb
(T )
mT ,l

(19)

is an entry of the effective channel tensor H ∈ CMR×Ts×MT , between the mT -th transmit

antenna and the mR-th receive antenna, during the time block ts, along the L paths. From

Eq. (19), we can conclude that this third-order tensor satisfies the rank-L PARAFAC model

JB(R),W,B(T );LK. The ts-th slice along mode-2 of this tensor is given by:

HMR×MT
(ts) = B(R)Dts(W)

[
B(T )

]T ∈ CMR×MT (20)

where Dts(W) denotes the diagonal matrix whose diagonal elements are the components of

the row ts of W. From Eqs. (15) and (19), we can conclude that these PARAFAC models

share a common factor B(T ), and Eq. (17) corresponds to the nesting of these two PARAFAC

models. Such a model of the (M + 2)-order tensor X will be called a generalized nested

PARAFAC decomposition. This new tensor decomposition is studied in more detail in the

next section before deriving semi-blind receivers for the proposed MIMO system.

Fig. 1 represents the block diagram of the MIMO system. The definitions of the design

parameters and of the system matrices and tensors are summarized in Tables 1 and 2,

respectively.

Figure 1: Block diagram of the MIMO system

Uniqueness conditions are presented in the following lemma.

Lemma: Applying the Kruskal’s condition [32], we can deduce that the generalized nested
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Table 1: Design parameters

Design parameters Definitions

M number of symbol matrices

Pm number of data streams for the m-th symbol matrix

P product of all Pm for m ∈ {2, · · · ,M}

MT number of transmit antennas

MR number of receive antennas

Ts number of transmission blocks

L number of multipaths

K coding length

ϕ DoD angle

θ DoA angle

Table 2: System matrices and tensors

Matrices Definitions Dimensions

C coding matrix K ×MT

S(m) m-th symbol matrix Pm ×MT

B(T ) steering matrix at the transmitter MT × L

B(R) steering matrix at the receiver MR × L

W time varying fading matrix Ts × L

Tensors Definitions Dimensions

X received signals tensor K × P2 × · · · × PM ×MR × Ts
H effective channel tensor MR × Ts ×MT

Z coded transmitted signals tensor K × P2 × · · · × PM ×MT

PARAFAC model of the proposed MIMO system is essentially unique if the following con-
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ditions relative to the PARAFAC models (15) and (19) are satisfied:

kC +
M∑
m=2

kS(m) + kB(T ) ≥ 2MT +M (21)

kB(R) + kW + kB(T ) ≥ 2L+ 2 (22)

where kA denotes the k-rank of A, i.e., the largest integer k such that all subsets of k columns

of A are linearly independent. Essential uniqueness means that the matrix factors of the

nested PARAFAC model are unique up to column permutation and scaling ambiguities.

Under the assumption that all the factor matrices are full rank, the previous conditions

become:

min(K,MT ) +
M∑
m=2

min(Im,MT ) + min(L,MT ) ≥ 2MT + 2 (23)

min(MR, L) + min(Ts, L) + min(MT , L) ≥ 2L+ 2. (24)

3. Generalized nested PARAFAC decomposition

In this section, we study a generalization of the nested PARAFAC model, introduced

in [3] for a fourth-order tensor, to (M + N)-order tensors X ∈ CI1×···×IM×J1×···×JN . Such a

model is written in scalar form as:

xi1,··· ,iM ,j1,··· ,jN =
P∑
p=1

Q∑
q=1

( M∏
m=1

a
(m)
im,p

)
gp,q

( N∏
n=1

b
(n)
jn,q

)
(25)

where A(m) ∈ CIm×P and B(n) ∈ CJn×Q. It can be viewed as two nested-PARAFAC models

sharing a common factor matrix G ∈ CP×Q. These PARAFAC models are associated with

two tensors Z ∈ CI1×···×IM×Q and H ∈ CJ1×···×JN×P , of respective orders (M+1) and (N+1),

and ranks P and Q, such as :

zi1,··· ,iM ,q =
P∑
p=1

( M∏
m=1

a
(m)
im,p

)
gp,q (26)

hj1,··· ,jN ,p =

Q∑
q=1

( N∏
n=1

b
(n)
jn,q

)
gp,q. (27)
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Using mode-n products, these PARAFAC models that will be called left PARAFAC (LP)

and right PARAFAC (RP) models of the tensors Z and Y , can also be written as:

Z = IM+1,P ×Mm=1 A(m) ×M+1 GT (28)

Y = IN+1,Q ×Nn=1 B(n) ×N+1 G. (29)

They are concisely written as:

JA(1), · · · ,A(M),GT ;P K and JB(1), · · · ,B(N),G;QK. (30)

This nested PARAFAC model is illustrated by means of Fig. 2.

Figure 2: Generalized nested PARAFAC model

Comparing (17) with (25), we conclude that the received signals tensor X satisfies a

generalized nested PARAFAC model, with the following correspondences:

(I1, I2, · · · , IM , J1, J2, P,Q)⇔ (K,P2, · · · , PM ,MR, Ts,MT , L)

(A(1),A(2), · · · ,A(M),B(1),B(2),G)⇔ (C,S(2), · · · ,S(M),B(R),W,B(T )).

The LP and RP models, of respective orders M + 1 and 3, correspond to Eq. (15) and (19),

with the factor matrices (C,S(2), · · · ,S(M), [B(T )]T ) and (B(R),W,B(T )), respectively, and

with B(T ) ∈ CMT×L as common matrix factor.
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Applying the Kruskal’s uniqueness condition [32], we can conclude that these PARAFAC

models are essentially unique if the sufficient (but not necessary) conditions are satisfied:

M∑
m=1

kA(m) + kGT ≥ 2P +M ;
N∑
n=1

kB(n) + kG ≥ 2Q+N. (31)

Using definitions (26) and (27) in Eq. (25), the tensor X can be rewritten in the following

two scalar forms:

xi1,··· ,iM ,j1,··· ,jN =
P∑
p=1

M∏
m=1

a
(m)
im,p

hj1,··· ,jN ,p (32)

=

Q∑
q=1

N∏
n=1

b
(n)
jn,q

zi1,··· ,iM ,q . (33)

Defining the matrix unfoldings Z∏M
m=1 Im×Q

and H∏N
n=1 Jn×P

of tensors Z and H, one can

associate two PARAFAC models
{
{A(1), · · · ,A(M),H∏N

n=1 Jn×P
;P}

}
and

{
{B(1), · · · ,B(N),

Z∏M
m=1 Im×Q

;Q}
}

to the contracted forms X
I1×···×IM×

N∏
n=1

Jn
and X M∏

m=1
Im×J1×···×JN

of tensor

X resulting from the combination of modes (j1, · · · , jN) on one hand, and (i1, · · · , iM) on

the other hand. These two PARAFAC models will be called left internal PARAFAC (LIP)

and right internal PARAFAC (RIP) models of the tensor X , respectively.

In order to derive parameter estimation algorithms, we present some matrix unfoldings

deduced from the PARAFAC models (32) and (33):

X M∏
m=1
m 6=i

Im
N∏

n=1
Jn×Ii

=
(
�Mm=1

m 6=i

A(m) �H N∏
n=1

Jn×P

)(
A(i)

)T
, i ∈ 〈M〉 (34)

X M∏
m=1

Im×
N∏

n=1
Jn

=
(
�Mm=1 A(m)

)
H
P×

N∏
n=1

Jn
(35)

and

X N∏
n=1
n6=j

Jn
M∏

m=1
Im×Jj

=
(
�Nn=1

n 6=j

B(n) � Z M∏
m=1

Im×Q

)(
B(j)

)T
, j ∈ 〈N〉. (36)

X N∏
n=1

Jn×
M∏

m=1
Im

=
(
�Nn=1 B(n)

)
Z
Q×

M∏
m=1

Im
. (37)
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Moreover, for the PARAFAC models (26) and (27) of tensors Z and H, we have:

Z M∏
m=1

Im×Q
= (�Mm=1A

(m))G ∈ C
M∏

m=1
Im×Q

(38)

H N∏
n=1

Jn×P
= (�Nn=1B

(n))GT ∈ C
N∏

n=1
Jn×P

. (39)

Note that, from Eq. (35) and (39), we can deduce another matrix unfolding of X :

X M∏
m=1

Im×
N∏

n=1
Jn

= (�Mm=1A
(m)) G (�Nn=1B

(n))T . (40)

We now discuss the problem of parameter estimation for the tensor model (25), consid-

ering three cases depending on the a priori knowledge on the factor matrices: i) no a priori

knowledge; ii) only one known factor (A(1) for the LP model or B(1) for the RP model) as

it is the case for the MIMO system proposed in the previous section; iii) two known factors

(A(1) and B(1) for instance).

• Case 1: If no factor matrix is a priori known, the parameter estimation problem can

be solved in three consecutive stages as follows:

– Application of the ALS algorithm for estimating the factor matrices
(
A(1), · · · ,

A(M),H N∏
n=1

Jn×P

)
of the LIP model using the unfoldings (34)-(35) of X .

– Reconstruction of tensor H.

– Estimation of the factors
(
B(1), · · · ,B(N),G

)
of model (39) by means of the ALS

algorithm applied to the reconstructed channel tensor H.

A symmetric procedure can be used beginning with the estimation of the parameters

of the RIP model using the unfoldings (36)-(37), then reconstructing tensor Z, and

finally, estimating the parameters of the PARAFAC model (38).

The above described estimation procedures do not allow eliminating the permutation

and scalar ambiguities. The knowledge of one factor matrix in the LP and RP models

is needed to eliminate the permutation ambiguities, which corresponds to the next

case. We will see later that the removal of scalar ambiguities needs the knowledge of

one row of some matrix factors.
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• Case 2: Assuming that the factor matrix A(1) is a priori known and full column rank,

which implies I1 ≥ P , the parameter estimation problem can be solved in four consec-

utive stages:

– Application of the LS algorithm to estimate the MKR product (MKRP) from Eq.

(34) for i = 1:

A(2) � · · · �A(M) �H N∏
n=1

Jn×P
= X M∏

m=2
Im

N∏
n=1

Jn×I1

[
(A(1))T

]†
. (41)

– Use of the MKRF algorithm, described in Appendix B, to estimate
(
A(2), · · · ,A(M),

H N∏
n=1

Jn×P

)
.

– Reconstruction of tensor H.

– Application of the ALS algorithm for estimating the matrices
(
B(1), · · · ,B(N),G

)
of the PARAFAC model (39) of H.

By comparing with the Case 1, we conclude that the estimation algorithms differ by

stage 1, the iterative ALS algorithm being replaced by the closed-form method based

on the MKRF algorithm.

In a symmetric way, if B(1) is a priori known and full column rank, which implies

J1 ≥ Q, a similar estimation procedure can be employed, beginning with the LS

estimation of the MKRP from Eq. (36) for j = 1:

(B(2) � · · · �B(N) � Z M∏
m=1

Im×Q
) = X N∏

n=2
Jn

M∏
m=1

Im×J1

[
(B(1))T

]†
, (42)

followed by the estimation of
(
B(2), · · · ,B(N),Z M∏

m=1
Im×Q

)
using the MKRF algorithm.

Then, after reconstructing the tensor Z, the parameters
(
A(1), · · · ,A(M),G

)
of the

PARAFAC model (38) are estimated by means of the ALS algorithm.

• Case 3: If two matrix factors are known (A(1) and B(1), for instance), we can combine

both algorithms of Case 2, to estimate in a parallel way the factors
(
A(2), · · · ,A(M),

H N∏
n=1

Jn×P

)
and

(
B(2), · · · ,B(N),Z M∏

m=1
Im×Q

)
using the MKRF algorithm.

14



Exploiting the matrix unfolding (40) of X gives the following LS estimate of the matrix

factor G:

Ĝ = (�Mm=1Â
(m)

)†X M∏
m=1

Im×
N∏

n=1
Jn

[(�Nn=1B̂
(n)

)T ]†. (43)

4. MKRF/ALS and MKRF/LS/ALS based receivers

In this section, we assume that the KRST coding matrix C is known at the receiver,

which corresponds to Case 2 among the three situations discussed in Section 3 for solving

the parameter estimation problem. In consequence, the proposed receiver is composed of

the following stages: first, the MKRF algorithm is used to estimate the symbol matrices

S(m),m ∈ {2, · · · ,M}, and the matrix unfolding HTsMR×MT
of the channel tensor. Then,

after reshaping the channel tensor H, the ALS algorithm is applied to estimate the three

matrix factors of the channel by exploiting the PARAFAC model (19) of H.

From the LIP model (18), we deduce the following tall matrix unfolding of the received

signals tensor X :

XP TsMR×K =
(
S(2) � · · · � S(M) �HTsMR×MT

)
CT . (44)

Let us assume that the coding matrix C ∈ CK×MT is column orthonormal, chosen as a

truncated Fourier matrix such that:

ck,mT
=

1√
K

ω(k−1) (mT−1), k ∈ 〈K〉 , mT ∈ 〈MT 〉 (45)

where ω = e−2iπ/K and i2 = −1. The right inverse of CT then simplifies as: (CT )† =

C∗(CTC∗)−1 = C∗, so that the LS estimate of the multiple Khatri-Rao product (MKRP)

can be calculated as:

S �HTsMR×MT
= XP TsMR×KC∗ (46)

where S,S(2) � · · · � S(M). Application of the MKRF algorithm described in Appendix B

allows to estimate the symbol matrices and the matrix unfolding HTsMR×MT
of H.

For the multipath parameters estimation, we exploit the PARAFAC model (19) of the
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channel tensor of which matrix unfoldings are given by:

HMR×TsMT
= B(R)(W �B(T ))T (47)

HMT×TsMR
= B(T )(W �B(R))T (48)

HTs×MRMT
= W(B(R) �B(T ))T . (49)

Application of the ALS algorithm leads to an alternate LS estimation of (B(R),B(T ),W),

by means of the following equations, where it denotes the iteration number:

B̂
(R)

it+1 = ĤMR×TsMT

[
(Ŵit � B̂

(T )

it )T
]†

(50)

B̂
(T )

it+1 = ĤMT×TsMR

[
(Ŵit � B̂

(R)

it+1)T
]†

(51)

Ŵit+1 = ĤTs×MRMT

[
(B̂

(R)

it+1 � B̂
(T )

it+1)T
]†
. (52)

Remark 1. At this stage, two semi-blind receivers can be proposed depending on the chan-

nel estimate used in the above Eqs. (50)-(52) of the ALS algorithm. The first one uses

the channel estimate delivered by the MKRF algorithm applied to Eq. (46). It will be

called the MKRF/LS receiver. The second one uses a refined estimation of the channel in

the vectorized form ĥ = vec(ĤMT×TsMR
), given by Eq. (84), and derived in Remark 4. The

corresponding receiver, called MKRF/LS/ALS, is composed of three stages: MKRF for sym-

bols and channel estimation; LS for a refinement of channel estimation; ALS for multipath

parameters estimation. As it will be illustrated by simulation results, this second receiver

allows to significantly improve the system performance, at the price of an additional cost

that is negligible comparatively to the ALS one.

Necessary conditions for uniqueness of the right inverses in Eqs. (50)-(52) are such as the

matrices to be inverted must have a number of columns greater than or equal to the number

of rows, which implies the following necessary condition for identifiability of the channel

factors: min(TsMT , TsMR,MRMT ) ≥ L.

5. Ambiguity removal and receivers complexity analysis

Each stage of the receiver is characterized by ambiguities that are now described. In the

first stage which consists in the MKRF algorithm, the ambiguities result from the KRP (46).
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Recall that in the case of a single KRP of two vectors, there exists a scalar ambiguity which

can be removed using the knowledge of one component of one of the two vectors.

Defining the estimate Ŝ =
M�
m=2

Ŝ
(m)

and assuming that the first row of each symbol matrix

is composed of 1’s, the equations for removing the ambiguities are given by:

ˆ̂
S = Ŝ ∆S with ∆S =

[
diag(Ŝ1.)

]−1
(53)

and

ˆ̂
HTsMR×MT

= ĤTsMR×MT
∆H with ∆S∆H = IMT

. (54)

In consequence, for the MKRF algorithm based on Eq. (46), the MKRP S(2) � · · · � S(M)

being equivalent to M −2 KRPs of MT vectors, the a priori knowledge of the first row of the

symbol matrices S(m) ∈ CPm×MT ,m ∈ {2, · · · ,M} is sufficient to remove the ambiguities in

the estimated symbol matrices, so that:

ˆ̂
S(m) = Ŝ

(m)
∆

(m)
S with ∆

(m)
S =

[
diag(Ŝ

(m)

1. )
]−1

, m ∈ {2, · · · ,M}. (55)

After ambiguity suppression, the estimated symbols are projected onto the alphabet, which

gives the final estimated symbol matrices denoted
ˆ̂
Ŝ(m), with m ∈ {2, · · · ,M}.

With the ALS algorithm based on Eqs. (50)-(52), the ambiguities are defined in terms of

a permutation matrix and three diagonal scaling matrices which can be removed using the

following equations:

ˆ̂
B(R) = B̂

(R)
∆B(R) ,

ˆ̂
B(T ) = B̂

(T )
∆B(T ) ,

ˆ̂
W = Ŵ∆W , (56)

with ∆B(R)∆B(T )∆W = IL. Exploiting the Vandermonde structure of the receive and trans-

mit steering matrices B(R) and B(T ), characterized by a first row composed of 1’s, we deduce

the following scaling ambiguity matrices:

∆B(R) =
[
diag(B̂

(R)

1. )
]−1

, ∆B(T ) =
[
diag(B̂

(T )

1. )
]−1

(57)

and

∆W =
[
∆B(R)∆B(T )

]−1

= diag(B̂
(R)

1. ) diag(B̂
(T )

1. ). (58)

Note that the permutation ambiguity can not be removed, which is of no practical con-

sequence. Indeed, this ambiguity which corresponds to a permutation of the multipaths is

irrelevant from an application point of view.
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Finally, the rectification algorithm proposed in [31] is employed to improve the estimation

of the DoA and DoD angles from the estimated Vandermonde matrices
ˆ̂
B(R) and

ˆ̂
B(T ).

The proposed MKRF/ALS and MKRF/LS/ALS receivers are summarized in Table 3,

where the noisy received signals tensor is given by:

X̃ = X + σ N , (59)

Remark 2. The convergence mentioned in step 9.5 of the ALS algorithm, in Table 3, is

decided when the normalized difference between two estimates of the channel unfolding

ĤTsMR×MT
, at two successive iterations, is less than or equal to 10−6. The maximum number

of iterations for the ALS algorithm is fixed at 1000.

Remark 3. The computational complexity of the KRF algorithm is mainly due to SVD

computations for calculating rank-one approximations1, which implies the following global

computational cost for the MKRF algorithm:

O
(
MTPTSMR min(P, TSMR)

)
+O

(
MTP

M∑
m=2

min(Pm,
P

Pm
)
)
. (60)

The complexity of the MKRF/ALS receiver is given by Eq. (60) for the first stage,

plus O
(
TsMRMTL min(TsMRMT , L) + TsM

2
RL min(TsM

2
R, L) + MRMTL min(MRMT , L)

)
by iteration for the second one.

Note that the MKRF/ALS and MKRF/LS/ALS receivers have the same computational

complexity, since the LS channel estimator given by Eq. (84), avoids any matrix inversion.

6. Expected CRB for the channel

The Cramer-Rao bound (CRB), defined as the inverse of the Fisher Information Matrix

(FIM), provides a lower bound for the mean square error (MSE) of channel estimation in

1The cost of the SVD computation of an I × J matrix is given by O
(
IJ min(I, J)

)
.
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Table 3: MKRF-(LS)-ALS receivers

Inputs: Noisy received signals tensor X̃ ; coding matrix C.

Outputs: Estimated symbol matrices
ˆ̂
Ŝ(m),m ∈ {2, · · · ,M} and multipath

parameters (
ˆ̂
B(T ),

ˆ̂
B(R),

ˆ̂
W).

First stage: MKRF algorithm

1. LS estimation of the KRP (S �HTsMR×MT
) using (46).

2. Estimation of the matrix Ŝ and of the channel unfolding ĤTsMR×MT
using

the KRF algorithm in Appendix A.

3. Ambiguity suppression using (53) and (54).

4. Estimation of the symbol matrices Ŝ
(2)
, · · · , Ŝ

(M)
using the MKRF algo-

rithm described in Appendix B, and applied to
ˆ̂
S, with ambiguity suppression

for each symbol matrix using (55).

5. Projection of the estimated symbols onto the alphabet to obtain
ˆ̂
Ŝ(m).

6. Reshaping of channel estimate obtained in step 1 with the MKRF algorithm.

Second stage: LS algorithm

7. Reconstruction of the matrix
ˆ̂
Ŝ using

ˆ̂
Ŝ(m) obtained in step 4 with the

MKRF algorithm.

8. Refined channel estimation using Eq. (84).

Third stage: ALS algorithm

9.1 Initialization (it = 0): B
(T )
0 , W0.

9.2 Calculation of B̂
(R)

it+1 using (50).

9.3 Calculation of B̂
(T )

it+1 using (51).

9.4 Calculation of Ŵit+1 using (52).

9.5 Repeat steps 9.2 - 9.4 until convergence.

9.6 Ambiguity suppression using (56)-(58).

10. Application of the rectification algorithm [31] to estimate the DoA and

DoD angles.
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the presence of nuisance parameters corresponding to the information symbols. Let h be a

vectorized form of the channel tensor, decomposed as h = [h̄
T
h̃
T

]T where h̄ = Re(h) and

h̃ = Im(h). The expected CRB is such that [33]:

E ‖ h− ĥ ‖2≥ Eh̄,h̃,γ

{
Trace{CRB(h̄)}+ Trace{CRB(h̃)}

}
(61)

where E[.] denotes the mathematical expectation, ĥ is an estimate of h, and γ is the vector

of nuisance parameters.

Assuming that the observations follow a circular Gaussian distribution x ∼ CN(µ,R),

the FIM relatively to h, denoted F(h), is given by the Slepian-Bangs (SB) formula [34]:

[F(h)]k,j = 2Re
{( ∂µ

∂[h]k

)H
R−1 ∂µ

∂[h]j

}
, (62)

this equality being due to the fact that the noise covariance matrix R does not depend on the

channel parameters. From the unfolding (44) of the PARAFAC model, it is easy to deduce

the following other matrix unfolding of the noisy received signals:

X̃KP×TsMR
= (C � S)HMT×TsMR

+ NKP×TsMR
(63)

with S, �Mm=2 S(m), and NKP×TsMR
is a matrix unfolding of the additive noise tensor. Using

Property (1) for vectorization, we obtain:

x̃ , vec(X̃KP×TsMR
) =

[
ITsMR

⊗ (C � S)
]
vec(HMT×TsMR

) + vec(NKP×TsMR
), (64)

or in a more compact form:

x̃ = Ah + ρ (65)

where h , vec(HMT×TsMR
),ρ , vec(NKP×TsMR

) and:

A , ITsMR
⊗Y ∈ CTsMRKP×TsMRMT , Y , C � S ∈ CKP×MT (66)

The symbol matrices being discrete-valued, they violate the regularity conditions of the

CRB. So, they are viewed as random nuisance parameters, and we define γ , vec(S). For a

given realization of the symbol matrices, we have x̃ ∼ CN(Ah, σ2I), where σ2 is the variance

of each element of the noise tensor. Using the SB formula, we get:

∂µ

∂h̄
= A ;

∂µ

∂h̃
= iA. (67)
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Then, the inverse of the FIM is given by:

[F(h)]−1 =
σ2

2

Re(AHA) −Im(AHA)

Im(AHA) Re(AHA)

−1

. (68)

Application of the Banachiewicz-Schur formula (4) gives:

CRB(h̄) =
σ2

2

(
[Re(AHA)]−1− 2

σ2
[Re(AHA)]−1Im(AHA) CRB(h̄) Im(AHA)[Re(AHA)]−1

)
(69)

and

CRB(h̃) =
σ2

2

(
Re(AHA) + Im(AHA)[Re(AHA)]−1Im(AHA)

)−1

. (70)

Using definition (66) and Property (2) of the Kronecker product leads to:

AHA = ITsMR
⊗YHY. (71)

From this expression, we deduce that the product AHA is a block-diagonal matrix of di-

mension TsMRMT × TsMRMT , with YHY as diagonal blocks, and we have the following

relations:

Re(AHA) = ITsMR
⊗ Re(YHY) , Im(AHA) = ITsMR

⊗ Im(YHY). (72)

Using Property (3) of the Khatri-Rao product gives:

YHY = (C � S)H(C � S) = CHC� SHS. (73)

The coding matrix C being assumed to be column-orthonormal, as defined in (45), we have

CHC = IMT
, and Eq. (73) becomes:

YHY = IMT
� SHS = diag

[
(SHS)1,1, · · · , (SHS)MT ,MT

]
, (74)

that is, YHY ∈ CMT×MT is a diagonal matrix whose diagonal elements are given by:

(SHS)mT ,mT
=

M∏
m=2

(S(m)HS(m))mT ,mT
with mT ∈ 〈MT 〉. (75)

Defining the symbol matrix S(m) as:

S(m) =


1 · · · 1
...

. . .
...

s
(m)
Pm,1

· · · s
(m)
Pm,MT

 , (76)
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it is easy to deduce that:

(S(m)HS(m))mT ,mT
= 1 + |s(m)

2,mT
|2 + · · ·+ |s(m)

Pm,mT
|2. (77)

Considering that the symbols are uniformly randomly drawn from 16QAM modulation

with unit energy, we have |s(m)
pm,mT |2 = 1 for m ∈ {2, · · · ,M},mT ∈ 〈MT 〉 and pm ∈ 〈Pm〉.

Taking Eqs. (77) and (75) into account leads to:

(S(m)HS(m))mT ,mT
= Pm , ∀ mT ∈ 〈MT 〉 (78)

(SHS)mT ,mT
= P, (79)

which means that (SHS)mT ,mT
is independent of mT , and Eqs. (74) and (71) give:

YHY = P IMT
(80)

AHA = P ITsMRMT
, (81)

implying that Re(AHA) = AHA and Im(AHA) = 0. Expressions (69) and (70) simplify as:

CRB(h̄) =
σ2

2
[Re(AHA)]−1 =

σ2

2P
ITsMRMT

= CRB(h̃) (82)

and the CRB is given by:

CRB = Trace{CRB(h̄)}+ Trace{CRB(h̃)} =
σ2

P
TsMRMT . (83)

It is worth noting that YHY and subsequently AHA, given in (80) and (81) respectively, are

independent of the channel parameters h to be estimated due to the linearity of the model

(65) with respect to h. Moreover, these quantities are also independent of the information

symbols because SHS only depends on the dimensions of S. That explains why the expected

CRB defined in (61) is invariant with respect to the model and nuisance parameters.

It is also important to note that the parameters in the numerator of the CRB are all

related to the channel design parameters (MR,MT ) and the number Ts of repetitions. An

increase of these parameters degrades the estimation accuracy. However, to mitigate this

increase of the CRB, it is possible to increase M , the number of symbol matrices, or/and to

increase Pm, the number of data streams in the m-th symbol matrix, for m ∈ {2, · · · ,M}.
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From its expression (83), we can conclude that the CRB depends on the dimensions

Pm (for m ∈ {2, · · · ,M}) and M of S, the noise variance σ2 and the channel dimensions

(Ts,MR,MT ). So, for a given system configuration, the CRB is invariant with respect to the

model and nuisance parameters, which implies there is no need to use Monte Carlo runs for

computing the mathematical expectation (61), as illustrated by means of the simulations.

Finally, as expected, the CRB is proportional to σ2 and (Ts,MR,MT ), while it is in-

versely proportional to (Pm,m ∈ {2, · · · ,M};M), which can be explained by the use of the

MKRF estimator. Indeed, channel estimation performance is improved when Pm, and M

are increased because an increase of the dimensions of S implies a redundancy augmentation

of the channel parameters through the MKRP in Eq. (44).

Remark 4. From Eq. (65), one can derive the following expression of the LS estimator of

the channel in a vectorized form: ĥ = A†x̃ with A† = (AHA)−1AH . Taking Eqs. (66) and

(81) into account allows us to simplify this estimator as:

ĥ = P
(
ITsMR

⊗
ˆ̂
ŶH
)
x̃, (84)

where
ˆ̂
Ŷ = C �

ˆ̂
Ŝ and

ˆ̂
Ŝ is the matrix S reconstructed using the estimated symbol matrices

ˆ̂
Ŝ(m) after projection.

7. Simulation results

In this section, we evaluate the performance of the proposed semi-blind receivers based

on KRST/MKRSM coding. Monte Carlo simulation results are provided to illustrate: i)

the impact of the design parameters M,MT , K, Ts and MR, on the symbol error rate (SER)

performance; ii) the comparison of the SER performance obtained with the MKRF algorithm

and the zero forcing (ZF) receiver corresponding to a perfect a priori knowledge of the

channel; iii) the performance of the semi-blind MKRF/ALS receiver and of its improved

version MKRF/LS/ALS, for the estimation of the multipath parameters.

We consider ULAs with MT and MR elements at the transmitter and the receiver, re-

spectively. In general, the multipath system is simulated with L = 2, (ϕ1, θ1) = (70◦, 20◦)

and (ϕ2, θ2) = (30◦, 60◦). Symbols of the matrices S(m) ∈ CPm×MT , with m ∈ [2,M ], are
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randomly drawn from the 16QAM alphabet, with a uniform distribution. The coding matrix

C ∈ CK×MT , assumed to be known at the receiver, is chosen as a truncated Fourier matrix.

The fading coefficient matrix W ∈ CTs×MT is randomly drawn from a complex Gaussian

distribution CN(0, 1). The SER and mean square error (MSE) curves are plotted versus

the signal to noise ratio (SNR). The entries of the additive noise tensor are randomly drawn

with a complex Gaussian distribution CN(0, 1).

For a specified value τ of the SNR in dB, the factor σ is determined such as:

σ =
1

10 τ/20

‖ X ‖F
‖N ‖F

. (85)

Simulation results are obtained by averaging the results of Mc = 103 Monte Carlo runs.

Each Monte Carlo run corresponds to different realizations of the symbol matrices, the

channel fading coefficients, and the additive noise. The channel MSE obtained with MKRF

is calculated as:

MSEH =
1

Mc

Mc∑
mc=1

‖ (Hmc)TsMR×MT
− (

ˆ̂
Hmc)TsMR×MT

‖2
F . (86)

7.1. Impact of the design parameters

We first evaluate the impact of the number M of symbol matrices. Fig. 3 compares

the SER performance obtained with the MKRF algorithm for M ∈ {2, 4, 5} using 4QAM

and 16QAM. From this figure, we can conclude that increasing the value of M improves

the SER performance thanks to the MKRSM coding. Indeed, an increase of the number of

symbol matrices induces a redundancy augmentation via the MKRSM coding in Eq. (46).

As expected, the SER performance is better when using 4QAM, the decoding being easier

with 4QAM than with 16QAM.

For the same reason of redundancy augmentation, the channel MSE plotted on Fig. 4

is also improved when M is increased. Indeed, the channel unfolding HTsMR×MT
is jointly

estimated with the MKRP matrix S , �Mm=2S
(m) by means of the MKRF algorithm. In-

creasing M implies an increase of P , with Pm = 3 for m ∈ {2, · · · ,M}, and therefore more

diversity to estimate the channel unfolding. Thus, increasing M improves the estimation

of HTsMR×MT
. The expected CRB is also plotted for reference. We verify that the CRB

decreases when M and therefore P increases, according to Eq. (83). Use of the refined
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L = 2;MR = MT = K = 3;Ts = 5;Pm = 3

Figure 3: Impact of M on SER with MKRF

channel estimation allows to improve the efficiency of the rectified MKRF/LS/ALS receiver

as clearly shown on Fig. 4, the MSEH being very close to the CRB on a large SNR range.

L = 2;MR = MT = K = 3;Ts = 5;Pm = 3

Figure 4: Impact of M on channel MSE with rectified MKRF/LS/ALS receiver

We now fix M = 4 for the rest of this subsection. With the next experiment, we evaluate

the impact of the number MT of transmit antennas. For MT ∈ {2, 5, 10}, Fig. 5 shows that

an increase of MT does not significantly modify the SER performance due to the fact that

the MKRF algorithm operates separately for each column mT ∈ 〈MT 〉 in (46), the processing
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of each column being independent of the others. Indeed, considering the KRF described in

Appendix A, we can note that the rank-one approximations are computed column by column,

which explains why the estimation results do not depend on the number of columns.

L = 2;MR = 3;K = 10;Ts = 5;M = 4;Pm = 3

Figure 5: Impact of MT on SER with the MKRF algorithm

Fig. 6 shows the coding length K ∈ {5, 10, 15} also does not significantly modify the

SER performance. Indeed, this dimension is an internal parameter in the matrix product on

the right member of (46), and consequently does not modify the number of equations used

for parameter estimation, which explains the low dependency of the SER with respect to K.

Finally, the space-time diversity introduced by means of the product TsMR corresponding

to channel dimensions is analyzed. For (Ts;MR) ∈ {(2; 4), (3; 8), (5; 10)}, Fig. 7 shows that

greater is this product, smaller is the SER due to more redundancy in the transmitted

symbols, caused by the time (Ts) and space (MR) diversities in the Khatri-Rao product

(46). Indeed, an increase of the product TsMR implies more redundancy to estimate the

transmitted symbols, and consequently an improvement of the SER performance.

7.2. Comparison of the MKRF algorithm with the ZF receiver

We fix M = 4, P2 = 3, P3 = 5, P4 = 8, with the following aims: i) to compare the global

SERs obtained with the ZF receiver (i.e., when assuming a perfect a priori knowledge of the

channel at the receiver) and the MKRF algorithm, ii) to evaluate the influence of the symbol
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L = 2;MR = MT = 3;Ts = 5;M = 4;Pm = 3

Figure 6: Impact of K on SER obtained with the MKRF algorithm

L = 2;MT = K = 3;M = 4;Pm = 3

Figure 7: Impact of TsMR on SER obtained with the MKRF algorithm

matrices dimensions Pm. Using the following matrix unfolding of the received signals tensor:

XP×TsMRK = S
(
HTsMR×MT

�C
)T
, (87)

one can deduce the equation of the ZF receiver to estimate the matrix S and then the symbol

matrices S(m),m ∈ {2, · · · ,M}:

Ŝ = X̃P×TsMRK

[(
HTsMR×MT

�C
)T]†

. (88)
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Fig. 8 shows that the SER obtained with the MKRF algorithm is very close to the one

L = 2;MR = MT = K = 3; = Ts = 5;M = 4;P2 = 3;P3 = 5;P4 = 8

Figure 8: Comparison of global SERs using the ZF and MKRF algorithms

L = 2;MR = MT = K = 3; = Ts = 5;M = 4;P2 = 3;P3 = 5;P4 = 8

Figure 9: Comparison of individual SERs using the MKRF algorithm

obtained with the ZF receiver, which corroborates the excellent performance of the MKRF

algorithm. In Fig. 9, we compare the individual SERs of each symbol matrix estimated using
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the MKRF algorithm. As expected, from these simulation results, we can conclude that the

best individual SER is obtained for the symbol matrix S(m) with the smallest dimension Pm

due to a greater redundancy provided by the other symbol matrices, this redundancy being

proportional to the product
M∏
n=2
n 6=m

Pn. The global SER is close to the individual SER of the

symbol matrix with the greatest dimension Pm.

7.3. Channel and multipath parameters estimation

In this section, we evaluate the performance of the proposed semi-blind receivers in terms

of root mean square error (RMSE) of the estimated angles, the channel MSE (MSEH), and

the received signals MSE (MSEX) reconstructed using the estimated channel and informa-

tion symbols. The design parameters are fixed with the following values: M = 4, P2 =

3, P3 = 5, P4 = 8.

The total RMSE of the estimated angles, using the MKRF/ALS and MKRF/LS/ALS

receivers, with and without rectification, is calculated as:

RMSE =
1

Mc

Mc∑
mc=1

√√√√ 1

L

L∑
l=1

(ϕl − ϕ̂lmc)
2 + (θl − θ̂lmc)

2. (89)

With the MKRF/ALS receiver, the angle of each column of the estimated steering matrices

is extracted from the second row of these matrices, while with the MKRF/LS/ALS, these

angles are estimated using the RecALS method described in [31].

From Fig. 10, one can conclude that the RMSE decreases when the SNR increases,

and that the MKRF/LS/ALS receiver gives much better performance than the MKRF/ALS

one, corroborating the important role played by the refinement of channel estimation using

Eq. (84). Moreover, the rectification algorithm allows to significantly improve the angle

estimation with both receivers.

We now evaluate the impact of the number L of paths on RMSE, for L ∈ {2, 4, 6}. As

expected, on Fig. 11, one observes that the best RMSE is obtained for the smallest value

of L, since the channel estimation problem is more challenging when the number of paths

increases, implying more channel coefficients to be estimated, and therefore less accuracy

on angle estimation. However, when L is increased from 2 to 6, it can be observed that
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the SNR gap is around 2dB, illustrating the system robustness with respect to the number

of paths. One can also conclude that the rectification algorithm clearly improves the angle

estimation accuracy with a SNR gap of around 5dB for a fixed angle RMSE, with and

without rectification.

L = 2;MR = MT = K = 3;Ts = 5;M = 4;P2 = 3;P3 = 5;P4 = 8

Figure 10: Angle RMSE with MKRF/ALS and MKRF/LS/ALS receivers

MR = MT = K = 3;Ts = 5;M = 4;P2 = 3;P3 = 5;P4 = 8

Figure 11: Impact of L on angle RMSE with MKRF/LS/ALS receiver

We now compare channel MSEH obtained with different receivers: i) the MKRF algo-

rithm; ii) the MKRF/ALS receiver without and with rectification; iii) the supervised LS
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receiver which corresponds to the LS algorithm applied to Eq. (65), with the exact symbols,

i.e., using a training sequence; iv) the MKRF/LS receiver which corresponds to the refined

channel estimation using Eq. (84); v) the complete MKRF/LS/ALS receiver, without and

with rectification.

L = 2;MR = MT = K = 3;Ts = 5;M = 4;P2 = 3;P3 = 5;P4 = 8

Figure 12: Comparison of MSEH with the CRB for different receivers

(with and without rectification)

Analyzing the results plotted on Fig. 12, one can conclude that, for τ ≥ −5dB, the

MKRF/LS receiver gives the same channel MSEH as the one obtained with the supervised

LS receiver (i.e., Eq. (84) with perfect a priori knowledge of S instead of the reconstructed
ˆ̂
Ŝ). That corroborates the very good estimation of the symbol matrices with the MKRF algo-

rithm. Fig. 12 also shows that the best MSEH performance is obtained with the MKRF/L-

S/ALS receiver, illustrating the performance gain brought by the refined channel estimator,

in comparison with the channel estimate provided by the MKRF algorithm, for estimating

the multipath parameters with the ALS algorithm and then reconstructing the final channel

estimate. Finally the rectification algorithm, combined with the MKRF/ALS receiver allows

to significantly improve the MSEH, while this improvement is much less marked with the

MKRF/LS/ALS receiver, the MSEH being already very close to the expected CRB, on a

large SNR range, for this last receiver.
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On the other hand, applying the ALS algorithm to a badly estimated channel by means of the

MKRF algorithm does not significantly improve the system performance. The rectification

algorithm does not bring a great improvement to the MKRF/ALS receiver.

Finally, in Fig. 13, we compare the MSEX of the reconstructed received signals, obtained

with the MKRF, MKRF/LS, MKRF/ALS and MKRF/LS/ALS receivers, without and with

rectification. This MSEX is calculated by means of the following expression:

MSEX =
1

Mc

Mc∑
mc=1

‖ (X̃mc)TsMR×KP − (
ˆ̂
Hmc)TsMR×MT

(
C �

ˆ̂
Ŝ(2)
mc � · · · �

ˆ̂
Ŝ(M)
mc

)T
‖2
F (90)

From this figure, one can conclude that the MKRF/LS receiver outperforms the MKRF

receiver and that the rectified MKRF/LS/ALS receiver gives the best MSEX performance

owing to the refined LS channel estimation. These results corroborate the previous conclu-

sions concerning the channel MSEH in Fig. 12 and the angle RMSE in Fig. 10. We also

note that the ALS algorithm combined with the MKRF one does not provide a significant

improvement of the reconstructed tensor of received signals MSEH, the channel being not

well estimated by means of the MKRF algorithm. Note that all the receivers using the

rectification algorithm improve angle estimation.

8. Conclusion

A MIMO communication system combining KRST and MKRSM codings has been pro-

posed in a time varying multipath context. Considering the Khatri-Rao products of M − 1

symbol matrices, we have shown that the received signals form a (M +2)-order tensor which

satisfies a generalized nested PARAFAC model. This extension of the nested PARAFAC

model has been considered in more detail for a (M+N)-order tensor, and various parameter

estimation algorithms have been discussed.

Semi-blind receivers allowing to jointly estimate the information symbols and the mul-

tipath parameters have been developed combining the MKRF algorithm for symbols and

channel estimation, with the ALS algorithm for multipath parameters estimation, which

gives the MKRF/ALS receiver. A refined solution has also been proposed using a very sim-

ple LS channel estimator which takes the column-orthonormal assumption on the coding
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L = 2;MR = MT = K = 3;Ts = 5;M = 4;P2 = 3;P3 = 5;P4 = 8

Figure 13: Comparison of MSEX obtained with different receivers

(with and without rectification)

matrix and the QAM modulation into account. That leads to the MKRF/LS/ALS receiver.

Both receivers include a suppression of scalar ambiguities and a rectification algorithm to

improve the accuracy of the DoD and DoA angles estimation by taking the Vandermonde

structure of the steering matrices into account. The computational complexity of the re-

ceivers has been analyzed. The expected CRB that provides a lower bound for channel MSE

has been established. The derived expected CRB follows a compact closed-form expression.

As expected, it is proportional to the noise variance and the channel dimensions, whereas it

is inversely proportional to the dimensions of the symbol matrices.

Monte Carlo simulation results have corroborated that an increase of the number of sym-

bol matrices in the MKRSM coding improves the SER and the channel MSE performances.

Moreover, the simulations have allowed to conclude that the length K of the time spreading

of the KRST coding and the number MT of transmit antennas do not significantly impact the

SER performance. The simulation results have illustrated the very good SER performance

obtained with the closed-form MKRF algorithm. It was also shown that the channel MSE

obtained using the refined LS channel estimator which exploits the symbols estimated by

means of the MKRF algorithm is very close to the channel MSE obtained with the super-
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vised (pilots-based) receiver, the corresponding channel MSE being very close to the CRB.

Finally, the simulation results have corroborated that the rectification algorithm contributes

to a significant performance improvement for angle estimation.

References

9. Bibliography

[1] R. A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for

an” explanatory” multimodal factor analysis, UCLA Working Papers in Phonetics 16

(1970) 1–84.

[2] G. Favier, A. L. F. de Almeida, Overview of constrained PARAFAC models, EURASIP

J. Advances in Signal Processing (2014).

[3] A. L. F. de Almeida, G. Favier, Double Khatri-Rao space-time-frequency coding using

semi-blind PARAFAC based receiver, IEEE Signal Processing Letters 20 (2013) 471–

474.

[4] L. R. Ximenes, G. Favier, A. L. F. de Almeida, Semi-blind receivers for non-regenerative

cooperative MIMO communications based on nested PARAFAC modeling, IEEE Tr.

on Signal Processing 63 (2015) 4985–4998.

[5] L. R. Ximenes, G. Favier, A. L. F. de Almeida, Closed-form semi-blind receiver for

MIMO relay systems using double Khatri–Rao space-time coding, IEEE Signal Pro-

cessing Letters 23 (2016) 316–320.

[6] W. Freitas, G. Favier, A. L. F. de Almeida, Sequential closed-form semi-blind receiver

for space-time coded multihop relaying systems, IEEE Signal Processing Letters 24

(2017) 1773–1777.

[7] M. N. da Costa, G. Favier, J.-M. Romano, Tensor modelling of MIMO communication

systems with performance analysis and Kronecker receivers, Signal Processing 145

(2018) 304–316.

34



[8] A. L. F. de Almeida, G. Favier, J. P. C. L. da Costa, J. C. M. Mota, Overview of tensor

decompositions with applications to communications, Chapter 12 in Signals and Images:

Advances and Results in Speech, Estimation, Compression, Recognition, Filtering, and

Processing, CRC-Press, 2016.

[9] G. Favier, C. A. R. Fernandes, A. L. F. de Almeida, Nested Tucker tensor decomposition

with application to MIMO relay systems using tensor space-time coding (TSTC), Signal

Processing 128 (2016) 318–331.

[10] D. Sousa Rocha, C. A. R. Fernandes, G. Favier, MIMO multi-relay systems with

tensor space-time coding based on coupled nested Tucker decomposition, Digital Signal

Processing 89 (2019) 170–185.

[11] Y. Zniyed, R. Boyer, A. L. F. de Almeida, G. Favier, Tensor-train modeling for MIMO-

OFDM tensor coding-and-forwarding relay systems, in: 2019 EUSIPCO.

[12] G. Favier, M. N. Da Costa, A. L. F. de Almeida, J. M. T. Romano, Tensor space–time

(TST) coding for MIMO wireless communication systems, Signal Processing 92 (2012)

1079–1092.

[13] G. Favier, A. L. F. de Almeida, Tensor space-time-frequency coding with semi-blind

receivers for MIMO wireless communication systems, IEEE Tr. on Signal Processing 62

(2014) 5987–6002.

[14] W. Freitas, G. Favier, A. L. F. de Almeida, Generalized Khatri-Rao and Kronecker

space-time coding for MIMO relay systems with closed-form semi-blind receivers, Signal

Processing 151 (2018) 19–31.

[15] H. Krim, M. Viberg, Two decades of array signal processing research: the parametric

approach, IEEE Signal Processing Magazine 13 (1996) 67–94.

[16] J. Li, P. Stoica, MIMO radar with colocated antennas, IEEE Signal Processing Magazine

24 (1996) 106–114.

35



[17] R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Tr. on

Antennas and Propagation 34 (1986) 276–280.

[18] R. Roy, T. Kailath, ESPRIT-estimation of signal parameters via rotational invariance

techniques, IEEE Tr. on Acoustics, Speech, and Signal Processing 37 (1989) 984–995.

[19] D. Nion, N. Sidiropoulos, Tensor algebra and multidimensional harmonic retrieval in

signal processing for MIMO radar, IEEE Tr. on Signal Processing 58 (2010) 5693–5705.

[20] R. Boyer, Performance bounds and angular resolution limit for the moving colocated

MIMO radar, IEEE Tr. on Signal Processing 59 (2011) 1539–1552.

[21] X. Wang, W. Wang, J. Liu, Q. Liu, B. Wang, Tensor-based real-valued subspace

approach for angle estimation in bistatic MIMO radar with unknown mutual coupling,

Signal Processing 116 (2015) 152–158.

[22] B. Xu, Y. Zhao, Z. Cheng, H. Li, A novel unitary PARAFAC method for DOD and

DOA estimation in bistatic MIMO radar, Signal Processing 138 (2017) 273–279.

[23] F. Wen, X. Xiong, Z. Zhang, Angle and mutual coupling estimation in bistatic MIMO

radar based on PARAFAC decomposition, Digital Signal Processing 65 (2017) 1–10.

[24] Y. Guo, X. Wang, W. Wang, M. Huang, C. Shen, C. Cao, G. Bi, Tensor-based angle

estimation approach for strictly noncircular sources with unknown mutual coupling in

bistatic MIMO radar, Sensors 18 (2018) 1–14.

[25] B. Yao, Z. Dong, W. Liu, Effective joint DOA-DOD estimation for the coexistence of

uncorrelated and coherent signals in massive multi-input multi-output array systems,

EURASIP Journal on Advances in Signal Processing (2018) 64.

[26] P. R. B. Gomes, A. L. F. de Almeida, J. P. C. L. da Costa, R. T. de Sousa, A nested-

PARAFAC based approach for target localization in bistatic MIMO radar systems,

Digital Signal Processing 89 (2019) 40–48.

36



[27] A. L. F. de Almeida, G. Favier, J. C. M. Mota, Multipath parameter estimation of time-

varying space-time communication channels using parallel factor analysis, in: (2006)

IEEE Int. Conf. on Acoustics Speech and Signal Processing, volume 4.

[28] C. E. R. Fernandes, G. Favier, J. C. M. Mota, Blind multipath MIMO channel pa-

rameter estimation using the PARAFAC decomposition, in: 2009 IEEE Int. Conf. on

Communications.

[29] Y. Zniyed, R. Boyer, A. L. F. de Almeida, G. Favier, Tensor train representation of

MIMO channels using the JIRAFE method, Signal Processing 171 (2020).

[30] N. D. Sidiropoulos, R. S. Budampati, Khatri-Rao space-time codes, IEEE Tr. on Signal

Processing 50 (2002) 2396–2407.

[31] R. Boyer, P. Comon, Rectified ALS algorithm for multidimensional harmonic retrieval,

in: Sensor Array and Multichannel Signal Proc. Workshop (SAM), IEEE, pp. 1–5.

[32] J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with

application to arithmetic complexity and statistics, Linear Algebra and its Applications

18 (1977) 95–138.

[33] Y. C. Eldar, Rethinking biased estimation: Improving maximum likelihood and the

Cramer Rao bound, Foundations and Trends in Signal Processing (2008) 305–449.

[34] P. Stoica, R. L. Moses, Spectral analysis of signals, Wiley, 2005.

[35] A. Y. Kibangou, G. Favier, Non-iterative solution for PARAFAC with a Toeplitz matrix

factor, in: (2009) 17th European Signal Processing Conference, pp. 691–695.

[36] G. Favier, Matrices and tensors in signal processing, volume 2, Wiley, to appear in 2020.

Appendix A. Khatri-Rao factorization (KRF) algorithm

Let A ∈ CI×L, B ∈ CJ×L, and Y = A � B ∈ CIJ×L. The KRF algorithm allows to

estimate the matrix factors A and B from their Khatri-Rao product (KRP) Y by operating
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column by column [35]. The method consists in building a rank-one matrix Xl = bl ◦ al =

bla
T
l ∈ CJ×I associated with the l-th column of Y, that is, yl = al � bl ∈ CIJ , where

al and bl are the l-th columns of A and B, respectively, and then calculating the SVD:

Xl = unvecJ×I(yl) = UlΣlV
H
l = σl(1)ul(1)vHl (1), where ul(1) and vl(1) are respectively the

left and right singular vectors associated with the dominant singular value σl(1).

The estimates of the column vectors al and bl are then given by:

âl =
√
σl(1)v∗l (1) , b̂l =

√
σ1(1)ul(1), (A.1)

and therefore Â = [â1, · · · , âL] and B̂ = [b̂1, · · · , b̂L].

Note that the estimates (âl, b̂l) are unique up to a scalar ambiguity which can be removed

using the knowledge of one component of al or bl.

Appendix B. Multiple KRF (MKRF) algorithm

Consider the multiple Khatri-Rao product (KRP) of M vectors u(m) ∈ CIm :

y =
M�
m=1

u(m) ∈ CI1···IM . (B.1)

The MKRF algorithm allows to estimate the vectors u(m) from their KRP y. The idea

behind this algorithm is to apply the KRF algorithm after some permutations of the vectors

u(m). For estimating the first and last vectors, u(1) and u(M), it is possible to apply directly

KRF by chosing the vectors al and bl as:

al = u(1) , bl =
M�
m=2

u(m) (B.2)

al =
M−1�
m=1

u(m) , bl = u(M). (B.3)

The estimates of u(1) and u(M) are then provided by the KRF algorithm as the vectors

âl and b̂l defined in (A.1), respectively. For estimating the other vectors u(m), with m ∈

{2, · · · ,M − 1}, we use a permutation matrix Πm which places u(m) at the first position in

the MKRP y, without modifying the position of the M − m last vectors, which gives the

following equation [36]:(
Πm ⊗ IIm+1···IM

)
y = u(m) m−1�

j=1
u(j) M�

j=m+1
u(j) (B.4)
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where IIm+1···IM is the identity matrix of order
M∏

j=m+1

Ij, and Πm is the permutation matrix

of order
m∏
j=1

Ij given by [36]:

Πm =

I1∑
i1=1

· · ·
Im∑
im=1

(
e

(Im)
im

m−1
⊗
j=1

e
(Ij)
ij

)( m
⊗
j=1

e
(Ij)
ij

)T
(B.5)

e
(Im)
im

being the im-th vector of the canonical basis of RIm .

In the case of a multiple KRP of M matrices S(m) ∈ CIm×L, that is, S =
M�
m=1

S(m), the

MKRF algorithm previously described for the MKRP of M vectors can be applied to each

column of S. It is important to note that this computation can be made in parallel, column

by column.

Assuming the first row of each matrix S(m) is composed of 1’s, i.e., S
(m)
1. = [1 · · · 1], the

scaling ambiguities on the estimates Ŝ
(m)

can be removed using the following equation:

ˆ̂
S(m) = Ŝ

(m)
∆S(m) with ∆S(m) =

[
diag(Ŝ

(m)

1. )
]−1

, m ∈ 〈M〉, (B.6)
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