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Charcoal has been used as a renewable energy source in many countries. However, the indiscriminate use of wood from native forests is detrimental to sustainability. The development of rapid and efficient methodologies for distinguishing charcoal produced from native Forest or Eucalyptus plantations is essential to curb illegal coal transport and trade. The aim of this study was to distinguish charcoal from native and Eucalyptus woods by Artificial Neural Network (ANN) based on their mineral composition. Specimens from native woods (Apuleia sp., Cedrela sp., Aspidosperma sp., Jacaranda sp., Peltogyne sp., Dipteryx sp. and Gochnatia sp.) and from Eucalyptus sp. hybrid woods from commercial forest plantations were pyrolysed at temperatures from 300 to 700°C in order to simulate the actual pyrolysis conditions and species widely used illegally in southeastern Brazil. The composition and proportion of the mineral elements of charcoal were determined by X-ray fluorescence (XRF).

ANNs were trained based on the elemental composition of the charcoal specimens to classify the species and origin of the charcoals (native forest and Eucalyptus). ANNs based on mineral element content yielded high percentage of correct classification for charcoal specimens by species (72% accuracy) or origin (97% accuracy) from an independent validation sample set.

INTRODUCTION

Charcoal is a major source of energy in many countries. According to FAOSTAT (2018), Brazil occupies the first position among the main world producers of this product and its consumption is concentrated in the steel industry. Extensive areas of Eucalyptus are cultivated to meet the demand of the steel industry in Brazil (IBA 2017). However, wood from native forests has been used illegally.

According to [START_REF] Stange | Wood and charcoal anatomy of four myrtaceae species[END_REF], charcoal producers have used native species from deforestation regions in tropical forests of world. The use of native wood for charcoal production is prohibited in many regions as it increases the deforestation rate in the country.

According to Brazil (2013) the Brazilian government has made a national commitment to make 40% of the annual rates of deforestation in Cerrado biome. In 2016 charcoal manufacture from native forest reduced 31.7% (IBGE, 2016). However, enforcement actions to stop the production, transport and trade of illegally produced charcoal are insufficient because there is no official information about ilegal operations. The Brazilian cerrado is one of the most threatened biomes in the country while it is a conservation priority hotspot (Gonçalves et al. 2018).

Fraud is difficult to identify because of the similarity between the coals when observed with the naked eye [START_REF] Ramalho | Potential of Near-Infrared Spectroscopy for Distinguishing Charcoal Produced from Planted and Native Wood for Energy Purpose[END_REF]. Identification of charcoal by anatomical analysis (Gonçalves et al. 2018) is time consuming and requires highly trained technicians. Alternative techniques for charcoal classification have been investigated, such as image analysis [START_REF] Nisgoski | Anatomical and energy characteristics of charcoal made from five species[END_REF][START_REF] Maruyama | Automatic classification of native wood charcoal[END_REF], where some wood characteristics are extracted and analyzed for discriminating the precursory species. Moreover, some studies have shown promising results applying spectrum-based processing systems for classifying charcoal (Devrieux et al. 2010[START_REF] Ramalho | Potential of Near-Infrared Spectroscopy for Distinguishing Charcoal Produced from Planted and Native Wood for Energy Purpose[END_REF][START_REF] Costa | Evaluation and classification of eucalypt charcoal quality by near infrared spectroscopy[END_REF]) but many limitations need to be overcome to apply these models in real situations where pyrolysis temperature and species are unknown.

The possibility of differentiating charcoals produced from planted or native wood from the mineral composition of charcoal was examined in the present study. X-ray fluorescence (XRF) is a technique used in analytical routines for identifying and measuring mineral elements in solid or liquid samples [START_REF] Weindorf | Advances in portable X-ray fluorescence (pXRF) for environmental, pedological, and agronomic applications[END_REF]. It is a versatile analytical technique that does not require exhaustive preparation of the material to be analyzed [START_REF] Wobrauschek | Total reflection x-ray fluorescence analysis -a review[END_REF].

XRF spectroscopy has been successfully applied in various fields of science that require rapid analytical routines such as agriculture [START_REF] Freitas | How does Ni fertilization affect a responsive soybean genotype? A dose study[END_REF], soil science [START_REF] Pelegrino | Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils[END_REF]), mining (Penido et al. 2019), environmental sciences [START_REF] Muthukalum | Removal of Heavy Metals from Industrial Wastewater Through Minerals[END_REF]) and chemical [START_REF] Szczepanik | The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies[END_REF] and archeological studies [START_REF] Attaelmanan | Identification of archaeological potsherds excavated at Mleiha using XRF[END_REF].

Faced with the challenge of differentiating charcoal produced from planted or native wood, the hypothesis of this study is that the mineral composition of charcoal varies trees have grown in native and planted forest. The soil of forest plantations soils are prepared for production of wood for pulp or bioenergy industries and mineral contents are adjusted before planting. Some studies support our hypothesis, although they are not designed to evaluate this issue. For example, [START_REF] Brewer | Characterization of Biochar from Fast Pyrolysis and Gasification Systems[END_REF] have studied the ash composition of Switchgrass (grass), maize straw and hardwood (unspecified) samples by XRF spectroscopy. The results show that hardwood presented very different levels of CaO, Fe2O3, K2O, MgO, MnO2 and SiO2 from Switchgrass (grass) and maize straw samples. [START_REF] Kim | Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis[END_REF] have evaluated inorganic metals in oak, Eucalyptus, Pinus and Japanese cedar biochars by means of XRF spectrometry. They reported the presence of Si, K, Ca, Al, Mg, Na, P and Fe in all studied materials, but in different concentrations: Oak, Pitch pine and Japonese Ceder present much more Si, Ca, K, Al and Na (in g per kg) than Eucalyptus charcoals.

The above results clearly show that Eucalyptus wood has a very different composition from other biomasses. However, [START_REF] Brewer | Characterization of Biochar from Fast Pyrolysis and Gasification Systems[END_REF] and [START_REF] Kim | Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis[END_REF] did not designed their studies to evaluate the potential of this technique to detect the origin of biochar precursor raw material. In this study, artificial neural networks (ANNs) were developed to evaluate the complex information on the mineral composition of charcoal specimens. ANNs are computational techniques based on mathematical models capable of classifying and predicting material properties [START_REF] Basheer | Artificial neural networks: fundamentals, computing, design, and application[END_REF]. ANN approach has been successfully applied in different fields of forest sciences, such as wood defect detection [START_REF] Wenshu | Study on Wood Board Defect Detection Based on Artificial Neural Network[END_REF], wood veneer classification (Castellani and Rowlands, 2009) and wood species classification [START_REF] Nisgoski | Artificial neural network and SIMCA classification in some wood discrimination based on near-infrared spectra[END_REF][START_REF] Cui | Laser-induced breakdown spectroscopy (LIBS) for classification of wood species integrated with artificial neural network (ANN)[END_REF].

Most studies that applied RNA to wood and its co-products have reported promising results for classification or estimation of properties. However, to our knowledge there is no study involving ANN for charcoal classification by origin, nor for identification of the precursor wood species. Thus, the aim of this study was to develop artificial neural networks to classify the origin of charcoal (native or planted forest) and the precursor species based on their mineral composition.

MATERIAL AND METHODS

Plant Material

Native tropical wood species from the Cerrado and Amazon biomes and reforestation were used in this study. The native species were Cedrela sp. (Cedar, labeled as "C"), Aspidosperma sp. (Peroba labeled as "P"), Jacaranda sp. (Rosewood, labeled as "J"), Apuleia sp. (Garapa labeled as "A"), Peltogyne sp. (Pau-roxo, labeled as "R"), Dipteryx sp. (Cumaru, labeled as "U") e Gochnatia sp. (Camabará, labeled as "B").

As for reforestation, two genetic materials from two forest companies were used. One company produces charcoal (6.5 year old Eucalyptus grandis × E. urophylla hybrid clones labeled "Ev") and the other paper and pulp (6 year old Eucalyptus grandis × E. urophylla hybrid clones). labeled "Ec") [START_REF] Ramalho | Potential of Near-Infrared Spectroscopy for Distinguishing Charcoal Produced from Planted and Native Wood for Energy Purpose[END_REF]. The seven native species occur in the two largest Brazilian biomes, while Eucayptus hybrids were selected to represent the genetic variation that exists between the clonal materials used in reforestation by forestry companies in the country. (2): reforestation hybrids managed for pulp and paper industry.

Specimen Preparation

Central planks were removed from trees. 141 specimens (defect free) were obtained from native and Eucalyptus trees. From the native species, 91 specimens presenting the dimensions of 3.5 cm × 3.5 cm × 10 cm (R × T × L) were produced while 50 specimens (defect free) of Eucalyptus were produced with dimensions of 3.5 cm × 3.5 cm × 10 cm (R × T × L).

Sampling was properly identified using a special pencil (labeling did not disappear after pyrolysis). Before pyrolysis, Wood specimens were kept in an acclimatized room and until reaching 12% moisture.

Pyrolysis Process

Wood specimens were pyrolysed in two laboratory ovens: Muffle furnace and Macro ATG oven (developed by the Center of International Cooperation in Agronomic Research for Development (CIRAD, France) and Universidade Federal de Lavras (UFLA, Brazil) as shown in Figure 2.

Macro ATG furnace

The Macro ATG prototype is equipped with an oven that can reach 1,000°C, a pyrolysis reactor pressure controller, a condensable gas condenser, a load cell, a gas chromatography flowmeter, a control panel and a software. Experiments can be developed using various gases simulating various conditions of partial or complete combustion in the presence of an inert atmosphere [START_REF] Jesus | Macro ATG Kiln: gaseous flow study in the pyrolysis process of Eucalyptus Brazilian[END_REF][START_REF] Ramalho | Potential of Near-Infrared Spectroscopy for Distinguishing Charcoal Produced from Planted and Native Wood for Energy Purpose[END_REF].

Wood specimens were added in a crucible for pyrolysis in the ATG Macro. The temperature inside the system was monitored by means of four thermocouples and the gases resulting from the pyrolysis process were consensed by means of a condenser attached to the oven. After the prototype cooling period, the charcoals were removed and brought to moisture stabilization in a climate room [START_REF] Ramalho | Potential of Near-Infrared Spectroscopy for Distinguishing Charcoal Produced from Planted and Native Wood for Energy Purpose[END_REF].

The pyrolysis of the specimens was performed at an initial temperature of 40°C, a heating rate of 5°C. min -1 and remained for 1 hour at the final temperatures of 300, 500 and 700°C. After the process of converting wood to charcoal, the material remained inside the oven for cooling for fifteen hours [START_REF] Ramalho | Potential of Near-Infrared Spectroscopy for Distinguishing Charcoal Produced from Planted and Native Wood for Energy Purpose[END_REF].

The biological materials carbonized in the Macro ATG oven were Apuleia sp., Cedrela sp., Aspidosperma sp. (Peroba), Jacaranda sp. (Jacarandá) e Eucalyptus, resulting in resulting in hundred one (101) specimens divided into three pyrolysis temperatures.

Muffle furnace

The specimens were pyrolyzed in a muffle furnace (electric; model Q318M; Quimis, São Paulo, Brazil) according to the procedure described in [START_REF] Costa | Evaluation and classification of eucalypt charcoal quality by near infrared spectroscopy[END_REF]. Pyrolysis conditions were: 100°C initial temperature, 1.67°C.min -1 heating rate, 30 minutes at final temperatures 400°C, 500°C, 600°C and 700°C and 16 hours after completion of the conversion process.

The wood specimens were carbonized within a pyrolysis capsule placed inside the muffle furnace. The pyrolysis capsule was connected to a water-cooled condenser coupled to a receiver flask of condensable gases. The charcoal specimens were produced at 400, 500, 600 and 700°C to simulate the temperature range adopted in real situations in most Brazilian industries.

The biological materials carbonized in the muffle furnace were Peltogyne sp., Dipteryx sp., Gochnatia sp. and again Eucalyptus, resulting in resulting in forty (40) specimens divided into four pyrolysis temperatures.

The different furnaces and temperatures were used to verify the influence of the conversion process on the material distinction and to simulate the thermal variation that occurs in an industrial and conventional furnace. After the furnaces were cooled, the charcoals produced were removed and taken to a climate room until moisture stabilization.

X-ray fluorescence spectrometer

The detection of mineral elements was performed using two X-ray fluorescence spectrometers: M4 Tornado and S8 Tiger spectrometer.

M4 Tornado

The quantity of each mineral element present in the different charcoal samples was determined using an Energy Dispersive X Ray Fluorescence (EDXRF) spectrometer provided from Bruker Nano GmbH (M4 Tornado, Germany). On this typical commercial spectrometer the X-ray tube is a Rh micro-focus side window powered by a low power HV-generator and cooled by air. The spot size of 25 μm is obtained using a poly-capillary lens in a Mo-Kα mode. The X-ray generator was operated at 50 kV and 600 μA and different filters were used to reduce the background (100 μm Al/ 50 μm Ti/ 25 μm Cu). The energy resolution of a detector (thermoelectrically cooled silicon-drift-detector) was of 142 eV for 5.9 keV (Mn-Kα). Measurements were carried out under 20 mbar vacuum conditions [START_REF] Silva | Elemental mapping in a contemporary miniature by full-field X-ray fluorescence imaging with gaseous detector vs. scanning X-ray fluorescence imaging with polycapillary optics[END_REF]].

According to [START_REF] Dias | Quantitative evaluation of ante-mortem lead in human remains of the 18th century by triaxial geometry and bench top micro X-ray fluorescence spectrometry[END_REF], the vacuum system avoids back diffusion and improves detection limits.

An inbuilt camera allows visualizing the operating area and permits the analysis in a fully automated mode. According to the required resolution the counting time and the scanning spatial resolution could be freely selected.. The sample is placed directly on a sample holder (360mm × 260 mm), which was attached to a stage translatable along XY. The scanning step size used was 25 μm and the time per analyzed point was 0.5ms × 3 cycles. Each selected area was analyzed over a period to accumulate sufficient data points for high-resolution mapping.

Data output was obtained through the X-ray intensity of specific X-ray peaks corresponding to the element signals measured in each point defined by its X and Y coordinate (μm). The data were converted using the software's function into a data matrix, from which XY contour maps (2-dimensional maps) of the data were generated for each element [START_REF] Silva | Elemental mapping in a contemporary miniature by full-field X-ray fluorescence imaging with gaseous detector vs. scanning X-ray fluorescence imaging with polycapillary optics[END_REF].

The analysis was performed on five (5) specimens of each charcoal produced at different temperatures in the Macro ATG furnace. Each charcoal specimen was placed inside the equipment and a rectangular area was selected for irradiation during the analysis. In this area 100 points were analyzed and the resulting spectrum was the average of all these points.

The treatment of the X-ray spectra, analyze of the peaks and determination of which mineral elements are present in each sample and in what quantity were performed using the software M4 Tornado.

S8 Tiger

An Wavelength-dispersive X-ray fluorescence spectrometer (WDXRF) spectrometer, model S8 Tiger (Bruker Nano GmbH, Berlin, Germany) was also used to determine and quantify the mineral elements present in the different charcoal samples. This spectrometer is equipped with a Rh anode X-ray tube and 4 kW excitation power. The spectrometer is equipped with analyzing crystals XS-55, PET,LiF (200), LiF (220), XS-PET-C, XS-C, Al and Cu filters of different thickness, collimators (0.17, 0.23, 0.46, and 1°), and the box for automatic loading of 60 samples. [START_REF] Suvorova | X-ray fluorescence determination of Cs, Ba, La, Ce, Nd, and Ta concentrations in rocks of various composition[END_REF].

The analysis was performed on two specimens of each charcoal sample. Each specimen was ground and sieved through a 150 micrometer nylon sieve. Pressed pellets were made using 4.5 g of ground charcoal and 3.5 g of Hoechst C wax (C38H76N2O2) of Merck. After homogenization of each sample with the wax, the material was compacted using a Vaneox (Fluxana) hydraulic press with a final pressure of 25 tons. Until reading, the tablets were kept in a desiccator. Soon after, the pellets were placed in specific specimen holders with a diameter of 34 mm and then placed inside the equipment. The analysis was performed by scanning the full length of the sample surface.

The spectrometer is equipped with SPECTRA plus software that allows selecting conditions, measurement parameters, optimal calibration equations, measurement of the calibration set, and mathematical data processing for the calibration set of CRMs [START_REF] Suvorova | X-ray fluorescence determination of Cs, Ba, La, Ce, Nd, and Ta concentrations in rocks of various composition[END_REF]]. The treatment of the X-ray spectra, analyze of the peaks and determination of which mineral elements are present in each sample and in what quantity were performed using the software Spectra 2.2.3.2.

Artificial Neural Network

Artificial Neural Network (ANN) of feedforward multilayer perceptron (MLP) type was developed using the mineral contents of charcoal specimens as input variables and the wood species or charcoal origin as output variables. The ANNs developed in the present study were performed using SPSS statistical software (v. 20).

Network architectures

The optimal network architectures were established by trying different combinations of number of hidden layers (1 or 2) and neurons (1 to 9). ANN 1 has six [START_REF] Dias | Quantitative evaluation of ante-mortem lead in human remains of the 18th century by triaxial geometry and bench top micro X-ray fluorescence spectrometry[END_REF] 

Covariate sets for ANN

The model inputs (covariables) were the concentration values of the mineral components present in the charcoal and the output of the model were species (ANN1) or origin (ANN2).

For ANNs, eleven (11) explanatory variables (Ca, K, Mn, Fe, Si, S, Mg, Al, Cu, Zn e Sr, hereafter called covariates) were considered for training the ANN to classify the species (ANN1) or origin (ANN2) of charcoals (Table 2). As the activation function does not generally map into the real numbers, the data set was standardized to a mean of 0 and a variance of 1.

Network training and validations

ANN models were validated by independent test set. To guarantee homogeneity between training and validation sets, the selection of the samples of each subset was made manually.

The sample set (142 observations) was ranked by species, temperature and origin and the data set was split into two uniformly distributed subsets. This procedure allowed higher control of the variability within each subset: the calibration set was composed of 95 specimens while test set had 47 samples with mineral composition information. The selection of ANN models was based on the percentage of correct classifications regarding the charcoal origin of the different species (ANN1) or native and Eucalyptus classes (ANN2).

RESULTS AND DISCUSSION

Mineral composition variation of charcoal

The mineral elements present in the charcoals produced from different species and under different pyrolysis temperatures were detected by X-ray fluorescence analysis. Table 3 presents the mean values as a percentage of the elemental composition of the native and planted wood charcoal samples.

The results show that minerals such as Calcium (Ca) and Iron (Fe) present higher proportion in relation to the others. In addition to varying by species, the percentage of minerals also varies as pyrolysis temperature increases, however, a trend was not detected. These variations are importatn for training the artificial networks to classify the charcoal by its origin.

Although all data do not have a clear tendency detectable by visual analysis, the artificial neural network can recognize nonlinear data patterns. There are few studies that have evaluated the composition and proportion of mineral elements in charcoal or forest biomass. [START_REF] Kim | Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis[END_REF] have evaluated inorganic metals in oak, eucalyptus, pine and Japanese cedar biochars by X-ray fluorescence spectrometry and found Si, K, Ca, Al, Mg, Na, P and Fe in all studied materials. The elements that stood out in Eucalyptus were Si, K and Ca. In the present study the last two elements are present in high percentage. [START_REF] Brewer | Characterization of Biochar from Fast Pyrolysis and Gasification Systems[END_REF] studied the ash composition of Switchgrass (grass), maize straw and hardwood (unspecified) samples by X-ray fluorescence spectroscopy by pressed tablet method and found Al2O3, CaO, Cl, Fe2O3, K2O, MgO, MnO2, Na2O, P2O5, SiO2 and SO3 in all varieties studied, and CaO presented the highest percentage (22.37%) for wood. [START_REF] Bouraoui | Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity[END_REF] have analyzed the mineral content of faveira and found significant amounts of silicon (4430 mg / kg), calcium (1260 mg / kg) and potassium (990 mg / kg) while magnesium was detected in smaller amounts (550 mg / kg). All minerals reported by [START_REF] Bouraoui | Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity[END_REF] were found in the charcoal samples analyzed in the present study.

Neural Network Architecture

The artificial neural networks architectures developed in this study are presented, respectively, in Figures 1 and2 with their respective input layers, hidden layers, neurons, output layers and synaptic weights. Both ANNs to estimate the charcoal origin as a function of wooden species (Figure 1) as well as native Forest or Eucalyptus plantation category (Figure 2) were obtained using eleven (11) input neurons and one (1) hidden layer, with six [START_REF] Dias | Quantitative evaluation of ante-mortem lead in human remains of the 18th century by triaxial geometry and bench top micro X-ray fluorescence spectrometry[END_REF] and two (2) neurons, respectively. Synaptic weights represent the connecting forces between neurons and are used to store acquired knowledge [START_REF] Haykin | Redes neurais: princípios e prática[END_REF]. Weight is considered excitatory when it is positive (> 0)

and inhibitory when it is negative (<0). High synaptic weights are indicated by thick lines while low weights are represented by thin connections. Synaptic weight greater than zero is indicated in light gray color while synaptic weight below zero is indicated in dark gray (Figures 1 and2). Since very negative or very positive weights can generate thicker connections, the more positive or the more negative a weight, the thicker the connection.

Input variables can be evaluated by considering the connections between the hidden or the output layer.

The two ANN models were developed based on the values of the proportion of mineral components present in the material to estimate the origin of the charcoals as a function of woonden species and as a function of origin classes: native forest or Eucalypt plantation. For ANN 1 (Figure 1) the thick connections with very negative synaptic weights occurred at the Ca, K, Si, S, Mg, Al, Cu, Zn and Sr inputs and with very positive weights occurred at Ca, K, Mn, Fe, S, Mg, Al, Cu and Zn (Table 4). For ANN 2 (Figure 2) the very negative weights were highlighted in the K, Fe, Si, Cu, Zn and Sr inputs and very positive in the Ca, Mn, S, Mg and Al inputs (Table 5). The thicker, very positive and negative connections indicate that the input variable is important to define the output variable, most of the mineral elements used in the input layer had such connections. 

Identificating the charcoal origin

The model for classifying species (ANN 1, Table 6) was able to correctly predict 88.3% of the specimens of the independent test set and 74.5% of specimens belonging to the training set.

Of the erroneous classifications in the test set, only two (2) specimens of the native genus (Jacaranda) were confused with Eucalypt specimens and only one (1) specimen from plantation (Eucalypt) was classified as Peroba (native). Most incorrect predictions were of the genera of native specimens among themselves or Eucalyptus specimens among themselves.

This type of error within each category is positive for classification purposes, as it is possible to identify illegal native charcoals independent of the tree genus. The model to classify the origin (native or Eucalypt) of charcoal (ANN 2, Table 7) was able to estimate the classes correctly with 97.9% success in the test set. Only one native specimen was misclassified as Eucalyptus and the entire remaining set was correctly predicted. This finding indicates that the use of artificial neural networks can be an efficient tool classifying charcoal samplings based on the proportion of mineral elements as input data. In addition to the high percentage of correct classifications, the only mistake that occurred should not lead to an accusation of false fraud, which would be serious if the mistake is to classify Eucalyptus charcoal (legal) as native charcoal (mostly illegal). Artificial neural networks have proven to be a powerful machine learning tool for function approximation and pattern recognition. ANN has been applied as a modeling tool to overcome various challenges in a number of timber forestry sectors. Some studies have developed ANN models to estimate the wood density [START_REF] Leite | Redes Neurais Artificiais para a estimação da densidade básica da madeira Artificial neural networks for basic wood density estimation[END_REF]Demertzis et al., 2017), wood stiffness [START_REF] García-Iruela | Comparison of modelling using regression techniques and an artificial neural network for obtaining the static modulus of elasticity of Pinus radiata D. Don. timber by ultrasound[END_REF], wood strenght [START_REF] Zanuncio | Prediction of the physical, mechanical and colorimetric properties of Eucalyptus grandis heat-treated wood using artificial neural networks[END_REF], to assess the surface quality of wood [START_REF] Hazir | A modeling study to evaluate the quality of wood surface[END_REF] and to predict the moisture content of wood during drying [START_REF] Chai | Artificial Neural Network Modeling for Predicting Wood Moisture Content in High Frequency Vacuum Drying Process[END_REF][START_REF] Zanuncio | Artificial neural networks as a new tool for assessing and monitoring wood moisture content[END_REF].

In regard to the application of ANN approach in classifications, most studies have shown promissing findings. For insctance, [START_REF] Cui | Laser-induced breakdown spectroscopy (LIBS) for classification of wood species integrated with artificial neural network (ANN)[END_REF] have used laser-induced breakdown spectroscopy (LIBS) combined with ANN to classify four wooden species and reported a rate of correct classification of specimens of 100% in test set using a model with multilayer perceptron network and Broyden-Fletcher-Goldfarb-Shanno iterative algorithm. [START_REF] Nisgoski | Artificial neural network and SIMCA classification in some wood discrimination based on near-infrared spectra[END_REF] have compared an ANN and SIMCA classifications to identify some Brazilian wood species based on near infrared spectra. Their neural network resulted in no misidentification for a ± 2% margin using a spectral range of 10,000 to 4,000 cm -1 while SIMCA produced over 60% misidentification using the raw spectra. [START_REF] Esteban | Application of artificial neural networks as a predictive method to differentiate the wood of Pinus sylvestris L. and Pinus nigra Arn subsp. salzmannii (Dunal) Franco[END_REF] have developed ANNs to differentiate wood from Pinus sylvestris and Pinus nigra and their network achieved 90.4% accuracy for the training set and 81.2% for the validation in test set. [START_REF] Wenshu | Study on Wood Board Defect Detection Based on Artificial Neural Network[END_REF] have studied the detection of defects in wood board based on ANN with an identification rate of 86.67% of success. Castellani and Rowlands (2009) have built na evolutionary artificial neural networks for classifying wood veneers from statistical characteristics of wood sub-images. Experimental evidence from this study showed that their algorithm builds highly compact multilayer perceptron structures capable of accurate and robust learning.

The studies reported above show that artificial neural networks are robust techniques capable of analyzing complex data. To our knowledge, no study has applied neural networks for charcoal classifications, especially to evaluate the mineral composition of charcoal.

The data used as input variables in ANN for evaluating wood can be physical and mechanical characteristics [START_REF] Nasir | Classification of thermally treated wood using machine learning techniques[END_REF], heat treatment temperature [START_REF] Van Nguyen | Using Artificial Neural Networks (ANN) for Modeling Predicting Hardness Change of Wood during Heat Treatment[END_REF][START_REF] Zanuncio | Prediction of the physical, mechanical and colorimetric properties of Eucalyptus grandis heat-treated wood using artificial neural networks[END_REF], tree age [START_REF] Leite | Redes Neurais Artificiais para a estimação da densidade básica da madeira Artificial neural networks for basic wood density estimation[END_REF], wood species [START_REF] Van Nguyen | Using Artificial Neural Networks (ANN) for Modeling Predicting Hardness Change of Wood during Heat Treatment[END_REF], basic density [START_REF] Zanuncio | Artificial neural networks as a new tool for assessing and monitoring wood moisture content[END_REF], basal area (in m 2 / ha), annual average increment (in m³/ ha / year), total height and diameter at 1.3 m from the ground [START_REF] Leite | Redes Neurais Artificiais para a estimação da densidade básica da madeira Artificial neural networks for basic wood density estimation[END_REF]. This study is pioneering in using mineral elements contained in charcoals as predictive variable in ANN modeling.

Limitations of this study

The rapid identification of charcoal origin can be carried out through the artificial neural networks developed on this exploratory study. The approach used in this study shows that it is possible to create an automated process to determine the legality of the charcoal load and then reduce fraudulent trade of charcoal. However, robust models may be further developed taking into account more wooden species and pirolysis processes. Complementary studies are necessary to build a robust data of mineral composition of charcoal, including samples of several wooden species, pyrolysis kilns, temperatures, dimensions, moisture, etc.

CONCLUDING REMARKS

The findings reported in this study show the great potential for the use of artificial neural networks as systems to identify the charcoal origin when traditional qualitative or quantitative methods cannot be used.

Classification of charcoal specimens by origin (native or Eucalyptus) by ANN 1 reached 97.9% of correct classification in validations from independent test set while the ANN 2 correctely predicted 74.5% of charcoal specimens by wooden species in test set.
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Figure 1 -

 1 Figure 1 -Network Diagram to estimate the wooden species of charcoal based on the mineral composition.

Figure 2 -

 2 Figure 2 -Network Diagram to estimate the wooden origin (native Forest or Eucalypt plantation) of charcoal based on the mineral composition.

Table 1

 1 

	lists the species, furnaces and temperatures used to generada the
	dataset of this study.

Table 1 -Pyrolysis plan as a function of biological material, temperature and number of samples.

 1 

	Vegetal Material	Code	Furnace	Number of specimens by temperature
			ATG	Muffle 300°C	400°C 500°C 600°C 700°C
	Apuleia sp.	A	X		5		6	6
	Cedrela sp.	C	X		4		6	6
	Aspidosperma sp.	P	X		5		6	6
	Jacaranda sp.	J	X		5		6	6
	Eucalyptus sp. (1)	Ec	X		5		6	6
	Eucalyptus sp. (2)	Ev	X		5		6	6
	Peltogyne sp.	R		x		2	2	2	2
	Dipteryx sp.	U		x		2	2	2	2
	Gochnatia sp.	B		x		2	2	2	2
	Eucalyptus sp. (1)	Ec		x		2	2	2	2
	Eucalyptus sp. (2)	Ev		x		2	2	2	2

Table 2 :

 2 neurons in the hidden layer and nine (9) output layer neurons, which represent the nine wooden species Information from artificial neural networks to classify the origin of charcoals based on their mineral components.

	Layer	Variable	ANN 1	Information	ANN 2
		Covariate 1	Ca			Ca
		Covariate 2	K			K
		Covariate 3	Mn			Mn
		Covariate 4	Fe			Fe
		Covariate 5	Si			Si
		Covariate 6	S			S
	Input	Covariate 7 Covariate 8	Mg Al			Mg Al
		Covariate 9	Cu			Cu
		Covariate 10	Zn			Zn
		Covariate 11	Sr			Sr
		N of Units	11			11
		Rescaling Method for Covariates	Standardized	Standardized
		N of Hidden Layers	1			1
	Hidden	N of Units in Hidden Layer 1 st	6			2
		Activation Function	Hyperbolic tangent Hyperbolic tangent
		Dependent Variables	Wood species	Native or Eucalyptus
	Output	N of Units Activation Function	9 Softmax			2 Softmax
		Error Function	Cross-entropy	Cross-entropy

converted in charcoal specimens (Eucalyptus, Peltogyne sp., Gochnatia sp., Dipteryx sp., Apuleia sp., Jacaranda sp., Aspidosperma sp., Cedrela sp.) while ANN 2 presented two (2) hidden layer neurons and two (2) output layer neurons, which represent the origin of the charcoal (native forest or Eucalyptus). The maximum number of epochs of each ANN was 100. The diagrams of the designed ANN for species and for origin are shown in Figures

1 and 2

, respectively.

Every neuron in hidden layer and output layer represents an activation function. In this study, a hyperbolic tangent sigmoid function was used as the activation function in the hidden layers while the output layer activation function was softmax. General information on the artificial neural network for classifying wood species or charcoal origin based on mineral composition are listed in Table

2

.

Table 3 -

 3 Averaged mineral composition of charcoal by wooden species and temperature of pyrolysis.

	Species Temp	Ca	K	Mn	Fe	Percentage (%) Si S Mg	Al	Cu Zn	Sr
		300 21.08 3.59 2.77 42.07 3.16 0.28 1.92 4.12 1.21 2.60 1.27
		400 65.96 13.84 5.00 3.06 3.32 1.65 1.17 1.46 0.97 1.27 2.91
	EV	500 31.33 13.58 4.64 36.39 1.95 0.69 0.76 1.30 1.29 1.19 1.32
		600 23.06 2.87 3.29 2.69 17.21 1.56 1.39 5.94 0.88 0.93 3.10
		700 27.37 19.41 3.26 23.75 9.85 1.37 0.52 4.55 1.18 1.52 1.28
		300 19.37 5.27 2.36 42.40 4.39 0.11 1.79 6.75 1.23 3.03 1.52
		400 53.81 24.36 2.72 2.15 3.59 2.29 2.09 1.32 1.20 1.46 3.10
	EC	500 30.34 22.92 1.78 22.83 2.61 0.64 0.71 1.31 0.64 0.77 1.30
		600 22.78 32.93 1.49 2.32 5.68 1.51 1.05 3.76 1.00 1.00 2.54
		700 38.06 17.31 1.80 25.14 4.29 0.97 0.47 2.41 0.91 1.22 1.51
		400 74.42 6.36 3.04 0.83 2.08 1.66 5.37 0.49 1.15 0.68 3.99
	R	500 78.75 4.55 2.89 0.57 0.89 1.47 5.23 0.32 0.87 0.49 4.34 600 74.54 5.04 5.07 0.59 1.14 1.38 6.83 0.14 1.52 0.52 4.37
		700 79.34 4.24 3.24 0.46 0.74 1.32 5.38 0.99 0.99 0.28 4.41
		400	4.59 4.38 0.57 0.50 12.07 1.49 0.51 75.09 0.30 0.45 0.57
	B	500 600	4.96 1.16 0.28 0.54 14.85 0.97 0.73 74.62 0.39 0.44 0.50 5.46 1.64 0.31 0.68 12.42 0.94 1.07 66.31 0.41 0.38 0.66
		700	5.56 2.47 0.35 0.61 21.92 1.27 1.62 64.76 0.39 0.43 0.55
		400 81.66 1.38 2.33 0.83 6.38 0.66 0.80 2.24 0.40 0.18 2.91
	U	500 76.72 2.56 1.68 1.18 9.08 0.88 0.93 3.22 0.65 0.36 2.31 600 64.70 3.26 2.91 1.72 15.63 0.87 1.17 5.83 0.63 0.32 2.51
		700 67.89 2.57 2.53 1.40 14.66 0.70 0.98 5.35 0.39 0.23 2.60
		300 53.60 13.90 1.62 6.22 0.22 1.56 1.73 0.90 0.34 0.87 1.08
	A	500 57.98 21.54 1.27 9.53 0.15 1.47 1.51 0.52 0.40 0.84 0.81
		700 62.96 23.28 1.31 6.26 0.17 0.85 0.91 0.43 0.28 0.58 0.77
		300 48.09 1.31 2.53 21.00 1.98 0.35 4.24 3.09 0.63 0.65 1.24
	J	500 66.62 5.42 3.91 11.98 0.50 0.53 2.25 0.45 1.09 0.93 0.98
		700 62.91 1.14 3.38 14.80 1.26 1.01 3.91 1.20 0.96 0.96 0.68
		300 57.98 6.16 0.21 5.27 1.08 0.17 3.60 2.11 0.33 1.01 1.87
	C	500 61.42 10.18 0.34 14.45 1.25 0.78 2.30 0.99 0.32 0.79 1.18
		700 69.02 8.87 0.49 10.56 0.33 0.35 2.66 0.58 0.34 0.86 1.38
		300 46.07 21.81 7.89 1.38 3.16 0.19 1.79 11.30 0.17 1.25 1.50
	P	500 38.31 27.11 7.37 11.71 1.22 0.21 1.99 6.48 0.13 0.73 1.04
		700 47.95 13.31 6.48 8.13 2.13 0.31 4.16 11.98 0.28 0.66 1.08

Table 4 -

 4 Training parameters of artificial neural networks 1 (ANN 1) used to estimate the origin of charcoal based on mineral components.

							Predicted		
	Predictor			Hidden Layer 1			
			H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6)	
	Input	(Bias)	0.293 -0.499 -0.544 0.753 0.461 -0.284	
	Layer	Ca	0.013 -0.392 0.610 -0.438 0.786 0.471	
		K	1.485 0.215 -0.169 -1.404 0.787 -0.022	
		Mn	-0.073 -2.817 -1.104 -0.122 0.198 -0.530	
		Fe	0.064 -0.008 -0.654 -0.134 -0.345 -0.430	
		Si	0.409 -0.338 -0.271 1.225 0.053 -0.219	
		S	1.658 -0.535 0.382 -0.378 -0.364 -0.002	
		Mg	-1.414 -1.397 1.567 -0.824 -0.736 0.433	
		Al	-1.390 0.289 1.046 0.029 -0.919 -0.503	
		Cu	1.317 -0.170 -1.491 2.003 -0.665 0.501	
		Zn	0.450 0.721 -0.996 0.074 -0.109 0.091	
		Sr	1.062 1.577 0.010 0.677 0.211 -0.397	
						Output Layer		
			[Ev]	[Ec]	[R]	[B]	[U]	[A]	[J]	[C]	[P]
	Hidden	(Bias)	0.217 1.180 -1.027 -1.556 -0.467 0.102 1.570 0.111 0.082
	Layer 1	H(1:1) 0.877 0.564 1.804 -1.832 1.194 2.084 -1.545 -1.673 -1.519
		H(1:2) 0.287 2.227 -1.288 0.818 1.213 0.295 -1.926 1.690 -2.486
		H(1:3) -3.054 -2.728 2.124 1.777 1.177 0.858 -0.354 0.653 -0.714
		H(1:4) 1.726 0.398 1.305 1.671 1.838 -2.785 -0.152 -1.796 -2.561
		H(1:5) -0.622 0.534 -0.336 -0.879 1.041 0.444 -0.483 -0.061 0.009
		H(1:6) -0.306 0.004 0.385 -0.226 -0.130 -0.007 0.659 0.185 -0.619

Table 5 -

 5 Training parameters of artificial neural networks (ANN 2) used to estimate the origin of charcoal based on mineral components.

				Predicted
	Predictor		Hidden Layer 1	Output Layer
			H(1:1)	H(1:2)	[Tipo=1]	[Tipo=2]
		(Bias)	0.383	-0.605
		Ca	0.103	-0.663
		K	-0.467	0.403
		Mn	0.374	0.145
		Fe	-0.882	0.429
	Input Layer	Si S	-0.052 0.542	0.224 0.553
		Mg	1.559	-0.455
		Al	0.265	0.098
		Cu	-0.922	0.840
		Zn	-0.486	0.258
		Sr	-1.038	0.450
		(Bias)			-0.256	0.370
	Hidden Layer 1	H(1:1)			-1.807	1.933
		H(1:2)			0.813	-0.911

Table 6 -

 6 ANN classification of charcoal by wooden species (Ev, Ec, R, B, U, A, J, C and P) using the mineral composition of the charcoals produced at temperatures from 300 to 700°C

	Observed	Predicted by ANN EV EC R B U A	J	C	P	Correct classifications (%)
			Training set			
	EV	12	5				70.6
	EC	3	13		1		76.5
	R		5				100.0
	B		5				100.0
	U		6				100.0
	A		11				100.0
	J		10		1	90.9
	C				11		100.0
	P			1		10	90.9
	Overall Percent (%) 16.0 19.1 5.3 5.3 6.4 11.7 11.7 12.8 11.7	88.3
			Test set			
	EV	5	2			1	62.5
	EC	1	7				87.5
	R		3				100.0
	B		3				100.0
	U		2				100.0
	A		2	1	2	1	33.3
	J	1	1	4			66.7
	C		1		3	1	60.0
	P					6	100.0
	Overall Percent (%) 14.9 21.3 6.4 6.4 4.3 6.4 10.6 10.6 19.1	74.5

EV: Eucalyptus EC: Eucalyptus R: Peltogyne sp. G: Gochnatia sp. D: Dipteryx sp. A: Apuleia sp. J: Jacaranda sp. P: Aspidosperma sp. C: Cedrela sp.

Table 7 -

 7 ANN classification of charcoal by source (Eucalypt, E or Native, N) using the mineral composition of the charcoals produced at temperatures from 300 to 700°C

	Sample	Observed	Predicted by NIR E N	Correct classifications (%)
		E	33	1	97.1
	Training	N	0	60	100
				Overall Percent	98.9
		E	16	0	100
	Testing	N	1	30	96.8
				Overall Percent	97.9
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