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Abstract: Nowadays, polymer reaction engineers seek robust and effective tools to synthesize
complex macromolecules with well-defined and desirable microstructural and architectural
characteristics. Over the past few decades, several promising approaches, such as controlled living
(co)polymerization systems and chain-shuttling reactions have been proposed and widely applied to
synthesize rather complex macromolecules with controlled monomer sequences. Despite the unique
potential of the newly developed techniques, tailor-making the microstructure of macromolecules by
suggesting the most appropriate polymerization recipe still remains a very challenging task. In the
current work, two versatile and powerful tools capable of effectively addressing the aforementioned
questions have been proposed and successfully put into practice. The two tools are established
through the amalgamation of the Kinetic Monte Carlo simulation approach and machine learning
techniques. The former, an intelligent modeling tool, is able to model and visualize the intricate
inter-relationships of polymerization recipes/conditions (as input variables) and microstructural
features of the produced macromolecules (as responses). The latter is capable of precisely predicting
optimal copolymerization conditions to simultaneously satisfy all predefined microstructural features.
The effectiveness of the proposed intelligent modeling and optimization techniques for solving this
extremely important ‘inverse’ engineering problem was successfully examined by investigating
the possibility of tailor-making the microstructure of Olefin Block Copolymers via chain-shuttling
coordination polymerization.

Keywords: microstructure; Kinetic Monte Carlo; living copolymerization; olefin block copolymers;
artificial intelligence; ethylene; machine learning; genetic algorithms
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1. Introduction

The ubiquity of polymers in daily life, especially in packaging and consumer products, gives them
a special importance among different types of materials [1–3]. However, the rapid growth of both
humanity and the wealth level has led to an ever-increasing demand for resources. Since the mid-1980s,
more polymers have been produced in volume than steel (the second-highest-volume material).
Among polymeric materials, approximately 70% are thermoplastics, 50% of which are polyolefins;
the latter part is dominated by far by polyethylene (PE), polypropylene (PP), and their copolymers.
Decades of research have developed important and widely used materials from high-pressure
polymerization (low-density polyethylene (LDPE) [4]), (catalyzed) low-pressure polymerization
(high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), and PP [5–12]),
and single-site-catalyzed polymerization (metallocene HDPE/LLDPE/PP [13,14]). The property
range of polyolefins has been significantly expanded by the more recent and seminal introduction of
chain-shuttling polymerization by Dow Chemical Company, where a chain-shuttling agent (CSA) can
transport a chain from one catalyst to another, thus allowing for the production of block copolymers
inexpensively on an industrial scale [15]. In fact, although the first catalyst is capable of engaging a
large number of comonomer units, the second one incorporates small amounts of comonomer. Hence,
two distinct types of polyethylene chains, i.e., soft and hard copolymers, are simultaneously formed
due to the difference in comonomer consumption tendency of the catalysts. Cross-shuttling of active
centers among different living and dormant chains in the reaction medium via CSA molecules results
in the synthesis of multi-block polyethylene chains. This invention permits designing olefin block
copolymers (OBCs) with properties that allow for using not only different grades as commodity
polymers but also as specialty engineering applications [16].

The multi-block structure of OBCs yields a dual character of thermoplastic processability as well
as elastomeric solid state properties. More importantly, the properties can be tuned by varying
the concentration and type of the catalysts and monomers, as well as the concentration of the
chain-shuttling/transfer agent, ultimately leading to different comonomer contents of the hard and
soft segments as well as their average lengths [15,17]. These multifaceted properties can be tuned over
a wide range, but this fine-tuning is not that trivial, as the first attempt for a usable OBC required 1600
syntheses via high throughput setups with fast molar mass distribution and thermal analyses [15].
The reason behind this is that a whole set of independently controllable factors interact with each other
non-trivially and non-intuitively and, consequently, simple predictions of molecular architecture from
the synthesis variables are not readily possible. Hence, in comparison to classical polyolefin synthesis,
the complexities of OBC polymerization require a highly advanced understanding of polymerization.
This was first attempted by Zhang et al. [18], who proposed a kinetic model for chain-shuttling
polymerization that was able to correlate average molecular weight, comonomer content, and number
of blocks with such synthesis factors as monomer ratio, catalyst composition, and CSA level. While this
model was successful in obtaining a rough idea of the structure of the OBC, more powerful tools are
required for gaining an in-depth understanding of the microstructure. This has been achieved by
recent Kinetic Monte Carlo (KMC) simulations of chain-shuttling polymerizations [19–24].

Due to the multifarious types of reactions occurring simultaneously, including cross-propagation
and cross-shuttling reactions, setting up these simulations is not an easy task. The KMC simulation
was designed to track every monomer, CSA, and catalyst molecule as well as every single chain in the
virtual reactor in order to obtain the microstructural features of the OBC. These features are represented
by average number of linkage points per chain (LP), ethylene sequence length (ESL) of hard and soft
blocks, average degree of polymerization (DPn) of hard and soft blocks, longest ethylene sequence
length (LES) of hard and soft blocks, comonomer content (C8%) of hard and soft blocks, and hard
block percent (HB%) [19–24].

While the results on the microstructure of OBCs provided by the KMC simulator are believed to
be very accurate, the developed KMC algorithm cannot suggest polymerization variables that can yield
a certain desired microstructure. In other words, the KMC simulator receives X (x1, x2, x3, . . . , xn)
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as an input of polymerization variables and yields microstructural arrays of Y (y1, y2, y3, . . . , ym),
i.e., the direction is X→Y (modeling). For practical applications, however, and in order to
address a much more complex and interesting problem, engineers need copolymers with certain
microstructures, which cannot be simply deduced from this kind of algorithm or by other means (e.g.,
deterministic models) due to the complexity of the microstructure. In other words, there is no such
thing as a single-valued functional relationship, i.e., a one-to-one relationship between polymerization
factors and microstructural features. Hence, the inverse pathway, i.e., selecting synthesis conditions
from desired microstructural properties in the direction Y→X (optimization), constitutes an
ill-posed problem.

Classical mathematical modeling methodologies are frequently very complex, time-consuming,
and ill-conditioned when confronting very complex systems. The advent of Artificial Intelligence (AI)
Modeling and Optimization techniques has opened new possibilities to scientists/engineers working
on nonlinear processes. The use of Artificial Intelligence approaches with evolutionary learning in
different areas of Science and Engineering, and notably in Materials Science [25–31], is offering a viable
pathway to mimicking the evolution of complex system performance. This makes AI-based methods
good candidates for identifying the mechanisms and inter-relations of complex polymerization kinetics.
Since polymerization reactions proceed by a series of probability-controlled steps, and at any given
time, new molecules are generated, converted, activated, deactivated, and transferred from one
class/situation to another, polymerization systems can be better understood and, consequently,
their behavior better tracked, by using evolutionary approaches.

The aim of the current study is the establishment and development of unique and versatile
modeling and optimization tools capable of handling precise predictions and intricate manipulations
of microstructural features of complex macromolecules via amalgamation of KMC simulation
approaches and Computational Intelligence techniques. Making this possible requires a deeper
understanding of the interplay between different phenomena in the reacting system, culminating
in the inter-relationships between polymerization recipes/conditions and final microstructural
properties. Two powerful and effective tools, including an Intelligent Modeling Tool (IMT) and
an Intelligent Optimization Tool (IOT), are successfully developed and introduced. To construct
and implement these tools, the KMC simulation approach has been hybridized with appropriate
Artificial-Intelligence-based modeling and optimization techniques. The modeling and optimization
of Chain-Shuttling Coordination (co)polymerization (invented by Dow Chemical Company) for the
production of OBCs have been selected as a sufficiently complex case study to ‘challenge’ the use and
validity of the proposed tools.

2. Model Development

The KMC simulator developed previously [19–24] acted as a virtual reactor to synthesize chains
and look at microstructural aspects of OBCs. The microstructural variables of OBCs can be classified
into two categories: (i) those that directly correspond to topological and architectural characteristics of
chains, such as LP, DPn

SOFT, DPn
HARD, ESLSOFT, and ESLHARD; and (ii) those that indirectly determine

the ultimate properties of OBCs, such as LESSOFT, LESHARD, C8%SOFT, C8%HARD, and HB%. There is
some evidence that thermal, rheological, mechanical, as well as phase separation properties of OBCs in
the melt-state are governed by the second category; for instance, crystallization is controlled to a large
extent by HB%, LESSOFT, and LESHARD of OBCs. Hence, 10 kinetic parameters (two homo-propagation,
two cross-propagation, two shuttling to virgin CSA, two shuttling to polymeryl CSA, and two transfer
to hydrogen rate constants) as well as the amounts of seven reactants (a solvent, two catalysts,
two monomers, hydrogen, and CSA) lead to a set of 10 (output) responses (the abovementioned
microstructural features) calculated from six distribution functions (molar mass distribution of both
blocks, block number distribution of both blocks, comonomer distribution of both blocks), which are
partially dependent on each other. This alone provides sufficient evidence for why simple single-valued
one-to-one relationships cannot be found for a complex system such as OBC synthesis.
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The hybridization of KMC with machine learning tools enables the prediction and tailoring of the
microstructure and ultimate properties of OBCs. In this regard, two different intelligent tools were
developed: (i) an Intelligent Modeling Tool (IMT); and (ii) an Intelligent Optimization Tool (IOT).
The IMT is a hybrid of the KMC simulator with an intelligent modeler, such as an Artificial Neural
Network (ANN) or a Fuzzy Logic System, while the IOT is an intelligent optimizer, combining KMC
with, for example, a Genetic Algorithm (GA) or Swarm Intelligence. Figure 1 provides a view of how
the functions of IOT and IMT are intertwined.
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Figure 1. Illustrative description of the Intelligent Modeling Tool (IMT) and the Intelligent Optimization
Tool (IOT) developed for tailoring the microstructure of olefin block copolymers (OBCs). KMC,
Kinetic Monte Carlo.

Application of the IMT and IOT makes it possible to produce new grades of OBCs, with preset
characteristics, without numerous trials but only via computer simulations ‘reverse-engineering’
the correct recipe to produce the desired OBC. This kind of approach-finding way to connect 10
microstructural features with highly complex inter-relations of seven synthesis factors, or to determine
the possible synthesis variables to obtain a desired set of microstructural features, was tested for
the OBC synthesis in references [19–24]. The basic scheme developed here can be used in numerous
additional ways, spanning from biology to chemistry to physics, provided that some understanding
of a possible mechanism exists that can link the input and output variables. These (simulation)
calculations can be completed within an acceptable run time (for instance, ca. 45 years in case of KMC
versus a few seconds in case of the IMT [22]).

The IMT (X→Y) combines the advantages of ANN and KMC methodologies in a synergistic
manner. In a nutshell, the IMT relies on calculating a number of viable scenarios. For instance,
polymerization recipes and conditions (X) are systematically defined to cover the whole variable
space considered. Then, the KMC simulator calculates the microstructural features (Y) of all defined
scenarios separately, and these are subsequently used to train several ANNs. Obviously, the KMC
simulator and intelligent modeler interact in an offline manner. This results in various black boxes,
which can intelligently predict any microstructural pattern with high accuracy within the covered
factor space. Considering the time-intensiveness of the KMC-algorithm, the IMT offers a fast solution
to obtain the required simulation results, which ultimately allows for determining a significantly wider
range of polymerization recipes with their corresponding microstructural patterns, while in parallel
determining the relationships between operational conditions and microstructural properties.

In the case of the IOT (Y→X), the KMC simulator is continuously recalled by the GA optimizer via
an online route, in obvious contrast to the IMT step (X→Y), for which the KMC-ANN ‘modeler’
works offline. The GA optimizer randomly generates a number of polymerization recipes and
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sends the recipes for error evaluation to the KMC simulator. When the KMC simulator “runs”
these recipes/conditions, it resembles a virtual reactor that individually receives polymerization
recipes as inputs and visualizes microstructural features as outputs. Then, it returns the resulting
microstructural characteristics, i.e., LP, DPn

SOFT, DPn
HARD, ESLSOFT, ESLHARD, LESSOFT, LESHARD,

C8%SOFT, C8%HARD, and HB%, to the GA optimizer online through a closed-loop circuit. The GA
optimizer subsequently invokes genetic operators, including selection, sorting, mating, crossover,
and mutation, based on the feedback it received to generate the next generation (polymerization
recipes); finally, the next generations are considered accordingly by sending them to the KMC simulator
and receiving the corresponding microstructural characteristics; these steps are iterative. The process
continues until a generation is evolved by the IOT, which contains the recipe required for production of
the target OBC having a predefined (desirable) microstructure, i.e., the global optimum. Thus, the IOT
allows for ‘dialing-in’ variables and obtaining the required synthesis conditions, which is the inverse
way to the above-described IMT approach. The output of the IOT is either a unique recipe or several
polymerization recipes (Pareto fronts) corresponding to the preset target microstructural patterns. As a
result, well-defined microstructures can be tailored depending on customer demand.

Two separate computer programs were written in the PASCAL programming language (Lazarus
1.2.4 IDE) and compiled into 64-bit executable codes using FPC 2.6.2. The first program, i.e.,
the intelligent modeler, was established based on Artificial Neural Networks as a powerful black-box
modeling technique and appropriately set to recalling our in-house KMC simulator code in an offline
mode. On the other hand, the second code, i.e., the intelligent optimizer, was written based on the
Non-dominated Sorting Genetic Algorithm (NSGA-II); NSGA-II is an extremely (we would like to
think, the most) powerful heuristic multi-objective search strategy to communicate with the KMC
simulator via an online route [32–35]. A subroutine based on the “Mother-of-all Pseudo-Random
Number Generators” algorithm was employed to produce the required random numbers during the
modeling and optimization steps [36]. The random number generation subroutine satisfied the tests
of uniformity and serial correlation with high resolution. The cycle length of the random number
generator was 3× 1047. All modeling and optimization steps were performed with a desktop computer
with Intel Core i7-3770K (3.50 GHz), 32 GB of memory (2133 MHz), under the Windows 7 Ultimate
64-bit operating system.

3. Results and Discussion

The power of the IMT (X→Y) in modeling the microstructure of OBCs has already been
recently confirmed by visualizing new grades of OBCs [22]. The “fingerprint” of chain-shuttling
copolymerization is envisioned using the developed IMT in terms of architecture-related (LP, DPn

SOFT,
DPn

HARD, ESLSOFT, and ESLHARD) and property-related (LESSOFT, LESHARD, C8%SOFT, C8%HARD,
and HB%) characteristics in a phase diagram like that shown in Figure 2. Figure 2 is like an operational
‘map’ for or ‘window’ into the process. Three-dimensional plots of hard and soft segments for
each microstructural feature, for instance DPn

SOFT and DPn
HARD, are plotted first and subsequently

intersected and projected onto a two-dimensional surface. Then, the intersections are determined,
at which the studied specific microstructural characteristic takes on the same values for soft and hard
blocks, and separately marked by different colors, e.g., the thick blue line denotes the intersection
of soft and hard blocks’ lengths (DPn

SOFT = DPn
HARD). Obviously, the contribution of hard and soft

characteristics is inversely changing in the ‘shadowed’ and ‘unshadowed’ areas (see the legends
of Figure 2). For instance, the area distinguished by blue color denotes DPn

SOFT > DPn
HARD,

while the uncolored area denotes DPn
SOFT<DPn

HARD. By putting all these microstructural information
pieces together, a master diagram is obtained. Such a master diagram provides a fast survey of
the architecture-property topological trends. For a more detailed look at such relationships, i.e.,
a deeper understanding of changes in the blocky nature of architecture-related and property-related
microstructural features of OBCs, and for fine-tuning such characteristics, one can “zoom in” to the
three-dimensional plots or corresponding contour plots. For instance, five points, A, B, C, D, and E,
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in the master plot are randomly considered and their polymerization recipes are read from the master
plot. Eventually, the KMC simulator gives microstructural features under the conditions proposed by
the IMT, corroborating the authenticity of predictions based on the Artificial Intelligence approach.Polymers 2018, 10, x FOR PEER REVIEW  6 of 13 
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Figure 2. A “fingerprint” of chain-shuttling copolymerization decoded by the IMT (which visualizes
different classes of OBCs all having a monomer molar ratio of 0.75, but a different blocky nature).
Values (50 to 5) appearing at the bottom of the plot close to the black curves represent copolymers
having a specified hard block percent (HB%). CSA, chain-shuttling agent; DP, average degree of
polymerization; ESL, ethylene sequence length; LES, longest ethylene sequence length.

Table 1 summarizes the randomly selected points in Figure 2 representing five OBCs and their
topology- and property-related characteristics yielded by the IMT and KMC operators. It can be
recognized that the IMT has appropriately learned the polymerization behavior and successfully
predicted both types of molecular characteristics of randomly selected OBCs, as ‘approved’ by the KMC
simulator. A closer look at the statistics in Table 1, bearing in mind the very low errors in predictions of
the IMT, assures that such an intelligent machine can reliably be applied in ‘anticipating’ two categories
of molecular features, leading to sophisticated architecture-property correlations. The IMT consists of
10 individual prediction mechanisms, each responsible for one molecular characteristic of the OBC,
which are integrated into an intelligent toolbox towards the prediction of molecular characteristics of
OBCs with ‘surgical’ precision.

The points A–E are several typical examples of OBCs “synthesized”, “characterized”,
and identified by the IMT. In the master plot (Figure 2 and Table 1), different classes of OBCs
are distinguished, which are yielded from a feed having a monomer molar ratio (MR) of 0.75 and
different catalyst compositions (CCs) and CSA levels. These grades are different from each other
considering their dissimilar blocky natures. The x-axis of Figure 2 refers to the ratio of the two different
catalysts, where a low catalyst composition means having more of the catalyst-producing hard blocks.
The log(CSA) level on the y-axis refers to the amount of chain-shuttling agent in the reaction and,
thus, to the probability of shuttling events. As can be observed, 10 key characteristics (see Table 1)
determining the blocky nature of OBCs are compared in Figure 2. All these together provide an OBC
with an “identification card”, which is unique to this special recipe. Exploiting these unique capabilities
of the IMT, it is possible to develop new grades of OBC suited to different applications.
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Table 1. Typical OBCs randomly selected in the ‘master plot’ of the IMT and synthesized by the KMC
simulator under specified operating conditions together with their topology- and property-related
molecular characteristics.

Topology-Microstructural Characteristics Property-Microstructural Characteristics

DPn
SOFT DPn

HARD ESLSOFT ESLHARD LP C8%SOFT C8%HARDLESSOFT LESHARD HB%

Point A: {MR = 0.75 and CC = 0.539 and log(CSA) = 0.313}
KMC 172.88 30.65 25.10 28.92 36.51 3.55 0.70 96.46 55.19 13.30
ANN 169.31 122.07 24.67 31.76 37.26 3.12 0.51 87.49 61.51 14.17

Error % 0.01 2.45 0.92 0.34 1.01 0.88 1.07 2.61 0.14 1.53

Point B: {MR = 0.75 and CC = 0.792 and log(CSA) = 1.886}
KMC 122.41 92.11 23.63 10.52 64.87 2.17 9.23 72.12 16.45 5.97
ANN 160.86 102.50 24.58 13.87 63.72 2.62 8.87 78.00 18.84 6.63

Error % 0.10 0.28 2.04 0.41 1.55 0.92 2.02 1.71 0.05 1.16

Point C: {MR = 0.75 and CC = 0.859 and log(CSA) = −2.594}
KMC 3301.32 13068.35 46.70 649.53 0.01 2.94 0.17 306.40 3183.62 2.52
ANN 3555.20 13176.48 47.54 666.29 0.64 3.10 0.25 313.26 3249.55 4.53

Error % 0.67 2.90 1.80 2.03 0.85 0.32 0.45 1.99 1.47 3.52

Point D: {MR = 0.75 and CC = 0.202 and log(CSA) = −2.184}
KMC 1873.32 18132.94 20.32 434.77 0.14 5.03 0.26 111.81 1842.66 44.80
ANN 1967.33 18094.88 20.84 456.82 0.33 5.26 0.19 125.13 1927.41 45.15

Error % 0.25 1.02 1.12 2.68 0.26 0.47 0.39 3.87 1.89 0.61

Point E: {MR = 0.75 and CC = 0.229 and log(CSA) = 2.397}
KMC 94.37 148.96 23.26 12.54 71.58 6.24 13.02 34.72 9.61 35.05
ANN 67.66 117.61 22.84 16.01 72.82 6.00 12.53 30.50 17.83 35.52

Error % 0.07 0.84 0.90 0.42 1.67 0.49 2.75 1.23 0.18 0.82

LV 5.13 7.12 2.34 2.19 0.00 1.89 0.12 3.29 5.84 1.35
HV 38085.60 3736.87 48.97 825.43 74.28 50.72 17.90 347.30 4480.15 58.38

LV and HV are the lowest and highest values of a given response among simulated scenarios, respectively. MR and
CC stand for Monomer Molar Ration and Catalyst Composition, respectively. ANN, artificial neural network.

Several more results stemming from the master plot (Figure 2) need to be discussed. For instance,
while it is counterintuitive that soft blocks (with higher comonomer content) can have a longer ethylene
sequence than hard blocks, it becomes immediately obvious that such a possibility exists only for high
log(CSA) levels, which in turn leads to very short blocks (few monomer units). This in combination
with the higher concentration of soft-block-producing catalyst leads to much longer soft blocks than
hard blocks, which means that the average ethylene sequence in the hard block is short, as it cannot
be longer than the block itself. Catalyst compositions close to zero lead to much longer hard than
soft blocks and vice versa for CC close to 1, as the CSA causes shuttling of the chain to a random
catalyst center, which in the case of CC being very different from 1 means that the block lengths are
very different from each other. Thus, the possibilities of producing OBCs with previously unexplored
structures as well as exact prediction of both their architecture- and property-related molecular features
are good examples of the exceptional capabilities of the IMT.

Similar to the case of the IMT, but through a completely different route, the reliability of the
IOT has also been tested. For this purpose, two tailored OBCs, OBC1 and OBC2 shown in Table 2,
are defined and “animated” using the IOT. OBC1 is a multi-block copolymer in which the weight
percent of hard blocks has to take the value of 30; and, at the same time, the average ESL of hard
blocks is 10 times bigger than the corresponding parameter defined for the soft blocks. In contrast,
OBC2 is a highly uniform OBC having a hard block percent of 45. It is worth mentioning that, in a
highly uniform OBC, 1-octene units are distributed evenly in both soft and hard blocks. The objectives
assigned to each case, as well as the Pareto optimal fronts representing the best solutions with optimal
operational conditions, are provided in Table 2. As can be seen, virtual synthesis of OBC1 and OBC2
required concurrent control of three and seven microstructural characteristics of the copolymer chains,
respectively, as can be realized by the defined objectives in each case. The IOT iteratively generates
and analyzes billions of solutions to find the chain microstructure closest to the target OBC1 and OBC2.
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To validate the authenticity of the IOT results, the optimum polymerization recipes obtained in each
case were entered into the KMC simulator to virtually synthesize OBC1 and OBC2 and determine
their actual microstructural characteristics. As can be seen in Table 2, errors in predicting target
microstructural features are below 3.0% for almost all quantities. The percentage of error in prediction
of microstructural features (highlighted in Turquoise) is defined as the ratio of the difference between
the outcomes of the IOT (highlighted in yellow) and KMC (highlighted in green) under the conditions
proposed by the IOT (numerator) to the difference between minimum and maximum values of that
characteristic for stochastically synthesized macromolecules (denominator) multiplied by 100.

Table 2. The chain microstructure of the OBC1 and OBC2 macromolecules tailored using the IOT.
The constraints/objectives used in the multi-objective optimization, Pareto fronts showing the best
solution, and optimum input variables proposed by the IOT for the synthesis of OBC1 and OBC2
are provided. Microstructural features controlled by the IOT highlighted in yellow; KMC optimizer
outputs obtained at identical optimum polymerization recipes highlighted in green; errors in the IOT
predictions highlighted in Turquoise.

(A) OBC1 (B) OBC2

Objective 1: MIN|HB%− 30| Objective 1: MIN

∣∣∣∣∣
(

DPSo f t
n

1+NSo f t
C8

)
− ESLSo f t

∣∣∣∣∣
Objective 2: MIN

∣∣∣( ESLSo f t

ESLHard

)
− 0.1

∣∣∣ Objective 2: MIN

∣∣∣∣∣
(

DPHard
n

1+NHard
C8

)
− ESLHard

∣∣∣∣∣
NC8: the average number of comonomer units per block.
Objective 3: MIN|HB%− 45|
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Optimum Responses Optimum Responses

IOT KMC Error (%) IOT KMC Error (%)

C8%SOFT 46.9435 44.0155 5.99667 C8%SOFT 16.1221 19.2357 6.37665
C8%HARD 3.66274 3.73534 0.40827 C8%HARD 1.28743 1.14977 0.77419

HB% 30.0000 30.3236 0.56760 HB% 44.9994 44.7886 0.36974
ESLSOFT 2.78577 2.53169 0.54488 ESLSOFT 5.33127 5.58988 0.5546
ESLHARD 27.8735 29.5826 0.20761 ESLHARD 85.9224 89.3081 0.41127
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SOFT 327.719 310.251 0.04587 DPn
SOFT 678.959 692.488 0.03553
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HARD 362.897 475.781 3.02657 DPn

HARD 2853.94 2765.08 2.38255
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HARD 20.5723 17.7899 0.17786 NC8

HARD 32.2173 31.8509 0.02342

The microstructural characteristics of OBC1 and OBC2 are shown in Figures 3 and 4, respectively.
As can be observed, both the evolution and end-of-batch characteristics of the intelligently synthesized
OBCs are precisely and thoroughly predicted and depicted.
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Based on these findings, it is now possible to precisely model and optimize the synthesis of
olefinic block copolymers by using the developed intelligent tools. The IOT and IMT make it possible
to determine the features required to synthesize a polymer with the desired molecular structure or
to visualize the factor space for an overview of the possible combinations of molecular features as a
function of polymerization variables.

The approach introduced herein is obviously bound to the specific catalyst/chain-shuttling system
for producing OBCs. However, it is clear that the method works sufficiently well for OBC synthesis,
which is one of the most complex syntheses from a reaction kinetics point of view. Considering this,
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the IMT and IOT can readily be adapted to many other polymerization schemes by modifying the
reaction kinetics model in the KMC simulator. Furthermore, any scheme that links any given (input) X
to any given (response) Y could be modeled by a modified version of the KMC simulator.

4. Conclusions

Two powerful tools were introduced and successfully implemented to model and optimize the
microstructural aspects of complex macromolecules. The newly developed computational techniques
were established based on hybridization of molecular simulation approaches and Machine Learning
techniques. The strategy made it possible to construct intelligent modeling and optimization tools
capable of learning and decision-making. Undoubtedly, when applying these tools, polymer reaction
engineers not only can effectively discover the complex inter-relationships between polymerization
conditions and final architectural characteristics, but will also have the opportunity to adjust rather
precisely the polymerization inputs in an attempt to synthesize predefined microstructures in
detail. Chain-shuttling coordination copolymerization, an intricate polymerization system, has been
chosen as the first test case to challenge the proposed intelligent modeling and optimization
tools. The results obtained clearly showed that the IMT was capable of meticulously patterning
the molecular landscape of OBCs in terms of operating conditions, including monomer molar
ratio, catalyst composition, and CSA level. IMT was effectively put into practice to ‘crack’ the
inter-relationship between operating conditions and micro-molecular characteristics and/or final
properties of interest. By superimposing all microstructural information pieces together, a master
diagram is obtained that provides a fast survey of the recipe-architecture-property topological
trends. In contrast, the IOT was able to accurately predict the input/operating factors in response
to predefined micro-molecular/architectural characteristics of the target OBC chains. To precisely
evaluate the accuracy and performance of the proposed IOT, two target OBCs were designed first.
Then, the IOT was implemented and applied to concurrently optimize three and seven molecular
characteristics of the predefined OBC chains, respectively. The results obtained demonstrated that the
IOT was able to successfully handle multi-objective optimization problems and simultaneously control
various micro-molecular/architectural characteristics, resulting in negligible errors calculated for the
objective functions.

Although the unique capabilities of the proposed techniques were successfully tested and
examined with a complex living shuttling coordination copolymerization case study, they can be
employed by both academic and industrial experts to model and optimize all types of macromolecular
reactions and other reactive systems. Both the IMT and IOT, as intelligent computational tools, have the
potential to guide polymer chemists and engineers towards the realization of advanced ‘living and
thinking’ materials.
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