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Abstract 

Charcoal has been used as a renewable energy source in many countries. However, the 

indiscriminate use of wood from native forests is detrimental to sustainability. The 

development of rapid and efficient methodologies for distinguishing charcoal produced from 

native Forest or Eucalyptus plantations is essential to curb illegal coal transport and trade. The 

aim of this study was to distinguish charcoal from native and Eucalyptus woods by Artificial 

Neural Network (ANN) based on their mineral composition. Specimens from native woods 

(Apuleia sp., Cedrela sp., Aspidosperma sp., Jacaranda sp., Peltogyne sp., Dipteryx sp. and 

Gochnatia sp.) and from Eucalyptus sp. hybrid woods from commercial forest plantations 

were pyrolysed at temperatures from 300 to 700°C in order to simulate the actual pyrolysis 

conditions and species widely used illegally in southeastern Brazil. The composition and 

proportion of the mineral elements of charcoal were determined by X-ray fluorescence (XRF). 

ANNs were trained based on the elemental composition of the charcoal specimens to classify 

the species and origin of the charcoals (native forest and Eucalyptus). ANNs based on mineral 

element content yielded high percentage of correct classification for charcoal specimens by 

species (72% accuracy) or origin (97% accuracy) from an independent validation sample set. 

   

Keywords: X-ray fluorescence, artificial intelligence, charcoal distinction, machine learning. 
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1. INTRODUCTION 

Charcoal is a major source of energy in many countries. According to FAOSTAT (2018), 

Brazil occupies the first position among the main world producers of this product and its 

consumption is concentrated in the steel industry. Extensive areas of Eucalyptus are cultivated 

to meet the demand of the steel industry in Brazil (IBA 2017). However, wood from native 

forests has been used illegally. 

According to Stange et al. (2018), charcoal producers have used native species from 

deforestation regions in tropical forests of world. The use of native wood for charcoal 

production is prohibited in many regions as it increases the deforestation rate in the country. 

According to Brazil (2013) the Brazilian government has made a national commitment to 

make 40% of the annual rates of deforestation in Cerrado biome. In 2016 charcoal 

manufacture from native forest reduced 31.7% (IBGE, 2016). However, enforcement actions 

to stop the production, transport and trade of illegally produced charcoal are insufficient 

because there is no official information about ilegal operations. The Brazilian cerrado is one 

of the most threatened biomes in the country while it is a conservation priority hotspot 

(Gonçalves et al. 2018).  

Fraud is difficult to identify because of the similarity between the coals when observed with 

the naked eye (Ramalho et al. 2017). Identification of charcoal by anatomical analysis 

(Gonçalves et al. 2018) is time consuming and requires highly trained technicians. Alternative 

techniques for charcoal classification have been investigated, such as image analysis 

(Nisgoski et al. 2014, Maruyama et al. 2018), where some wood characteristics are extracted 

and analyzed for discriminating the precursory species. Moreover, some studies have shown 

promising results applying spectrum-based processing systems for classifying charcoal 

(Devrieux et al. 2010, Ramalho et al. 2017, Costa et al. 2018) but many limitations need to be 

overcome to apply these models in real situations where pyrolysis temperature and species are 

unknown. 

The possibility of differentiating charcoals produced from planted or native wood from the 

mineral composition of charcoal was examined in the present study. X-ray fluorescence 

(XRF) is a technique used in analytical routines for identifying and measuring mineral 

elements in solid or liquid samples (Weindorf 2014). It is a versatile analytical technique that 

does not require exhaustive preparation of the material to be analyzed (Wobrauschek 2007). 
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XRF spectroscopy has been successfully applied in various fields of science that require rapid 

analytical routines such as agriculture (Freitas et al. 2019), soil science (Pelegrino et al. 2019), 

mining (Penido et al. 2019), environmental sciences (Muthukalum et al. 2020) and chemical 

(Szczepanik et al., 2015) and archeological studies (Attaelmanan and Mouton 2014). 

Faced with the challenge of differentiating charcoal produced from planted or native wood, 

the hypothesis of this study is that the mineral composition of charcoal varies trees have 

grown in native and planted forest. The soil of forest plantations soils are prepared for 

production of wood for pulp or bioenergy industries and mineral contents are adjusted before 

planting. Some studies support our hypothesis, although they are not designed to evaluate this 

issue. For example, Brewer et al. (2009) have studied the ash composition of Switchgrass 

(grass), maize straw and hardwood (unspecified) samples by XRF spectroscopy. The results 

show that hardwood presented very different levels of CaO, Fe2O3, K2O, MgO, MnO2 and 

SiO2 from Switchgrass (grass) and maize straw samples. Kim et al. (2013) have evaluated 

inorganic metals in oak, Eucalyptus, Pinus and Japanese cedar biochars by means of XRF 

spectrometry. They reported the presence of Si, K, Ca, Al, Mg, Na, P and Fe in all studied 

materials, but in different concentrations: Oak, Pitch pine and Japonese Ceder present much 

more Si, Ca, K, Al and Na (in g per kg) than Eucalyptus charcoals.  

The above results clearly show that Eucalyptus wood has a very different composition from 

other biomasses. However, Brewer et al. (2009) and Kim et al. (2013) did not designed their 

studies to evaluate the potential of this technique to detect the origin of biochar precursor raw 

material. In this study, artificial neural networks (ANNs) were developed to evaluate the 

complex information on the mineral composition of charcoal specimens. ANNs are 

computational techniques based on mathematical models capable of classifying and predicting 

material properties (Basheer and Hajmeer 2000). ANN approach has been successfully 

applied in different fields of forest sciences, such as wood defect detection (Wenshu et al., 

2015), wood veneer classification (Castellani and Rowlands, 2009) and wood species 

classification (Nisgoski et al. al., 2017; Cui et al., 2019). 

 

Most studies that applied RNA to wood and its co-products have reported promising results 

for classification or estimation of properties. However, to our knowledge there is no study 

involving ANN for charcoal classification by origin, nor for identification of the precursor 

wood species. Thus, the aim of this study was to develop artificial neural networks to classify 
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the origin of charcoal (native or planted forest) and the precursor species based on their 

mineral composition. 

 

2. MATERIAL AND METHODS  

2.1 Plant Material 

Native tropical wood species from the Cerrado and Amazon biomes and reforestation were 

used in this study. The native species were Cedrela sp. (Cedar, labeled as “C”), Aspidosperma 

sp. (Peroba labeled as “P”), Jacaranda sp. (Rosewood, labeled as “J”), Apuleia sp. (Garapa 

labeled as “A”), Peltogyne sp. (Pau-roxo, labeled as “R”), Dipteryx sp. (Cumaru, labeled as 

“U”) e Gochnatia sp. (Camabará, labeled as “B”).  

As for reforestation, two genetic materials from two forest companies were used. One 

company produces charcoal (6.5 year old Eucalyptus grandis × E. urophylla hybrid clones 

labeled “Ev”) and the other paper and pulp (6 year old Eucalyptus grandis × E. urophylla 

hybrid clones). labeled “Ec”) (Ramalho et al. 2017). The seven native species occur in the two 

largest Brazilian biomes, while Eucayptus hybrids were selected to represent the genetic 

variation that exists between the clonal materials used in reforestation by forestry companies 

in the country. Table 1 lists the species, furnaces and temperatures used to generada the 

dataset of this study. 

 

Table 1 - Pyrolysis plan as a function of biological material, temperature and number of 

samples. 

Vegetal Material Code Furnace Number of specimens by temperature 
ATG Muffle 300°

C 
400°C 500°C 600°C 700°C 

Apuleia sp. A X 
 

5 
 

6 
 

6 
Cedrela sp. C X 

 
4 

 
6 

 
6 

Aspidosperma sp. P X 
 

5 
 

6 
 

6 
Jacaranda sp. J X 

 
5 

 
6 

 
6 

Eucalyptus sp. (1) Ec X 
 

5 
 

6 
 

6 
Eucalyptus sp. (2) Ev X 

 
5 

 
6 

 
6 

Peltogyne sp. R 
 

x 
 

2 2 2 2 
Dipteryx sp. U 

 
x 

 
2 2 2 2 

Gochnatia sp. B 
 

x 
 

2 2 2 2 
Eucalyptus sp. (1) Ec 

 
x 

 
2 2 2 2 

Eucalyptus sp. (2) Ev 
 

x 
 

2 2 2 2 
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Eucalyptus sp. (1): reforestation hybrids managed for charcoal production while Eucalyptus 

sp. (2): reforestation hybrids managed for pulp and paper industry. 

2.2 Specimen Preparation 

Central planks were removed from trees. 141 specimens (defect free) were obtained from 

native and Eucalyptus trees. From the native species, 91 specimens presenting the dimensions 

of 3.5 cm × 3.5 cm × 10 cm (R × T × L) were produced while 50 specimens (defect free) of 

Eucalyptus were produced with dimensions of 3.5 cm × 3.5 cm × 10 cm (R × T × L). 

Sampling was properly identified using a special pencil (labeling did not disappear after 

pyrolysis). Before pyrolysis, Wood specimens were kept in an acclimatized room and until 

reaching 12% moisture. 

2.3 Pyrolysis Process 

Wood specimens were pyrolysed in two laboratory ovens: Muffle furnace and Macro ATG 

oven (developed by the Center of International Cooperation in Agronomic Research for 

Development (CIRAD, France) and Universidade Federal de Lavras (UFLA, Brazil) as shown 

in Figure 2. 

 

Macro ATG furnace  

The Macro ATG prototype is equipped with an oven that can reach 1,000°C, a pyrolysis 

reactor pressure controller, a condensable gas condenser, a load cell, a gas chromatography 

flowmeter, a control panel and a software. Experiments can be developed using various gases 

simulating various conditions of partial or complete combustion in the presence of an inert 

atmosphere (Jesus et al., 2015, Ramalho et al., 2017). 

Wood specimens were added in a crucible for pyrolysis in the ATG Macro. The temperature 

inside the system was monitored by means of four thermocouples and the gases resulting from 

the pyrolysis process were consensed by means of a condenser attached to the oven. After the 

prototype cooling period, the charcoals were removed and brought to moisture stabilization in 

a climate room (Ramalho et al. 2017). 

The pyrolysis of the specimens was performed at an initial temperature of 40°C, a heating rate 

of 5°C. min-1 and remained for 1 hour at the final temperatures of 300, 500 and 700°C. After 
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the process of converting wood to charcoal, the material remained inside the oven for cooling 

for fifteen hours (Ramalho et al. 2017). 

The biological materials carbonized in the Macro ATG oven were Apuleia sp., Cedrela sp., 

Aspidosperma sp. (Peroba), Jacaranda sp. (Jacarandá) e Eucalyptus, resulting in resulting in 

hundred one (101) specimens divided into three pyrolysis temperatures.   

 

Muffle furnace 

The specimens were pyrolyzed in a muffle furnace (electric; model Q318M; Quimis, São 

Paulo, Brazil) according to the procedure described in Costa et al. (2018). Pyrolysis 

conditions were: 100°C initial temperature, 1.67°C.min-1 heating rate, 30 minutes at final 

temperatures 400°C, 500°C, 600°C and 700°C and 16 hours after completion of the 

conversion process. 

The wood specimens were carbonized within a pyrolysis capsule placed inside the muffle 

furnace. The pyrolysis capsule was connected to a water-cooled condenser coupled to a 

receiver flask of condensable gases. The charcoal specimens were produced at 400, 500, 600 

and 700°C to simulate the temperature range adopted in real situations in most Brazilian 

industries. 

The biological materials carbonized in the muffle furnace were Peltogyne sp., Dipteryx sp., 

Gochnatia sp. and again Eucalyptus, resulting in resulting in forty (40) specimens divided 

into four pyrolysis temperatures.  

 

The different furnaces and temperatures were used to verify the influence of the conversion 

process on the material distinction and to simulate the thermal variation that occurs in an 

industrial and conventional furnace. After the furnaces were cooled, the charcoals produced 

were removed and taken to a climate room until moisture stabilization. 

 

2.4 X-ray fluorescence spectrometer 

 

The detection of mineral elements was performed using two X-ray fluorescence 

spectrometers: M4 Tornado and S8 Tiger spectrometer. 
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M4 Tornado 

The quantity of each mineral element present in the different charcoal samples was 

determined using an Energy Dispersive X Ray Fluorescence (EDXRF) spectrometer provided 

from Bruker Nano GmbH (M4 Tornado, Germany). On this typical commercial spectrometer 

the X-ray tube is a Rh micro-focus side window powered by a low power HV-generator and 

cooled by air. The spot size of 25 μm is obtained using a poly-capillary lens in a Mo-Kα 

mode. The X-ray generator was operated at 50 kV and 600 μA and different filters were used 

to reduce the background (100 μm Al/ 50 μm Ti/ 25 μm Cu). The energy resolution of a 

detector (thermoelectrically cooled silicon-drift-detector) was of 142 eV for 5.9 keV (Mn-

Kα). Measurements were carried out under 20 mbar vacuum conditions [Silva et al. 2017]. 

According to Dias et al. (2015), the vacuum system avoids back diffusion and improves 

detection limits. 

An inbuilt camera allows visualizing the operating area and permits the analysis in a fully 

automated mode. According to the required resolution the counting time and the scanning 

spatial resolution could be freely selected.. The sample is placed directly on a sample holder 

(360mm × 260 mm), which was attached to a stage translatable along XY. The scanning step 

size used was 25 μm and the time per analyzed point was 0.5ms × 3 cycles. Each selected area 

was analyzed over a period to accumulate sufficient data points for high-resolution mapping. 

Data output was obtained through the X-ray intensity of specific X-ray peaks corresponding 

to the element signals measured in each point defined by its X and Y coordinate (μm). The 

data were converted using the software's function into a data matrix, from which XY contour 

maps (2-dimensional maps) of the data were generated for each element [Silva et al. 2017]. 

 

The analysis was performed on five (5) specimens of each charcoal produced at different 

temperatures in the Macro ATG furnace. Each charcoal specimen was placed inside the 

equipment and a rectangular area was selected for irradiation during the analysis. In this area 

100 points were analyzed and the resulting spectrum was the average of all these points.  

 

The treatment of the X-ray spectra, analyze of the peaks and determination of which mineral 

elements are present in each sample and in what quantity were performed using the software 

M4 Tornado. 

S8 Tiger 
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An Wavelength-dispersive X-ray fluorescence spectrometer (WDXRF) spectrometer, model 

S8 Tiger (Bruker Nano GmbH, Berlin, Germany) was also used to determine and quantify the 

mineral elements present in the different charcoal samples. This spectrometer is equipped 

with a Rh anode X-ray tube and 4 kW excitation power. Measurements of the characteristic 

Br Kα line were performed under vacuum at 20 to 60 kV and 170 mA tube setting and using 8 

mm mask, LiF(200) crystal, 0.46° collimator, and scintillation counter. The adjusted peak 

position of Br Kα1 was set to a 2θ value of 29.97°, the background positions were set at 

29.42° and 30.78° [Galina et al. 2016]. 

Samples were pressed using a semi-automatic hydraulic HERZOG HTP-40 press (Germany) 

in a 40 mm press tool. Analytical grade crystalline boric acid was used as a backing and rim 

material. A sample holder fitted with stainless steel masks having openings of 8 mm in 

diameter was applied for XRF measurements. [Galina et al. 2016]  

The spectrometer is equipped with analyzing crystals XS‐55, PET, LiF (200), LiF (220), 

XS‐PET‐C, XS‐C, Al and Cu filters of different thickness, collimators (0.17, 0.23, 0.46, and 

1°), and the box for automatic loading of 60 samples. [Suvorova et al., 2017]. 

The analysis was performed on two specimens of each charcoal sample. Each specimen was 

ground and sieved through a 150 micrometer nylon sieve. Pressed pellets were made using 4.5 

g of ground charcoal and 3.5 g of Hoechst C wax (C38H76N2O2) of Merck. After 

homogenization of each sample with the wax, the material was compacted using a Vaneox 

(Fluxana) hydraulic press with a final pressure of 25 tons. Until reading, the tablets were kept 

in a desiccator. Soon after, the pellets were placed in specific specimen holders with a 

diameter of 34 mm and then placed inside the equipment. The analysis was performed by 

scanning the full length of the sample surface.  

The spectrometer is equipped with SPECTRA plus software that allows selecting conditions, 

measurement parameters, optimal calibration equations, measurement of the calibration set, 

and mathematical data processing for the calibration set of CRMs [Suvorova et al. 2017]. The 

treatment of the X-ray spectra, analyze of the peaks and determination of which mineral 

elements are present in each sample and in what quantity were performed using the software 

Spectra 2.2.3.2. 

 

2.5 Artificial Neural Network  



10 
 

 

Artificial Neural Network (ANN) of feedforward multilayer perceptron (MLP) type was 

developed using the mineral contents of charcoal specimens as input variables and the wood 

species or charcoal origin as output variables. The ANNs developed in the present study were 

performed using SPSS statistical software (v. 20). 

Network architectures 

The optimal network architectures were established by trying different combinations of 

number of hidden layers (1 or 2) and neurons (1 to 9). ANN 1 has six (6) neurons in the 

hidden layer and nine (9) output layer neurons, which represent the nine wooden species 

converted in charcoal specimens (Eucalyptus, Peltogyne sp., Gochnatia sp., Dipteryx sp., 

Apuleia sp., Jacaranda sp., Aspidosperma sp., Cedrela sp.) while ANN 2 presented two (2) 

hidden layer neurons and two (2) output layer neurons, which represent the origin of the 

charcoal (native forest or Eucalyptus). The maximum number of epochs of each ANN was 

100.  The diagrams of the designed ANN for species and for origin are shown in Figures 1 

and 2, respectively. 

Every neuron in hidden layer and output layer represents an activation function. In this study, 

a hyperbolic tangent sigmoid function was used as the activation function in the hidden layers 

while the output layer activation function was softmax. General information on the artificial 

neural network for classifying wood species or charcoal origin based on mineral composition 

are listed in Table 2. 
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Table 2: Information from artificial neural networks to classify the origin of charcoals based 

on their mineral components. 

Layer Variable Information 
ANN 1 ANN 2 

Input 

Covariate 1 Ca Ca 
Covariate 2 K K 
Covariate 3 Mn Mn 
Covariate 4 Fe Fe 
Covariate 5 Si Si 
Covariate 6 S S 
Covariate 7 Mg Mg 
Covariate 8 Al Al 
Covariate 9 Cu Cu 
Covariate 10 Zn Zn 
Covariate 11 Sr Sr 
N of Units 11 11 

Rescaling Method  
for Covariates Standardized Standardized 

Hidden 
N of Hidden Layers 1 1 

N of Units in Hidden Layer 1 st 6 2 
Activation Function Hyperbolic tangent Hyperbolic tangent 

Output 

Dependent Variables Wood species Native or Eucalyptus 
N of Units 9 2 

Activation Function Softmax Softmax 
Error Function Cross-entropy Cross-entropy 

 

Covariate sets for ANN 

The model inputs (covariables) were the concentration values of the mineral components 

present in the charcoal and the output of the model were species (ANN1) or origin (ANN2). 

For ANNs, eleven (11) explanatory variables (Ca, K, Mn, Fe, Si, S, Mg, Al, Cu, Zn e Sr, 

hereafter called covariates) were considered for training the ANN to classify the species 

(ANN1) or origin (ANN2) of charcoals (Table 2). As the activation function does not 

generally map into the real numbers, the data set was standardized to a mean of 0 and a 

variance of 1. 

Network training and validations 

ANN models were validated by independent test set. To guarantee homogeneity between 

training and validation sets, the selection of the samples of each subset was made manually. 
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The sample set (142 observations) was ranked by species, temperature and origin and the data 

set was split into two uniformly distributed subsets. This procedure allowed higher control of 

the variability within each subset: the calibration set was composed of 95 specimens while 

test set had 47 samples with mineral composition information. The selection of ANN models 

was based on the percentage of correct classifications regarding the charcoal origin of the 

different species (ANN1) or native and Eucalyptus classes (ANN2). 

 

3. RESULTS AND DISCUSSION 

 

3.1 Mineral composition variation of charcoal 

 

The mineral elements present in the charcoals produced from different species and under 

different pyrolysis temperatures were detected by X-ray fluorescence analysis. Table 3 

presents the mean values as a percentage of the elemental composition of the native and 

planted wood charcoal samples. 

 

The results show that minerals such as Calcium (Ca) and Iron (Fe) present higher proportion 

in relation to the others. In addition to varying by species, the percentage of minerals also 

varies as pyrolysis temperature increases, however, a trend was not detected. These variations 

are importatn for training the artificial networks to classify the charcoal by its origin. 

Although all data do not have a clear tendency detectable by visual analysis, the artificial 

neural network can recognize nonlinear data patterns. 
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Table 3 - Averaged mineral composition of charcoal by wooden species and temperature of 

pyrolysis. 

 

Species Temp 
Percentage (%) 

Ca K Mn Fe Si S Mg Al Cu Zn Sr 

EV 

300 21.08 3.59 2.77 42.07 3.16 0.28 1.92 4.12 1.21 2.60 1.27 
400 65.96 13.84 5.00 3.06 3.32 1.65 1.17 1.46 0.97 1.27 2.91 
500 31.33 13.58 4.64 36.39 1.95 0.69 0.76 1.30 1.29 1.19 1.32 
600 23.06 2.87 3.29 2.69 17.21 1.56 1.39 5.94 0.88 0.93 3.10 
700 27.37 19.41 3.26 23.75 9.85 1.37 0.52 4.55 1.18 1.52 1.28 

EC 

300 19.37 5.27 2.36 42.40 4.39 0.11 1.79 6.75 1.23 3.03 1.52 
400 53.81 24.36 2.72 2.15 3.59 2.29 2.09 1.32 1.20 1.46 3.10 
500 30.34 22.92 1.78 22.83 2.61 0.64 0.71 1.31 0.64 0.77 1.30 
600 22.78 32.93 1.49 2.32 5.68 1.51 1.05 3.76 1.00 1.00 2.54 
700 38.06 17.31 1.80 25.14 4.29 0.97 0.47 2.41 0.91 1.22 1.51 

R 

400 74.42 6.36 3.04 0.83 2.08 1.66 5.37 0.49 1.15 0.68 3.99 
500 78.75 4.55 2.89 0.57 0.89 1.47 5.23 0.32 0.87 0.49 4.34 
600 74.54 5.04 5.07 0.59 1.14 1.38 6.83 0.14 1.52 0.52 4.37 
700 79.34 4.24 3.24 0.46 0.74 1.32 5.38 0.99 0.99 0.28 4.41 

B 

400 4.59 4.38 0.57 0.50 12.07 1.49 0.51 75.09 0.30 0.45 0.57 
500 4.96 1.16 0.28 0.54 14.85 0.97 0.73 74.62 0.39 0.44 0.50 
600 5.46 1.64 0.31 0.68 12.42 0.94 1.07 66.31 0.41 0.38 0.66 
700 5.56 2.47 0.35 0.61 21.92 1.27 1.62 64.76 0.39 0.43 0.55 

U 

400 81.66 1.38 2.33 0.83 6.38 0.66 0.80 2.24 0.40 0.18 2.91 
500 76.72 2.56 1.68 1.18 9.08 0.88 0.93 3.22 0.65 0.36 2.31 
600 64.70 3.26 2.91 1.72 15.63 0.87 1.17 5.83 0.63 0.32 2.51 
700 67.89 2.57 2.53 1.40 14.66 0.70 0.98 5.35 0.39 0.23 2.60 

A 
300 53.60 13.90 1.62 6.22 0.22 1.56 1.73 0.90 0.34 0.87 1.08 
500 57.98 21.54 1.27 9.53 0.15 1.47 1.51 0.52 0.40 0.84 0.81 
700 62.96 23.28 1.31 6.26 0.17 0.85 0.91 0.43 0.28 0.58 0.77 

J 
300 48.09 1.31 2.53 21.00 1.98 0.35 4.24 3.09 0.63 0.65 1.24 
500 66.62 5.42 3.91 11.98 0.50 0.53 2.25 0.45 1.09 0.93 0.98 
700 62.91 1.14 3.38 14.80 1.26 1.01 3.91 1.20 0.96 0.96 0.68 

C 
300 57.98 6.16 0.21 5.27 1.08 0.17 3.60 2.11 0.33 1.01 1.87 
500 61.42 10.18 0.34 14.45 1.25 0.78 2.30 0.99 0.32 0.79 1.18 
700 69.02 8.87 0.49 10.56 0.33 0.35 2.66 0.58 0.34 0.86 1.38 

P 
300 46.07 21.81 7.89 1.38 3.16 0.19 1.79 11.30 0.17 1.25 1.50 
500 38.31 27.11 7.37 11.71 1.22 0.21 1.99 6.48 0.13 0.73 1.04 
700 47.95 13.31 6.48 8.13 2.13 0.31 4.16 11.98 0.28 0.66 1.08 
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There are few studies that have evaluated the composition and proportion of mineral elements 

in charcoal or forest biomass. Kim et al. (2013) have evaluated inorganic metals in oak, 

eucalyptus, pine and Japanese cedar biochars by X-ray fluorescence spectrometry and found 

Si, K, Ca, Al, Mg, Na, P and Fe in all studied materials. The elements that stood out in 

Eucalyptus were Si, K and Ca. In the present study the last two elements are present in high 

percentage. Brewer et al. (2009) studied the ash composition of Switchgrass (grass), maize 

straw and hardwood (unspecified) samples by X-ray fluorescence spectroscopy by pressed 

tablet method and found Al2O3, CaO, Cl, Fe2O3, K2O, MgO, MnO2, Na2O, P2O5, SiO2 and 

SO3 in all varieties studied, and CaO presented the highest percentage (22.37%) for wood. 

Bouraoui et al. (2015) have analyzed the mineral content of faveira and found significant 

amounts of silicon (4430 mg / kg), calcium (1260 mg / kg) and potassium (990 mg / kg) while 

magnesium was detected in smaller amounts (550 mg / kg). All minerals reported by 

Bouraoui et al. (2015) were found in the charcoal samples analyzed in the present study. 

 

3.2 Neural Network Architecture 

The artificial neural networks architectures developed in this study are presented, 

respectively, in Figures 1 and 2 with their respective input layers, hidden layers, neurons, 

output layers and synaptic weights. Both ANNs to estimate the charcoal origin as a function 

of wooden species (Figure 1) as well as native Forest or Eucalyptus plantation category 

(Figure 2) were obtained using eleven (11) input neurons and one (1) hidden layer, with six 

(6) and two (2) neurons, respectively. 
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Figure 1 - Network Diagram to estimate the wooden species of charcoal based on the mineral 

composition. 
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Figure 2 - Network Diagram to estimate the wooden origin (native Forest or Eucalypt 

plantation) of charcoal based on the mineral composition. 

Synaptic weights represent the connecting forces between neurons and are used to store 

acquired knowledge (Haykin, 2001). Weight is considered excitatory when it is positive (> 0) 

and inhibitory when it is negative (<0). High synaptic weights are indicated by thick lines 

while low weights are represented by thin connections. Synaptic weight greater than zero is 

indicated in light gray color while synaptic weight below zero is indicated in dark gray 

(Figures 1 and 2). Since very negative or very positive weights can generate thicker 

connections, the more positive or the more negative a weight, the thicker the connection. 

Input variables can be evaluated by considering the connections between the hidden or the 

output layer. 

 

The two ANN models were developed based on the values of the proportion of mineral 

components present in the material to estimate the origin of the charcoals as a function of 

woonden species and as a function of origin classes: native forest or Eucalypt plantation. For 

ANN 1 (Figure 1) the thick connections with very negative synaptic weights occurred at the 
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Ca, K, Si, S, Mg, Al, Cu, Zn and Sr inputs and with very positive weights occurred at Ca, K, 

Mn, Fe, S, Mg, Al, Cu and Zn (Table 4). For ANN 2 (Figure 2) the very negative weights 

were highlighted in the K, Fe, Si, Cu, Zn and Sr inputs and very positive in the Ca, Mn, S, Mg 

and Al inputs (Table 5). The thicker, very positive and negative connections indicate that the 

input variable is important to define the output variable, most of the mineral elements used in 

the input layer had such connections. 

 

 

Table 4 - Training parameters of artificial neural networks 1 (ANN 1) used to estimate the 

origin of charcoal based on mineral components. 

Predictor 
Predicted 

Hidden Layer 1    
H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6)       

Input 
Layer 

(Bias) 0.293 -0.499 -0.544 0.753 0.461 -0.284    
Ca 0.013 -0.392 0.610 -0.438 0.786 0.471    
K 1.485 0.215 -0.169 -1.404 0.787 -0.022    
Mn -0.073 -2.817 -1.104 -0.122 0.198 -0.530    
Fe 0.064 -0.008 -0.654 -0.134 -0.345 -0.430    
Si 0.409 -0.338 -0.271 1.225 0.053 -0.219    
S 1.658 -0.535 0.382 -0.378 -0.364 -0.002    
Mg -1.414 -1.397 1.567 -0.824 -0.736 0.433    
Al -1.390 0.289 1.046 0.029 -0.919 -0.503    
Cu 1.317 -0.170 -1.491 2.003 -0.665 0.501    
Zn 0.450 0.721 -0.996 0.074 -0.109 0.091    
Sr 1.062 1.577 0.010 0.677 0.211 -0.397    

    Output Layer 
  [Ev] [Ec] [R] [B] [U] [A] [J] [C] [P] 

Hidden 
Layer 1 

(Bias) 0.217 1.180 -1.027 -1.556 -0.467 0.102 1.570 0.111 0.082 
H(1:1) 0.877 0.564 1.804 -1.832 1.194 2.084 -1.545 -1.673 -1.519 
H(1:2) 0.287 2.227 -1.288 0.818 1.213 0.295 -1.926 1.690 -2.486 
H(1:3) -3.054 -2.728 2.124 1.777 1.177 0.858 -0.354 0.653 -0.714 
H(1:4) 1.726 0.398 1.305 1.671 1.838 -2.785 -0.152 -1.796 -2.561 
H(1:5) -0.622 0.534 -0.336 -0.879 1.041 0.444 -0.483 -0.061 0.009 
H(1:6) -0.306 0.004 0.385 -0.226 -0.130 -0.007 0.659 0.185 -0.619 
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Table 5 - Training parameters of artificial neural networks (ANN 2) used to estimate the 

origin of charcoal based on mineral components. 

      

Predictor 
Predicted 

Hidden Layer 1 Output Layer 
H(1:1) H(1:2) [Tipo=1] [Tipo=2] 

Input Layer 

(Bias) 0.383 -0.605     
Ca 0.103 -0.663     
K -0.467 0.403     
Mn 0.374 0.145     
Fe -0.882 0.429     
Si -0.052 0.224     
S 0.542 0.553     
Mg 1.559 -0.455     
Al 0.265 0.098     
Cu -0.922 0.840     
Zn -0.486 0.258     
Sr -1.038 0.450     

Hidden Layer 1 
(Bias)     -0.256 0.370 
H(1:1)     -1.807 1.933 
H(1:2)     0.813 -0.911 

 

3.3 Identificating the charcoal origin 

 

The model for classifying species (ANN 1, Table 6) was able to correctly predict 88.3% of the 

specimens of the independent test set and 74.5% of specimens belonging to the training set. 

Of the erroneous classifications in the test set, only two (2) specimens of the native genus 

(Jacaranda) were confused with Eucalypt specimens and only one (1) specimen from 

plantation (Eucalypt) was classified as Peroba (native). Most incorrect predictions were of the 

genera of native specimens among themselves or Eucalyptus specimens among themselves. 

This type of error within each category is positive for classification purposes, as it is possible 

to identify illegal native charcoals independent of the tree genus. 
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Table 6 - ANN classification of charcoal by wooden species (Ev, Ec, R, B, U, A, J, C and P) 

using the mineral composition of the charcoals produced at temperatures from 300 to 700°C 

Observed 
Predicted by ANN Correct classifications 

(%) EV EC R B U A J C P 

Training set 
EV 12 5               70.6 
EC 3 13           1   76.5 
R     5             100.0 
B       5           100.0 
U         6         100.0 
A           11       100.0 
J             10   1 90.9 
C               11   100.0 
P             1   10 90.9 

Overall Percent (%) 16.0 19.1 5.3 5.3 6.4 11.7 11.7 12.8 11.7 88.3 
Test set 

EV 5 2             1 62.5 
EC 1 7               87.5 
R     3             100.0 
B       3           100.0 
U         2         100.0 
A           2 1 2 1 33.3 
J 1 1         4     66.7 
C           1   3 1 60.0 
P                 6 100.0 

Overall Percent (%) 14.9 21.3 6.4 6.4 4.3 6.4 10.6 10.6 19.1 74.5 
EV: Eucalyptus EC: Eucalyptus R: Peltogyne sp. G: Gochnatia sp. D: Dipteryx sp. A: Apuleia sp. J: 

Jacaranda sp. P: Aspidosperma sp. C: Cedrela sp.  

 

The model to classify the origin (native or Eucalypt) of charcoal (ANN 2, Table 7) was able 

to estimate the classes correctly with 97.9% success in the test set. Only one native specimen 

was misclassified as Eucalyptus and the entire remaining set was correctly predicted. This 

finding indicates that the use of artificial neural networks can be an efficient tool classifying 

charcoal samplings based on the proportion of mineral elements as input data. In addition to 

the high percentage of correct classifications, the only mistake that occurred should not lead 

to an accusation of false fraud, which would be serious if the mistake is to classify Eucalyptus 

charcoal (legal) as native charcoal (mostly illegal).  

 

  



20 
 

Table 7 - ANN classification of charcoal by source (Eucalypt, E or Native, N) using the 

mineral composition of the charcoals produced at temperatures from 300 to 700°C 

Sample Observed Predicted by NIR Correct classifications (%) E N 

Training 
E 33 1 97.1 
N 0 60 100 

Overall Percent 98.9 

Testing 
E 16 0 100 
N 1 30 96.8 

Overall Percent 97.9 

Artificial neural networks have proven to be a powerful machine learning tool for function 

approximation and pattern recognition. ANN has been applied as a modeling tool to overcome 

various challenges in a number of timber forestry sectors. Some studies have developed ANN 

models to estimate the wood density (Leite et al., 2016; Demertzis et al., 2017), wood 

stiffness (García-Iruela et al., 2016), wood strenght (Zanuncio et al., 2017), to assess the 

surface quality of wood (Hazir and Koc 2018) and to predict the moisture content of wood 

during drying (Chai et al., 2018; Zanuncio et al., 2016). 

In regard to the application of ANN approach in classifications, most studies have shown 

promissing findings. For insctance, Cui et al. (2019) have used laser-induced breakdown 

spectroscopy (LIBS) combined with ANN to classify four wooden species and reported a rate 

of correct classification of specimens of 100% in test set using a model with multilayer 

perceptron network and Broyden-Fletcher-Goldfarb-Shanno iterative algorithm. Nisgoski et 

al. (2017) have compared an ANN and SIMCA classifications to identify some Brazilian 

wood species based on near infrared spectra. Their neural network resulted in no 

misidentification for a ± 2% margin using a spectral range of 10,000 to 4,000 cm-1 while 

SIMCA produced over 60% misidentification using the raw spectra. Esteban et al. (2017) 

have developed ANNs to differentiate wood from Pinus sylvestris and Pinus nigra and their 

network achieved 90.4% accuracy for the training set and 81.2% for the validation in test set. 

Wenshu et al. (2015) have studied the detection of defects in wood board based on ANN with 

an identification rate of 86.67% of success. Castellani and Rowlands (2009) have built na 

evolutionary artificial neural networks for classifying wood veneers from statistical 

characteristics of wood sub-images. Experimental evidence from this study showed that their 

algorithm builds highly compact multilayer perceptron structures capable of accurate and 

robust learning.  
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The studies reported above show that artificial neural networks are robust techniques capable 

of analyzing complex data. To our knowledge, no study has applied neural networks for 

charcoal classifications, especially to evaluate the mineral composition of charcoal.  

 

The data used as input variables in ANN for evaluating wood can be physical and mechanical 

characteristics (Nasir et al., 2018), heat treatment temperature (Van Nguyen et al., 2018, 

Zanuncio et al., 2017), tree age (Leite et al., 2016), wood species (Van Nguyen et al., 2018), 

basic density (Zanuncio et al., 2016), basal area (in m2 / ha), annual average increment (in m³/ 

ha / year), total height and diameter at 1.3 m from the ground (Leite et al., 2016). This study is 

pioneering in using mineral elements contained in charcoals as predictive variable in ANN 

modeling. 

 

3.4 Limitations of this study 

 

The rapid identification of charcoal origin can be carried out through the artificial neural 

networks developed on this exploratory study. The approach used in this study shows that it is 

possible to create an automated process to determine the legality of the charcoal load and then 

reduce fraudulent trade of charcoal. However, robust models may be further developed taking 

into account more wooden species and pirolysis processes. Complementary studies are 

necessary to build a robust data of mineral composition of charcoal, including samples of 

several wooden species, pyrolysis kilns, temperatures, dimensions, moisture, etc. 

 

4. CONCLUDING REMARKS 
 

The findings reported in this study show the great potential for the use of artificial neural 

networks as systems to identify the charcoal origin when traditional qualitative or quantitative 

methods cannot be used. 

 

Classification of charcoal specimens by origin (native or Eucalyptus) by ANN 1 reached 

97.9% of correct classification in validations from independent test set while the ANN 2 

correctely predicted 74.5% of charcoal specimens by wooden species in test set. 
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