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Abstract

Modulated-Demodulated control (or vector control) allows to simultaneously

impose amplitude and phase of a resonator. Moreover, the working frequency

in the case of discrete-controller is substantially lower than the resonance fre-

quency. However, the design of a such controller can be complex. In this

paper, we outline a design directly in the baseband. To do so, the oscillator is

modelled as a non-dimensional Multi-Input-Multi-Output system. An optimal

control (Linear Quadratic Regulator) framework can then be used to design the

controller. Thanks to ad-hoc performances criteria, the weighting matrices are

systematically specified according to the desired closed-lop time response. The

methodology is validated by an experimental results on a plate actuated using

piezoelectric patches.

Keywords: Vector Control (demodulated-modulated control), Piezoelectric

transducer, Linear Quadratic Regulator (LQR), Vibration control

1. Introduction

Many medical and industrial processes use resonating electromechanical sys-

tems e.g. in nebulizer, echography or ultrasonic welding. In some of these ap-

plications [1, 2], vibration need to be maintained at a given level of amplitude
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and track the resonance frequency in spite of the non-linearity and exogenous

perturbations [3, 4].

Because these systems often operate at high frequencies, the implementa-

tion of a fast and precise closed-loop discrete-controller requires high sampling

frequencies and fast computing capabilities. Therefore, some authors rather use

open-loop control for which a perfect knowledge of the system is required. In

MEMS, Borovic & al. [5] conclude that if the device has 2 positions, open-loop

control is sufficient, but if the device has to be positioned between 0 and 100

%, then closed-loop control is preferred. For resonant devices, which operate at

their resonance frequency, it is important to control the vibration amplitude,

because the load can modify the damping or induce a non-linear behaviour

[1]. Since this acoustic load is hardly predictable, closed-loop controls are im-

plemented. Babitsky et al.[6] proposed a self-oscillating circuit to control the

vibration at resonance without knowing the dynamic response of the system. In

[7], a non-linear controller is designed in order to control the position of a Travel-

ing Wave Ultrasonic Motor. The authors claim superior performances compared

to a Proportional-Integral (PI) controller. However, dynamic responses was not

studied.

As a consequence of the dramatic cost reduction of some electronic parts, like

Digital Signal Processors (DSP) for instance, modulation-demodulation control

structure becomes competitive [8]. This control consists in demodulating the

measure by a sinusoidal signal in order to obtain the in-phase and in-quadrature

components, and to modulate controller’s outputs by the same signal. This

method has shown good results for active damping of structures [9]. For Ultra-

sonic transducer, the method is called Vector Control Method as a reference to

the control of Electromagnetic motors, and it has been successfully applied to

the control of a Langevin transducer to be robust despite system’s non lineari-

ties [10]. In this work, good dynamic results are obtained with PI controllers.

The design of the controller is based on a simplified model assuming a weak

coupling between the states, which allows to consider two Single Input Single

Output - Proportional Integral (SISO-PI). However, this assumption limits the
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closed-loop dynamics. In order to relax this limitation, this decoupling assump-

tion must be dropped and a Multi Input Multi Output (MIMO) design is then

necessary. However, the tuning of the controllers parameters are complicated

as the system is MIMO [11]. In [12, 13, 14, 15, 16], the authors propose to

use the Linear Quadratic Regulator (LQR) methodology to derive the SISO or

MIMO-PID controllers. However, the choice of the Q and R matrices is still

left to the designers judgement and experience, or using optimization procedure

[15].

In this paper, the model of the oscillator in the baseband is reformulated to

take into account the higher dynamics. A non-dimensional model is then derived

for the sake of generality. Performances criteria describing the desired closed

loop dynamic and the transient vibration envelop are then proposed. Based on

these criteria, the weighting matrices coefficients can be directly expressed as a

function of the desired closed-loop time response and thus the PID controller

coefficients can be deduced.

The rest of the paper is organized as follows. In section 2, the normalized

dynamic model of the resonant transducer in a demodulated form is presented.

In section 3, the method to implement MIMO-PID controller based on the LQR

design is recalled. The performances indexes are introduced, and their relation

with the weighting matrices is studied, yielding a systematic procedure to design

the controller. In the following part,the experimental set-up and protocol are

explained. Experimental tests confirming the methodology are then presented.

Finally, the paper ends with the conclusion in section 5.

2. Dynamic modelling

2.1. State space representation in the demodulated space

We consider a damped linear harmonic oscillator, which dynamic is given in

a normalized form as follows:

η̈(t) + 2ξωnη̇(t) + ω2
nη(t) = ω2

nf(t) (1)
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Where η(t) is the deflection of the resonator, ξ the damping factor, ωn the res-

onance frequency, and f(t) the external normalized force applied to the system

which produces its oscillation. Actually, due to normalization f(t) is rather the

quasi-static displacement under the real load and it is expressed in meter (m).

This model is actually general, and can represent for instance the dynamic of

the behaviour of a given mode once projected in the modal basis either for a

lumped parameters or a continuous system (see [17, p. 25] or [18, p.440] for in-

stance). When the displacement η and the external force f are purely harmonic,

one we can use their complex form as in the following equations:

η(t) = (Hd(t) + jHq(t))e
jωt (2)

f(t) = (Fd(t) + jFq(t))e
jωt (3)

Where Hd and Hq are respectively the real and imaginary part of the deflection,

Fd and Fq are the real and imaginary part of the external force and ω is the

excitation frequency which is also the pulsation of the resonator in this paper.

By deriving two times the Eq.2

η̇ = [(Ḣd + jḢq) + jω(Hd + jHq)]e
jωt (4)

η̈ = [(Ḧd + jḦq) + 2jω(Ḣd + jḢq)− ω2(Hd + jHq)]e
jωt (5)

By replacing the Eq. (2) (3) (4) and (5) into (1) a system of two differential

equation are obtained. The resulting equations can be expressed as a state space
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Figure 1: The equivalent model of a damped harmonic oscillator in a demodulated form

representation, and we have:

ẋ = Ax+Bu
Ḣd

Ḣq

Ḧd

Ḧq

 =


0 0 1 0

0 0 0 1

ω2 − ω2
n 2ξωωn −2ξωn 2ω

−2ξωωn ω2 − ω2
n −2ω −2ξωn




Hd

Hq

Ḣd

Ḣq

+


0 0

0 0

ω2
n 0

0 ω2
n


Fd
Fq



y = Cx =

1 0 0 0

0 1 0 0



Hd

Hq

Ḣd

Ḣq


(6)

Where the output is y = [Hd, Hq]
T .

Hence, by applying the transformation of the Eq. (2) and Eq. (3), we obtain

an equivalent model of the harmonic oscillator into the demodulated state space,

which dynamic depends on the difference between the resonance frequency ωn

and the operating frequency ω. The equivalent scheme of this representation is

shown in the Fig.1. The Fig.2 shows an example of demodulated signals.
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Figure 2: Example of a Demodulated signals : (left) example of two vibration signals with

the same envelope and with different phases, and their (right) real and imaginary parts when

demodulated.

2.2. Normalized Model

For sake of generality, the state space representation of the Eq. (6) is written

in a normalized form that depends only on the damping ξ and the relative

frequency Ω = ω
ωn

. For that purpose, we define a new time base θ = ωnt, and

the state variables are revised into:

Hnd = Hd H ′nd =
dHnd

dθ
=
Ḣd

ωn
H ′′nd =

d2Hnd

dθ2
=
Ḧd

ω2
n

(7)

Hnq = Hq H ′nq =
dHnq

dθ
=
Ḣq

ωn
H ′′nq =

d2Hnq

dθ2
=
Ḧq

ω2
n

(8)

Introducing these new variables into the Eq. (6), yields:

ẋn = Anxn +Bnun
H ′nd

H ′nq

H ′′nd

H ′′nq

 =


0 0 1 0

0 0 0 1

Ω2 − 1 2ξΩ −2ξ 2Ω

−2ξΩ Ω2 − 1 −2Ω −2ξ




Hnd

Hnq

H ′nd

H ′nq

+


0 0

0 0

1 0

0 1


Fd
Fq

 (9)

To analyze the dynamic of the system in its demodulated space, we first

calculate the characteristic polynomial of the plant P (λn) = det(λnI − An)
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which gives:

P (λn) = λ4n+4ξλ3n+(4ξ2+2Ω2+2)λ2n+4ξ(1−Ω2)λn+Ω2(Ω2+4ξ2−2)+1 (10)

The eigen values of this plant do not have general form. However, for the

specific case of a low damped oscillator (ξ < 1), they can be approximated by:

λn(1,2) = −ξ ± j(Ω +
√

1− ξ2)

λn(3,4) = −ξ ± j(Ω−
√

1− ξ2)
(11)

Hence, compared with the system in its natural state space, the poles in

the demodulated form resembles the poles of a second order system to which

are added the demodulation term ±jω (or ±jΩ for normalised model)[9]. By

operating the resonator close to its resonant frequency (Ω = 1), 2 poles of the

system get closer to the real axis, as depicted in Fig. 3.

Figure 3: Eigenvalues of a second order system, in a normalized time base, before and after

demodulation (respectively circles and crosses).

This normalized representation of the system in the demodulated state space

allows us to consider the general design of the controllers, as presented in the

next section of this paper.
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3. General design of the controllers

3.1. State feedback to MIMO-PID

In this work, we present a method to control the resonator’s oscillation using

MIMO-PID state feedback controller in the demodulated state space, and the

parameters of this controller are calculated using an LQR approach.

Let’s consider the augmented state space representation which yields:

˙̂xn = Ânx̂n + B̂nun

Hnd

Hnq

H ′nd

H ′nq

H ′′nd

H ′′nq


=



0 0

0 0

1 0 0 0

0 1 0 0

0 0

0 0

0 0

0 0

 An







∫
Hnd∫
Hnq

Hnd

Hnq

H ′nd

H ′nd


+



0 0

0 0 Bn




Fd
Fq

 (12)

Therefore, the MIMO-PID controller consists then to write the input un =

[Fd, Fq]
t as:

un = Knx̃n = Kn(x̂nref − x̂n) =
[
Kni Knp Knd

]
x̃n

=

kni1 kni2

kni3 kni4

∫ H̃nd∫
H̃nq

+

knp1 knp2

knp3 knp4

H̃nd

H̃nq

+

knd1 knd2

knd3 knd4

H̃ ′nd
H̃ ′nq


(13)

Where x̃n = [
∫
H̃nd,

∫
H̃nq, H̃nd, H̃nq, H̃

′
nd, H̃

′
nq] and where H̃nd = Hnd −Hdref

and H̃nq = Hnq−Hqref . The design of this controller needs then 12 parameters

to be chosen to give an optimized behaviour of the system. In the following

section, we apply the LQR method to optimally determine the value of these

parameters.

3.2. PID Controller tuning via LQR approach

To get an optimal Kn feedback matrix, one of the most popular methods

is to use an LQR approach, as it allows to reduce the transient of tracking
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error (response time/overshoot) while minimizing the control effort [17]. The

LQR approach consists in finding a state feedback (13) minimizing the following

criteria J :

J =

∫ ∞
0

(x̂TnQx̂n + uTnRun)dt (14)

Where Q is semi positive definite (Q ≥ 0) and R positive definite (R > 0).

These matrix can be tuned to get the desired performance while respecting the

actuators maximum effort. It can be shown that a solution to this optimization

problem, is to give Kn the following expression [17]:

Kn = R−1B̂TnP (15)

where P is the solution of the algebraic Riccati equation (P ≥ 0)

PÂn + ÂTnP +Q− PB̂nR−1B̂TnP = 0 (16)

Tuning the closed loop system is then achieved through the matrices R and

Q. However, in this system, since Hnd and Hnq are two component of the same

signal, there is no reason to favour the imaginary part over the real part (and

vice-versa), and the matrices R and Q will be chosen as follows:

Q = diag[qi, qi, qp, qp, 0, 0]

R = diag[1, 1]
(17)

Where qi and qp are the weighting gains associated respectively with the in-

tegrals (
∫
H̃nddθ,

∫
H̃nqdθ) and proportionals (H̃nd, H̃nq); the weighting gains

associated with the derivatives are left equal to zero in order to reduce the am-

plification of measurement noise. It is a known effect due to the amplification

of the signals at high frequencies, where the noise level is higher [19, p.615]. In

vibration amplitude control, the objective is to achieve an exponentially con-

vergent envelop with a given rising time, from 10% to 90% of the steady state

value. To quantify the effect of the weighting gains, we define the following

speed and shape criteria:

• lg(α) = lg( trtrc ) is the decimal logarithm of the ratio between the rising

time in open-loop (tr) and in closed-loop (trc), this indicator is defined
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as the acceleration factor. Since the study assumes that the operating

frequency is at resonance Ω = 1, the dominant poles (λn(3,4)) are then

purely real, according to Eq.11. Hence, tr is approximately tr ' 2.2/(ξωn).

We can also express α as lg(α) = lg( ξcξ ), where ξc is the closed-loop

damping.

• lg(γ) = lg( trc
2.2τc

), where τc is defined as the settling time from 0% to 63.8%

of the steady state value. This value was chosen because it corresponds

to the time constant of a first order system.

An acceptable closed loop dynamic is reached if the desired rise time in

closed loop is obtained. Moreover the time response should be exponentially

convergent which is achieved if the closed loop rise time (10% − 90%) equals

2.2 times the closed loop time constant (0% − 63.8%). Thus, the following

condition lg(γ) = 0 should be respected. In practice, the response is considered

to be exponentially convergent for |lg(γ)| < 0.02.

To illustrate the effect of qi and qp, the fig.4(a-c) shows the criteria lg(α) and

lg(γ) as a function of the weighting gains qi and qp, for ξ = 10−4 and Ω = 1. The

fig.4 (a) shows that in order to have a given α there is several couple qi and qp

that lead to the same result. However, considering time response depicted in the

Fig.4 (c), one can observe that the exponential convergence is not guaranteed

in the region A and C of the Fig.4 (b). Hence, considering that this exponential

convergence is obtained if |lg(γ)| < 0.02, we remove from 4-a the zones A and

C depicted on the 4-b where this condition is not fulfilled, giving rise to fig.4-d.

This can be ensured by constraining qi and qp along a line as depicted in black

on the same figure. On this line, we write lg(qi) = a× lg(qp) + b with a = 1 and

b = −8.

As shown in the Fig.4-(d:i), the same procedure is performed for ξ ∈
[
10−7, 10−2

]
and for each plot the values of a and of the coordinates [lg(qp0), lg(qi0)] for which

lg(α) = 0 (i.e tr = trc) are taken; the results are given in the table 1.

From the Tab 1, several approximations can be made. First, a is supposed
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Figure 4: Closed loop performances as a function of the weighting parameters (qp and qi) : (a)

relation between the acceleration factor lg(α) and the weighting parameters for ξ = 10−4, (b)

relation between the indicator lg(γ) and the weighting parameters for ξ = 10−4, (c) examples

of closed-loop time responses when the weighting parameters are chosen in zone A,B and

C and for ξ = 10−4, (d-i) relation between the acceleration factor lg(α) and the weighting

parameters by eliminating all the zone where jlg(γ)j > 0.02 for different value of ξ
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lg(ξ) -7 -6 -5 -4 -3 -2

a 1.0000 1.0000 1.0000 0.9999 1.0000 0.9913

b -13.9950 -12.0000 -10.0000 -7.9894 -6.0000 -4.0292

lg(qp0) -13.3939 -11.4177 -9.3933 -7.3933 -5.4177 -3.3708

lg(qi0) -27.3889 -23.7177 -19.3933 -15.3820 -11.4177 -7.3708

Table 1: Polynomial’s parameters (a,b) of the relation lg(qi) = a� lg(qp) + b and coordinates

[lg(qp0), lg(qi0)] where lg(α) = 0

to be invariant and equal to 1, leading to:

lg

(
qi
qi0

)
= lg

(
qp
qp0

)
(18)

Second, lg(qp0) and lg(qi0) can be approximated by a linear interpolation and

we write:

lg(qp0) = 2× lg(ξ) + 0.6021 ≈ 2× lg(ξ) + lg(4) = lg(4ξ2)

lg(qi0) = 4× lg(ξ) + 0.6021 ≈ 4× lg(ξ) + lg(4) = lg(4ξ4)
(19)

At this point, the methodology gives the weighting parameters such that a

system with damping ξ will have the same dynamic in closed-loop as in open-

loop. So, the next step is to establish a relation between lg(α), lg(qp), lg(qi),

while imposing the Eq.(18). By this way, the weighting parameters can be

calculated for any system damping ξ ∈ [1× 10−7, 1× 10−2] and for any desired

dynamic α. The relation between δ = lg(qp/qp0) and lg(α) for different values of

ξ is shown in the Tab 2 . From the values in this table, it can be observed that for

a given δ, lg(α) is almost invariant (less than 0.1% for ξ ∈ [1× 10−7, 1× 10−2]),

while, for a given ξ, δ varies almost linearly. Therefore, a linear interpolation

can be applied as follows lg(α) = aα × lg(qp/qp0) + bα.

Tab 3 gathers the coefficient of the linear regression within a considered

range for ξ ∈ [1× 10−7, 1× 10−2] and δ ∈ [−2, 2]. It can be observed that 1) aα

is constant, 2) bα is small compared to the practical range of lg(α), 3) the norm

of the residuals ||e|| decreases with ξ and are always smaller than 2.04× 10−2.

Since bα is small enough, the relation between lg(α) and lg(qp/qp0) is further

12



δ

ξ
10−7 10−6 10−5 10−4 10−3 10−2

-2.0 -1.0000 -1.0000 -1.0000 -1.0000 -1.0001 -0.9998

-1.5 -0.7500 -0.7500 -0.7500 -0.7500 -0.7501 -0.7498

-1.0 -0.5000 -0.5000 -0.5000 -0.5000 -0.5001 -0.4997

-0.5 -0.2500 -0.2500 -0.2500 -0.2500 -0.2501 -0.2496

0.0 0.0000 0.0000 0.0000 0.0000 -0.0002 0.0004

0.5 0.2500 0.2500 0.2500 0.2500 0.2498 0.2479

1.0 0.5000 0.5000 0.5000 0.5001 0.5003 0.4978

1.5 0.7500 0.7500 0.7501 0.7500 0.7497 0.7460

2.0 1.0000 1.0000 1.0000 1.0001 0.9990 1.0000

Table 2: Relation between δ = lg(qp/qp0) and lg(α) for different values of ξ 2 [10−7, 10−2]

lg(ξ) -7 -6 -5 -4 -3 -2

aα 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

bα 1.34e−4 −1.23e−4 4.24e−5 4.36e−5 4.30e−5 4.30e−5

||e|| 2.04e−2 2.8e−3 2.07e−4 2.56e−5 4.33e−6 1.16e−6

Table 3: Polynomial’s parameters (a�, b�) of the relation lg(α) = a� � lg(qp/qp0) + b� for

different values of ξ 2 [10−7, 10−2], and the norm of the residuals jjejj

simplified as:

lg(α) = aα × lg

(
qp
qp0

)
=

1

2
× lg

(
qp
qp0

)
(20)

Considering a range of αξ ≤ 10−1, the Eq. (20) gives α with an accuracy of

at least 99.5%. By replacing the Eq.(19) and the Eq.(18) into the Eq.(20), we

can write an empirical formula of the weighting gains in function of the desired

dynamic

lg(qp) = 2× lg(α) + lg(4ξ2)

lg(qi) = 2× lg(α) + lg(4ξ4)
(21)
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After simplifying the equations we get

qp = (2αξ)2 = (2ξc)
2

qi = (2αξ2)2 = (2ξcξ)
2

(22)

At this point, the weighting coefficients qp and qi can be expressed directly from

the system parameter ξ and the design parameter α which sets the closed-loop

dynamic. It is now possible to use them in order to define systematically the Q

and R matrices of Eq. (17) and proceed to solve the Riccati equation for the

normalized system yielding the state feedback matrix Kn of the Eq.(13).

The normalized controller is calculated byFd
Fq

 =

kni1 kni2

kni3 kni4

∫ H̃nd∫
H̃nq

+

knp1 knp2

knp3 knp4

H̃nd

H̃nq

+

knd1 knd2

knd3 knd4

H̃ ′nd
H̃ ′nq

 (23)

The last step is to define the actual gains. For a specific plant with the resonance

frequency ωn, they are deduced from the obtained generalized controller by

applying the variable change H̃nd = H̃d = Hdref−Hd, H̃nq = H̃q = Hqref−Hq,∫
H̃nddθ = ωn

∫
H̃ddt ,

∫
H̃nqdθ = ωn

∫
H̃qdt, H̃

′
nd = dH̃d

dθ =
˙̃Hd

ωn
and H̃ ′nq =

dH̃q

dθ =
˙̃Hq

ωn
. Finally, the implemented controller is writtenFd

Fq

 = ωn

kni1 kni2

kni3 kni4

∫ H̃d∫
H̃q

+

knp1 knp2

knp3 knp4

H̃d

H̃q


+

1

ωn

knd1 knd2

knd3 knd4

 ˙̃Hd

˙̃Hq

 (24)

The resulting closed loop control scheme is shown in the Fig.5

4. Experimental set-up and protocol

4.1. Experimental set-up

In this experimental validation, the strategy is used to control a resonant

plate actuated by piezoelectric ceramics (see Fig.6-a) used in a haptic tactile
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Figure 5: Closed loop control scheme

feedback experiment.

The developed set-up includes STM32F4 (FEZ CERB 40 GHI Electronics LLC)

to implement the demodulation, the controller and the modulation. The sig-

nals are linearly amplified using a high voltage operational amplifier OPA 445

(Texas instrument). To achieve the voltages required to operate the ceram-

ics (up to 200 V peak), the output voltage of the amplifier is further amplified

by a resonant circuit realized by introducing an inductance in series that in-

teract with the blocked capacitance of the piezoelectric ceramics. The induc-

tance is designed to ensure that the electric resonant frequency matches approx-

imately the mechanical resonance. The actual tactile feedback device consists

in a 18× 119× 2mm3 aluminum plate to exploit the first plate bending mode

at 24 860 Hz. The identified mode shape, identified using a laser vibrometer

(Polytec OFV 505), is depicted in Fig.6-b). Below the plate, four piezoelectric

ceramics (16× 4× 0.5mm3) are glued, three of them are used to actuate the

plate. The remaining is connected to one of the STM32 ADC inputs and is

used as a vibration sensor.

4.2. Control scheme

The control implemented (shown in the Fig.7) in this experiment is similar

to the one described in [10] which involves two asynchronous process. First,

Direct Digital Synthesis (DDS), with frequency 1 MHz (Ts =1 µs), generates

the voltage reference that is then amplified to supply the actuators. Since for

15



Figure 6: (a) The vibrating plate and it’s control unit, (b) identified mode shape φk(x, y) of

the 1x1 bending mode

piezoelectric ceramics the generated force is proportional to the voltage v, we

can write in Eq. (1) f = gv and

v = (Vd + jVq)e
jωt (25)

The voltage is generated using the real part of eq.25

v (tk) = Vd cos (ωtk)− Vq sin (ωtk) (26)

Where tk = kTs and k is the sample number. Similarly to [10] the discrete value

of Hd and Hq are calculated as follows

Hd(tk) =

Ns−1∑
n=0

η(tk−n) cos (ωtk−n) (27)

Hq(tk) =

Ns−1∑
n=0

η(tk−n) sin (ωtk−n) (28)

where Ns is the number of samples over a period of the oscillation T = 2π
ω . A

slower process is implemented at a rate of 10 kHz. In closed-loop, it calculates

and updates the voltages components Vd, Vq. In open loop, it is used for dynamic

identification and tests, as discussed in the following section.

4.3. Parameters identification

In some circumstances, the parameters can vary due to environmental vari-

ations such as temperature or modified boundary conditions during tests. In

16



Figure 7: Feedback control scheme

order to identify the dynamic parameters g, ξ and ωn in Eq. (6) an identifica-

tion procedure is performed. It consists in a frequency sweep with bandwidth

of 2∆ω around an a priori resonance frequency ω̂n such that ω = ω̂n ± ∆ω ,

with a constant input voltage. For each value of ω the steady state values of Hd

and Hq are measured. It is also necessary to take into account the non-linear

behaviour of the structure. So, the identification procedure is performed for

different levels of the input voltage.

Once this acquisition performed, the damping factor ξ is calculated using the

extrema of the real part Hd. Let ω1 and ω2 be the angular frequency where Hd

is maximum and minimum (cf Fig. 8) respectively, then, one can verify that:

ξ =
1

2

1− ω2
1

ω2
2

1 +
ω2

1

ω2
2

(29)

Since the argument of H = Hd + jHq are close to −π4 and −3π
4 respectively

for ω1 and ω2 if the damping ξ is small, these points are simple to identify in

practice. With the same assumption on the damping, one can consider that the

resonance frequency ωn corresponds to the maximum gain frequency. Thus, the

static gain g is deduced from:

g = −2× ξ ×=
[
H(jωn)

V (jωn)

]
(30)
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Figure 8: Frequency response of the plate with different input voltage and frequency response

of the nominal model

To handle the structural non-linearity which is responsible for slight variation of

the resonance with the vibration amplitude, for each measurement series with a

given voltage, a corresponding model’s parameters set is identified. According to

this procedure, the obtained nominal parameters are g =2.6834× 10−10 m V−1;

ξ =1.4× 10−3; ωn =1.5596× 105 rad s−1. The Fig.8 shows the real and imagi-

nary part of the frequency response for different input voltages, and the response

of the nominal model is shown in dashed-lines.

4.4. Controller implementation

The method discussed so far yields a PID, even if the weighting associated

with the derivative action is kept nul in Eq.(17) . The derivative action can be

a problem as it tends to amplify measurement noise. The case of continuous

and discrete implementation of the control are examined in Fig. 9. In this

figure, the closed loop poles are normalized by Ω in order to compare oscillators

with different dynamics. Concerning the discrete case, the sampling time used

in the computation of the poles is chosen large enough to respect the Nyquist

frequency with regards to the dynamics αξΩ.

Considering the continuous case, if the derivative actions resulting from the LQR

procedure are omitted, the high frequency poles at 2Ω are shifted toward the

right as the value of α is increased rapidly resulting in an unstable pole pair. By

contrast, including the derivative action induce the opposite behaviour, hence
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PID controllers (resp. dashed and plain lines). In the continuous case, the derivative action is

required to prevent destabilization as the high frequency poles at 2Ω contrarily to the discrete

case.

no instability is possible.

This contrasts with discrete case, where the high frequency poles remain mostly

unchanged with regards to the choice of α for the PI and PID controllers. Hence,

in this work, the derivative action is omitted in the following tests.

4.5. Results

In order to validate the control approach presented in this paper, a com-

parison between different desired dynamics (α=[0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0,

3.5, 4.0]) and experimental obtained dynamics is presented. The value of α are

used to calculate the MIMO-PID gains by using the approach developed in the

previous section. Since the implemented controller is discretized, we consider

that a MIMO-PI is sufficient in order to have the same performances. Indeed,

the Fig.9-b shows the closed-loop discrete poles when using a MIMO-PID or a

MIMO-PI controller for different α values. The figure show that the poles and

zeros are quasi-identical when using a PID or a PI discrete controller.

The controller gains are then implemented in the DSP. In each case, the

closed loop step response of the resonant plate is recorded, her the reference

vector Hdref =0.5 µm,Hqref =0 µm. The Fig. 10 shows some examples of tests
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Figure 10: Step response for α = (0.5, 1.0, 2.0)

where the time response is slower, equal or faster than the natural time response

of the plate. On the same figure, the theoretical responses are superimposed,

showing a good agreement between prediction and measurement. Oscillations

can also be observed, which are more important for higher α. They are caused

by the spillover effect due to neighbour modes. Since the vibrations signal are

demodulated, the oscillation frequency corresponds to the difference between

the controlled mode and the neighbour mode. A large choice of α induces a

larger closed-loop bandwidth and thus increases the spillover effect, which is

not considered in the model (6).

To further assess the theory discussed above, the Fig. 11 depicts the loga-

rithm of the time response to a reference for various α. The tendency is linear

as expected. Based this figure, the slope αexp is identified and compared to the

theoretical values α on table 4. However, it can be noted that for low values

of α, the discrepancy between theory and measurement can be large. Actually,

this is due to the fact the gain implemented to slow down the transient are

small. As a consequence, the voltage applied is small, and results in a coarse

output voltage once converted by the digital to analog conversion. Hence, the

seemingly constant output at start-up and steady-state that can be observed

for α = 0.25, and results in a rough linear approximation. For high values of α,

however, the good agreement proves that the simplifying hypothesis proposed

in the theory are verified and it demonstrates the validity of the method.
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)) for various α, the

slope of the fitted lines corresponds to the closed-loop time constant 1/(ξcωn)

α 0.25 0.5 1 1.5 2 2.5 3 3.5 4

αexp 0.314 0.453 1.01 1.58 1.99 2.40 3.95 3.56 3.93

err(%) 25.6 9.4 7.0 5.3 0.7 3.8 1.5 1.8 1.8

Table 4: Experimental acceleration ratios αexp and the error (in percent)
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5. Conclusion

A method to design systematically the controller for a resonator in a rotating

frame was discussed. First, the model was presented in a state space form, and

the design of the controller is based on a LQR optimal controller. The novelty of

the proposed design is to relate directly the weight matrices Q and R to relevant

performances indexes that guarantee a given time response and an envelop of

the vibration during the transient. This reveals a simple relationship linking the

α index, that governs the time response, to the weighting factors implemented in

the Q and R matrices. The experimental results demonstrate a good agreement

between the theory and the measurements despite some technological limitation

such as the digital/analog conversion. A second issue is the spillover effect that

limit the practical choice for α.
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Ruiz-López, Design of multiloop PI controllers based on quadratic optimal

approach, ISA Transactions 70 (2017) 338–347. doi:10.1016/j.isatra.

2017.07.011.

[15] S. Das, I. Pan, K. Halder, S. Das, A. Gupta, LQR based improved dis-

crete PID controller design via optimum selection of weighting matrices

using fractional order integral performance index, Applied Mathematical

Modelling 37 (6) (2013) 4253–4268. doi:10.1016/j.apm.2012.09.022.

[16] S. Das, I. Pan, S. Das, Multi-objective LQR with optimum weight selection

to design FOPID controllers for delayed fractional order processes, ISA

Transactions 58 (2015) 35–49. doi:10.1016/j.isatra.2015.06.002.

[17] A. Preumont, Vibration Control of Active Structures: An Introduction,

4th Edition, Solid Mechanics and Its Applications, Springer International

Publishing, 2018.

[18] L. Meirovitch, Fundamentals of Vibrations, McGraw-Hill, 2001.

[19] K. Ogata, Modern Control Engineering, 4th Edition, Prentice Hall PTR,

Upper Saddle River, NJ, USA, 2001.

24

http://dx.doi.org/10.1016/j.engappai.2015.09.015
http://dx.doi.org/10.1016/S0009-2509(99)00512-6
http://dx.doi.org/10.1016/S0009-2509(99)00512-6
http://dx.doi.org/10.1049/el:19780555
http://dx.doi.org/10.1016/j.isatra.2017.07.011
http://dx.doi.org/10.1016/j.isatra.2017.07.011
http://dx.doi.org/10.1016/j.apm.2012.09.022
http://dx.doi.org/10.1016/j.isatra.2015.06.002

	Introduction
	Dynamic modelling
	State space representation in the demodulated space
	Normalized Model

	General design of the controllers
	State feedback to MIMO-PID
	PID Controller tuning via LQR approach

	Experimental set-up and protocol
	Experimental set-up
	Control scheme
	Parameters identification
	Controller implementation
	Results

	Conclusion

