

Removal of Bacillus spores from stainless steel pipes by flow foam: Effect of the foam quality and velocity

Ahmad Al Saabi, Heni Dallagi, Fethi Aloui, Christine Faille, Gaétan Rauwel, Laurent Wauquier, Laurent Bouvier, Thierry Benezech

▶ To cite this version:

Ahmad Al Saabi, Heni Dallagi, Fethi Aloui, Christine Faille, Gaétan Rauwel, et al.. Removal of Bacillus spores from stainless steel pipes by flow foam: Effect of the foam quality and velocity. Journal of Food Engineering, 2021, Journal of Food Engineering, 289, pp.110273. 10.1016/j.jfoodeng.2020.110273. hal-03052084

HAL Id: hal-03052084 https://hal.univ-lille.fr/hal-03052084

Submitted on 22 Aug2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Paper entitled:

Removal of *Bacillus* spores from stainless steel pipes by flow foam: effect of the foam quality and velocity

Authors and affiliation :

Ahmad Al Saabi¹, Heni Dallagi¹, Fehti Aloui², Christine Faille¹, Gaétan Rauwel³, Laurent Wauquier¹, Laurent Bouvier¹ and Thierry Bénézech^{1,*}

¹ Univ. Lille, CNRS, INRAE, ENSCL, UMET, F-59650, Villeneuve d'Ascq, France ; ahmad.alsaabi@inrae.fr; heni.dallagi@inrae.fr; christine.faille@inrae.fr; laurent.wauquier@inrae.fr; laurent.bouvier@inrae.fr

² Polytechnic University Hauts-de-France, LAMIH CNRS UMR 8201, Campus Mont-Houy, F-59313 Valenciennes Cedex 9, France ; Fethi.Aloui@uphf.fr

³ Anios-Ecolab, Sainghin-en-Mélantois, France ; gaetan.rauwel@anios.com

* Correspondence: Thierry.benezech@inrae.fr

1 **1.** Introduction

2 In agro-food industrial environments, surfaces have been reported to be contaminated 3 by a range of microorganisms, including pathogenic and spoilage bacteria (Srey et al., 2013). 4 Once introduced, if environmental conditions are suitable, many bacteria are able to persist 5 on the contaminated surfaces or even to form biofilms. Indeed, despite cleaning and 6 disinfection procedures, some bacteria are still commonly found on the surfaces of food 7 processing lines, mostly in the form of adherent spores, e.g. Bacillus spores in closed 8 equipment(Peng et al., 2002) or in the form of biofilms, e.g. Pseudomonas spp.(Dogan and 9 Boor, 2003).

10 Cleaning in place (CIP) leading to residue removal from inner surfaces of processing lines 11 without disassembling, has been a crucial factor in guaranteeing the safety and quality of 12 food. If not done properly, consequences can be devastating, especially in the case of 13 pathogen surface contamination (Pietrysiak et al., 2019; Ribeiro et al., 2019). In order to 14 clean rapidly, CIP aims to combine the advantages of the high temperature, detergent and 15 the mechanical action generated by the turbulent flow (or the impact of the spray) 16 (Moerman et al., 2014). The mechanical effect is created by the flow rate and it is generally 17 admitted that high flow rates result in high removal rates because of the high shear forces 18 on the deposit layer. However some works have detailed the role of hydrodynamics and in 19 particular of the mean wall shear stress and the major role played by its fluctuations (Blel 20 et al., 2013, 2010). This was very recently judged to be mandatory for any CIP improvement 21 (Li et al., 2019).

22 The addition of foaming surfactants or even gas-stabilized foam means the cleaning 23 solution can be applied as a foam, which can increase the retention time, e.g. on vertical 24 surfaces. Foam is widely used in static conditions throughout the food industry for the 25 cleaning of large open surfaces (floor, conveyors, workshops and equipment). To clean open 26 surfaces, foam requires specific qualities, namely density, foamability, stability and void 27 fraction-based quality. However, foam cleaning agents could also be used for cleaning some 28 closed equipment such as filtration modules (Gahleitner et al., 2013). Despite its 29 widespread use, very little work has been carried out on the elimination of surface deposits 30 using flowing foam, essentially gas-liquid two-phase flows in capillaries (Kondjoyan et al., 31 2009) and to our knowledge none have dealt with the elimination of microorganisms.

32 Almost nothing is known about the potential of foam flow to conduct cleaning operations 33 using much less energy (very low velocity) and much less water. Aqueous foams are non-34 Newtonian complex fluids consisting of concentrated dispersions of gas bubbles in a soapy 35 liquid. Depending on the amount of water they contain, they can be either wet or dry. The 36 air fraction defines the so-called foam β quality (Tisné et al., 2004). Foams have original 37 mechanical properties which rely on their low density and high surface area combined with 38 their ability to elastically respond to low stresses and to flow like a viscous liquid with large 39 distortions.

Foams admit an unexpected and nonlinear rheological behavior (shear thinning and yielding), where the properties of the liquid and gas, that compose it, have an influence on it. Their rheological behavior can be compared with some non-Newtonian models such as, power law, Bingham, and Herschel–Bulkley. Recently it was demonstrated that the foam rheological behavior can be better described by Herschel-Bulkley model (Dallagi et al., 2019, 2018).

Among the consequences of foam flow, the mechanical action exerted on the contactsurface depends on the velocity, foam composition (air/liquid) and the ability of the system (foam, geometry and surface properties of the equipment to be cleaned) to maintain a thin liquid film between the solid surface (wall) and the foam flow.

50 Wall shear stress, especially due to this thin liquid film located between the wall and the 51 foam flow, plays an important role in the characterization of the rheological properties of 52 this foam, depending mainly on the bubble size and particularly on the volume fraction of 53 the liquid (Chovet, 2015; Chovet et al., 2014). These properties can be used to understand 54 the microorganism detachment phenomena, such as spores from solid surfaces. Therefore, 55 foam flows would constitute a true novelty in surface hygiene, as low water load and high 56 mechanical actions under moderate temperatures would permit highly cleaning, which can 57 easily be combined with disinfection.

This study investigates the removal kinetics of *B. amyloliquefaciens* 98/7 and *B. cereus* 98/4 spores using foam flow. The respective roles of the foam quality (importance of air/water balance), and of the flow rate were analyzed by means removal kinetics modeling. Results were then compared to spore removal under mild cleaning in place conditions. We then investigated some foam properties (the flow regime and the mean foam flow velocity, bubble-size distribution, bubble-passage frequency, foam quality and mean wall shearstress).

65

66 **2.** Materials and Methods

67

2.1. Bacterial strains and solid surfaces

68 In this study, two bacterial strains isolated from dairy processing lines forming spores of 69 very different surface energies one hydrophobic and the second hydrophilic (Faille et 70 al., 2019, 2016, 2010) were used: B. cereus CUETM 98/4 (BC-98/4) and B. 71 amylolichefaciens CUETM 98/7 (formerly known as *B. subtilis* 98/7). Bacillus spores were 72 produced as previously described (Faille et al., 2019). Before any experiment, two 73 further washes were performed and spores were subjected to a 2.5-min ultra-sonication 74 step in an ultrasonic cleaner (Bransonic 2510E-MT, 42 kHz, 100 W, Branson Ultrasonics 75 Corpo-ration, USA) to limit the presence of aggregates. In order to evaluate the 76 hydrophobic character of spores, Microbial Affinity to Hydrocarbons tests (MATH) were 77 performed as previously described (Faille et al., 2019b).

78 The material, used in the form of rectangular coupons (45 mm x 15 mm), was AISI 316 79 stainless steel with pickled (2B) finish (kindly provided by APERAM, Isbergues, France). 80 Prior to each experiment, coupons were cleaned and disinfected using a standard 81 protocol used at UMET. Coupons was first cleaned using pure alkaline detergent (RBS 82 T105, Traitements Chimiques des Surfaces, France). They were then subjected to a 10 83 min immersion in a 5% RBS T105 at 60 °C, followed by thorough rinsing with tap water, 84 then with softened (reverse osmosis) water for 5 min each. 24 h before the experiments, 85 stainless steel coupons were treated in a dry heat oven at 180°C for 1 h.

86

87 **2.2.** Surface soiling and cleaning

The soiling suspensions were prepared with ultra-purified sterilized water and a spore concentration of around 10⁶ CFU/ml. The coupons were vertically immersed in a Beaker containing 250 ml of the soiling solution, then kept at room temperature for 4 hrs.

91 Coupons were then inserted into a 23 10^{-2} m long stainless steel test duct with a 1.5 x 1 92 10^{-2} m rectangular cross-section. The geometry of the rectangular test ducts used for the

experiments was previously described (Cunault et al., 2015). The three central coupons out
of the five installed in the ducts were soiled and further analyzed after cleaning.

95 The production foam prototype was built according to previous work (Chovet and Aloui, 96 2016; Tisné et al., 2003a). The experimental set-up, with an open foam flow circuit, was 97 designed to allow the foam flow to develop within horizontally-placed square ducts, with 98 the coupons to be cleaned at the top. The test ducts were situated after a transparent 99 Plexiglas rectangular duct, of identical inner size, to visualize the foam flow. To allow steady 100 state flow conditions, the test ducts were placed at intervals exceeding 80 times the 101 hydraulic diameter of the vein inlet (i.e. 1.5 m).

102 The prototype is presented in Figure 1. The rig includes a mother tank (capacity: 100 L) 103 filled with Sodium Dodecyl Sulfate (Sigma-Aldrich ReagentPlus®, over 98.5% purity) 104 dissolved in osmosed water (0.15% ww). The SDS solution is pumped into the feeding tank 105 (50 L) located at a height of 3 m using a positive displacement pump (VARMECA 21TL055, 106 Leroy-Somer). This set-up creates a constant flow rate in the foam generators due to gravity. 107 Three foam generators were designed as previously described (Tisné et al., 2003a). 108 The foam is generated by injection of pressurized air through a porous medium (DURAN[®], 109 pore sizes ranging from 1 to 1.6 µm, Dislab, Lens, France), inside cylindrical containers filled 110 with the SDS solution. The foam quality describing the air/water content of the foam was 111 calculated as follows (Equation 1) according to (Chovet and Aloui, 2016) where Qg and Ql 112 are respectively the gas and liquid flow rates:

- 113
- 114

115

 $\beta = \frac{Qg}{Qg+Ql}$

(1)

116

The three independent parallel generators allowed us to increase the bulk velocity without affecting the foam structure. Three foam qualities were chosen for the cleaning experiments 50%, 60% and 70%. The mean velocity was calculated taking into account the global flow rate (Q_l+Q_g) divided by the cross-section area S of the test duct. The Reynolds number was calculated according to Equations (2) and (3), taking into account the density of both gas and liquid phases. Foam viscosity was calculated using the relationship based on a heuristic model of concentrated emulsions (Equation 4).

124

125
$$Re = \frac{\rho_f \cdot \bar{v} \cdot d_h}{\mu_f}$$
(2)

126

127
$$\rho_f = (1 - \beta).\rho_l + \beta.\rho_g \tag{3}$$

128

129

$$\mu_f = \frac{\mu_l}{1 - \mu_l^{1/3}} \tag{4}$$

130

131 Three liquid/air flowmeters enabled the adjustment of the flow rate from 0 to 35 l h^{-1} 132 and 0 to 70 l h^{-1} respectively.

Flowing from the generators, the foam passes through a transparent Plexiglas pipe of 1.1 m length. The transparent pipe enables the visualization of the foam texture, bubble size and foam velocity measurement. Two pressure outlets allow the connection of 2 manifold tubes placed over a scaled plate that measures on a length L of 1m the pressure drop ΔP to calculate the mean wall shear stress $\bar{\tau}$ (d_h $\Delta P / 4$ L). For each cleaning experiment, only one test duct containing the soiled coupons was clamped to the transparent pipe.

139 The different test ducts were thus cleaned with three foam qualities at 20°C, at foam 140 mean velocities ranging from 2.1 to 6.7 m s-1, for 15 and 35 s, 1, 3, 5, 10 and 20 min and 141 other experiments were carried out to mimic CIP conditions. The test ducts were connected 142 to a CIP pilot rig (Jullien et al., 2008) and a simple CIP procedure was then carried out under 143 the same conditions as those used for the foam tests, i.e. SDS concentration, temperature, 144 cleaning times. The flow rate was selected to generate a mean wall shear stress of 5 Pa, 145 falling within the range of the mean wall shear stress conditions induced by the flowing 146 foam as described in the Results Section. After the cleaning process, the coupons were 147 removed from the test tubes and rinsed by dipping in a beaker containing one liter of sterile 148 ultrapure water. The residual spore contamination was then analyzed as follows.

To determine the number of adhering spores before (NO) or after the (Nresid) cleaning procedure, coupons were subjected to an ultrasonication step in 10 ml of 2% Tween 80 (v/v) in peptone water without indole 0.015 g/L (Biokar), diluted to 1L with ultra-purified sterilized water (5 min, Ultrasonic bath, Branson 2510, 40 Hz). This treatment has been previously shown, in our laboratory, to remove more than 99% of the adherent spores (Tauveron et al., 2006). The detached spores were enumerated on nutrient agar composed of 1.3% w/v nutrient broth (Biorad, France) and 1.5% w/v bacteriological agar type E (Biokar
Diagnostics, France) after 48 h at 30°C. The percentage of residual spores after cleaning was
then calculated [(Nresid/N0) * 100].

For microstructure examination, some rinsed coupons were first dried at 20 °C for at least 1 hour to prevent spore detachment during the staining procedure. The coupons were then stained with orange acridine (0.01%) for 15 min at 20°C, gently rinsed with softened water and allowed to dry before observation. Finally, the surface contamination organization was observed using an epifluorescence microscope (Zeiss Axioskop 2 Plus, Oberkochen, Germany) at magnification 1000X.

- 164
- 165 **2.3.** Foam flow visualisation

166 The method is based on the observation of the displacement of moving bubbles at the 167 walls of the pipe, for a given interval. In situ measurements were carried out at the last part 168 of the pipe where the foam flow could be considered as established. The velocity of the 169 bubbles was measured by marking the Plexiglas pipe wall by two thin marks spaced at a 170 known distance. For both the lateral and the top walls of the pipe, three locations were 171 chosen: two at 1 mm from the edges and one in the middle of the observed wall. The time 172 taken for a bubble to pass between the two marks was recorded to calculate the its velocity. 173 The smallest easily-visible bubbles (0.3 mm) were considered for tracking and 10 successive 174 measurements were carried out. Mean values were then calculated. These could be 175 considered as representative of the local velocity at the wall whatever the bubble size (Tisné 176 et al., 2003). This method gives an approximation of the bubbles' speed. A selection of 177 photos of the foam flow (camera Panasonic LUMIX DMC-FZ62, High speed video [HS], at a 178 speed of up to 200 frames / second) were analyzed using Piximètre 5.1 R1540 image analysis 179 software. The clearest two images in terms for each flow condition induced by the 180 generators and for the three foam qualities were filtered to better observe the borders of 181 the bubbles. It was thus possible to evaluate the bubble size distribution in all the cases 182 studied.

An optical probe (© RBI instrumentation, Meylan, France) based on the discrete variation of the refractive indicator optics between the two-phase flow (air/liquid) was used to evaluate the void fraction and the air bubbles' passage frequency at the wall top (at 0.5 mm from the top). Data were analysed using the ISO software provided by RBI. 187

188 **2.4.** Kinetics modelling

A two-phase kinetics model was used to fit the data as previously proposed for the detachment kinetics of biofilms during CIP (Benezech and Faille, 2018). The fitting was performed using GInaFIT (Geeraerd et al., 2005) using a biphasic model composed of two first order kinetics (Dallagi et al., 2018b, 2019).

193

194 **2.5.** Statistical analysis

At least 3 repetitions were carried out for the quantitative analysis of the residual contamination after foam cleaning. Data were analysed by general linear model procedures using SAS V8.0 software (SAS Institute, Gary, NC, USA). Variance analysis was performed to determine how the bacteria removal described by the kinetic parameters (residual contamination at different cleaning times and model parameters were affected by the cleaning conditions tested .

201

3. Results

203

204 **3.1.** Foam flow organization and mechanical action induced by the foam

205 Three foam qualities were prepared with a concentration of SDS of 0.15 % w/w in order 206 to exceed the Critical Micelle Concentration (CMC). The SDS as an anionic surfactant is a 207 good representative of the "sulphate" surfactants largely used in formulated detergents. 208 The SDS is known to be highly soluble and easy to rinse and is largely used in academic 209 studies (Mai et al., 2016). Anionic surfactants are recognized for their cleaning, foaming and 210 emulsifying properties. The foam generated was found to be very stable (no changes were 211 observed in terms of foam drainage and bubble size over one hour – data not shown). We 212 also checked that the use of one, two or three generators in parallel failed to modify the 213 foam structure significantly, despite the differences in the foam velocity. Thanks to the 214 transparent Plexiglas tube, placed upstream of the test duct with the soiled coupons 215 subjected to the cleaning procedure, it was possible to visualise the foam flow through the 216 rig and to take images or videos. Observations were made from one side and from through 217 the top.

218 The bubble velocity was first measured as shown in Figure 2 in three locations on each 219 selected duct wall (top and lateral). As shown in Figure 2, depending on the experimental 220 conditions (number of generators, foam quality), the velocity profiles were quite different. 221 As the mean velocity increased, a difference in the flow velocity of the bubbles appeared 222 depending on their position in the duct. Indeed, when a single generator was used, bubble 223 velocity was generally constant and the foam flow therefore behaved like a plug flow. The 224 increase induced by two generators showed no change at the top of the duct, except for 225 the foam quality of 70%. Conversely, the bubble velocities increased from the top to the 226 bottom of the duct as shown in Figure 2 B. This is due especially to the underlying liquid 227 film, which pulls the foam in contact because its velocity increases. At the top wall, bubble 228 velocities were highest at the centre of the side, and thus decreased as the flow approached 229 the duct edges. All conditions used are summarized in Table 1.

The foams' flow conditions varied from 2.0 to 8.6 cm s⁻¹, whilst for the CIP conditions the 230 velocity was significantly higher at 120 cm s^{-1} and the flow regime was turbulent (Re > 231 232 14500). The mean wall shear stress (WSS) condition for the CIP was chosen to fall within 233 those induced by the foam, i.e. ranging from 2.2 to 6.4 Pa, allowing comparison between 234 the CIP mechanical action and the use of foam flow. One can note that the plug flow regime 235 with constant foam velocity profile corresponding to 1 generator flow (all foam qualities) 236 related to a Reynolds number maximum of 67. At over 100, the foam flow velocity profile 237 at the top wall could not be considered as constant (Figure 2A).

In Figure 3, an example of photos of the foam flow arrangement at the top surface of thetransparent duct is shown.

In order to identify the distribution of bubble size within the foam under different conditions, photos were taken at the top wall of the Plexiglas duct (Figure 3). The size distribution appeared to be affected by both velocity and foam quality. For example, the greater the velocity at the top wall, the smaller the bubbles.

The bubble sizes were then measured and the data are given in Figure 4. When only one generator was used, the bubble sizes were more heterogeneous than those obtained with two or three generators, whatever the foam quality. Moreover, a significant number of big bubbles (between 1 mm and 10 mm in size) was also observed. The increase in the velocity was thus more conducive to smaller bubbles. In accordance with Figure 3, some larger bubbles (size > 1mm) could still be measured with 2 and 3 generators for the foam flow where $\beta = 50\%$ and with 2 generators for the foam flow where $\beta = 60\%$.

The mean frequencies of the bubbles' passage observed by the optical probe (Figure 4, D) near the top wall increased with the number of generators. However, this increase could not be explained solely by the mean velocity, but is apparently also linked to the reduction in the bubble sizes e.g. for the foam 50%, the doubling or the tripling of the mean velocity induced an increase in the frequency by factors of respectively 2.9 and 7.1.

256

257

3.2. Spores' detachment under the different flowing conditions

Spore adhesion to the stainless steel coupons was $5.6 \pm 0.4 \log$ CFU cm⁻² for *B. amyloliquefaciens* and $5.4 \pm 0.3 \log$ CFU cm⁻² for *B. cereus*. Before any detachment experiments, we checked that spore incubation in SDS 0.15% did not result in any significant viability loss (data not shown). The detachment of *B. amyloliquefaciens* spores was investigated under all the flow conditions with each of the three foam qualities. In Figure 5, only the mean values of the remaining contamination at the different kinetic times were presented. In all cases, the detachment curves clearly showed two distinct phases.

265 Both phases appeared to be exponential and therefore were quite accurately described 266 by the biphasic model, with R2 ranging from 0.62 to 0.98 and mostly over 0.80.

267 During the first detachment phase (less than 1 min), the spore detachment was very fast, 268 with a 0.6 to 1.8 log decrease in the population of surface-attached spores. Large 269 differences were observed according to the number of generators used with the 50%, foam 270 quality whereas the number of generators had little effect on the detachment of the other 271 two foams (60% and 70%). Taking into account all the conditions used, it appears that spore 272 detachment during this first phase was much more efficient with the 50% foam quality 273 when 1 or 2 generators were used. After this first step, the detachment continued for at 274 least 20 minutes, i.e. the duration of the cleaning procedure, though more slowly. Here 275 again, the spore detachment rate seemed dependent on the experimental conditions 276 (number of generators, foam quality). The cleaning kinetics with foam were compared to a 277 CIP using the SDS 0.15% and a mean wall shear stress of 5 Pa (Figure 5D). The first 278 detachment step was close to the most efficient one with foam, i.e. allowing the 279 detachment of over 1.5 log CFU, close to the one observed when 1 or 2 generators were 280 used with the β = 50% foam. Conversely, no further detachment occurred after this first 281 phase, indicating that a plateau value had been reached.

The decimal reduction at 20 min, i.e. the end of the second phase of the cleaning kinetics, was statistically analysed to compare the role of the flow rates conditions induced by the generators, the different foam qualities and by the CIP conditions. At 20 min, cleaning efficiencies observed were comparable between CIP and the flow rates induced by one and two generators (letter A, Tukey's grouping) as shown in Figure 6. In addition, the cleaning efficiency induced by the 50% and 60% foam qualities appeared significantly better than the 70% foam (different letters according to the Tukey's grouping).

289 Focusing on the cleaning conditions with foam, the variance analysis confirmed that 290 the variability observed on the three kinetics parameters (f, kmax1, and kmax2), was 291 significantly related to the flow rate induced by the foam generators. However, some 292 discrepancies should be noted (see Figure 7). Considering the potential combined effects of 293 the foam quality and the flow rate (one, two and three generators) on the parameter f (f is 294 the poorly adherent fraction of the population and/or less resistant to detachment), the 295 variance analysis gave a p value of 0.027. The Tukey's grouping as shown in Figure 7, 296 highlighted a slight effect of the flow rate: f being higher under the lowest flow rate 297 conditions and higher with the foam where β =50%, compared to the foam with β =70% (no 298 common letters, Tukey's grouping). More visible was the role of the flow rate on the 299 constant rate Kmax1 (p=0.001), the lowest flow rate clearly being the most efficient 300 condition for spore removal under this first phase: Kmax1 was multiplied by a factor up to 301 300. Foam quality appeared to play a role as the Tukey's grouping highlighted that Kmax1 302 values for the β =70% foam were very low compared to 50% and 60% foams. While taking 303 into account data obtained with the CIP conditions, as also shown in Figure 7, flow 304 conditions were still highly significant (P=0.0012) and three classes were defined by Tukey's 305 grouping (A, AB and B). In this case, CIP conditions gave an intermediate mean value of 55 306 for Kmax1 compared to 87 with one generator and 6.7 or 1.3 respectively for two or

The effect of cleaning using foam flow, was tested with another *Bacillus* species. In Figure 8 the two kinetics appeared very similar with a quick detachment in less than one min followed by a second phase, with about 0.5 log removal in both cases. Such a cleaning condition was chosen as the most efficient, according to the results described above. The main difference lied in the Kmax1 values, *B. cereus* spores being more difficult to remove

312 than *B. amyloliquefaciens* ones at the initial phase of the kinetics. Conversely, the removal 313 during the second phase of the kinetics appeared very similar and this was confirmed by 314 close values of the detachment rate Kmax2 for the two bacteria.

315 The microscopic observations showed the spores distribution on the coupons before and 316 at different cleaning times. Only times 0 (fouling), 15 s, 3 minutes and 20 minutes were 317 considered for comparison between foam cleanings (0.5 and 1 generator), one of the most 318 effective foam cleanings observed and CIP. Microscopic observation showed that B. 319 amyloliquefaciens 98/7 spores formed some clusters as shown in Figure 8, but these spores 320 were mainly evenly distributed on the steel surface after the 4 hours soiling. Clusters were 321 limited by the sonication of the spore suspensions prior to the soiling step and these were 322 rapidly removed after only 15 s by both CIP and foam flow. Yet, according to Figure 9, 323 removal was visibly greater with foam flow than CIP. The difference observed here (almost 324 one log) is less than the one given by the removal kinetics (Figure 5B; 0.5 log difference), 325 which considers viable and cultivable bacteria. However, the variability (up to 0.5 log) 326 between trials could easily explain this discrepancy.

327

4. Discussion

329 Foam is a two-phase gas-liquid fluid, in which gas is the dispersed phase and liquid is the 330 continuous phase, where the volume of gas greater than that of liquid. In this work, only 331 wet foam was used, meaning that foam is formed only of spherical bubbles, as observed at 332 the top wall as previously described (Chovet and Aloui, 2016; Tisné et al., 2004). Each mean 333 velocity induced by one, two or three generators engendered a different flow regime. 334 Indeed, for the lowest mean velocity, the axial component was uniform over the entire 335 cross-section, thereby corresponding to the mono-dimensional flow regime or plug foam 336 flow regime. For the mean velocity of 4 cm s⁻¹, the flow appeared partially sheared with a 337 sliding at the walls, the axial velocity component no longer being uniform, depending on 338 the ordinate and corresponding to the two-dimensional (2D) foam flow regime. One can 339 notice that the top wall velocity remained constant (foam at β =50% and β =60%) or was only 340 slightly modified at the center of the top wall (foam at β =70%) under our experimental 341 conditions. For the highest mean velocities, the foam flow was completely sheared with a 342 sliding at the walls and could therefore be considered as three-dimensional (3D), with the 343 underlying liquid film at the bottom of the duct flowing at a higher velocity, pulling the foam 344 flow above and therefore inducing a significant increase in the bubbles' velocity directly in 345 contact with this thick liquid film. This phenomenon is accompanied by a rearrangement of 346 bubble sizes, with the largest bubbles being mostly moved up the pipe. Such a phenomenon 347 was already described by (Tisné et al., 2003). In this work, the cleaning of surfaces by the 348 foam was evaluated at the top wall as a first evaluation of the role of flowing foam in the 349 removal of surface contaminations (bacteria spores). In parallel, even if the experimental 350 conditions were supposed to maintain the foam structure with the increase in the mean 351 velocity, it appeared that the bubble size repartition at the top wall varied with the foam 352 quality tested, meaning that bubble rearrangementhad occurred: the increase in the mean 353 velocity induced a reduction in the bubble size at the top wall.

354 Furthermore, it has been demonstrated that the variation at the top wall of the the thin 355 liquid film between the bubbles and the wall is directly affected by the bubbles passage and 356 depends on their size (Tisné et al., 2004), which could have an effect on the effectiveness 357 of adherent bacteria removal. The thickness fluctuations thus induced under their 358 experimental 1D flow conditions varied between 5 μ m and 35 μ m with a foam guality of 359 70%. Under 1D flow conditions for a foam quality of 55%, conditions close to our 360 experimental conditions Chovet and Aloui, 2016, observed fluctuations at the top of the 361 channel liquid film varying from 2 µm to 40 µm. In addition, this amplitude decreased with 362 the increase in the foam quality, probably due to a change in the bubble size arrangement 363 at the wall.

364 Microscopic scale studies (Tisné et al., 2004), reveal that it is possible to rely on studies 365 of bubble flows inside circular capillaries, which will help in understanding the underlying 366 phenomena (Bretherton, 1961). Assuming that there was no tangential shear stress at the 367 fluid-fluid interface, he predicted that the film thickness was dependent on four 368 parameters: the tube radius r, the liquid viscosity μ_L , the surface tension y and the bubbles' 369 velocity V_b. The film thickness is as follows:

 $e = 1.337 r Ca^{2/3}$ 370

(5)

371 where Ca represents the capillary number defined as:

372 $Ca = \mu_L V_b / \gamma$

373 In relation to Bretherton's approach, r was assimilated to the radius of the bubble. Tisné 374 et al., 2004 representing the evolution of the measured contact film thickness versus Ca^{2/3} 375 observed a close agreement with the Bretherton law (Bretherton, 1961), the bubble size

(6)

376 considered being 0.5 mm. Our experiments are in a capillary number range of 11 10^{-4} < Ca 377 < 44 10^{-4} (0.011 < Ca^{2/3} < 0.026) falling within the range proposed by these authors, 3.10^{-4} 378 < Ca < 28.10⁻⁴ (0.005 < Ca^{2/3} < 0.02). Given the agreement observed with the Bretherton law, 379 the contact liquid film thickness in our experimental conditions would have ranged from 7 380 to 18 µm given a mean bubble radius of 0.5 mm, the thinnest liquid films being observed at 381 the lowest velocities. Such a range of variation is in agreement with previous works (Chovet 382 and Aloui, 2016; Tisné et al., 2004).

383 In parallel, it was shown (Tisné et al., 2003) that the wall shear stress was lower in the 384 liquid film between each bubble and the wall. The wall friction was especially concentrated 385 at the two ends of the bubbles; the wall shear stress fluctuations' amplitude being linked to 386 the bubble size. When compared with the spore detachment kinetics, the greatest 387 detachment efficiency appeared to be obtained with larger bubble size, notably when their 388 diameter exceeded 0.1 mm, as clearly observed with the foam qualities of 0.5 (1D and 2D 389 foam flow conditions) and 60% (1D foam flow condition) during the first step. Under CIP 390 conditions, the detachment rate appeared to be comparable to the best foam cleaning 391 conditions tested for comparable mean WSS conditions. In both cases the cleaning agent 392 was the SDS under cold conditions (20°C). Previous work (Faille et al., 2018), highlighted the 393 significant role of the fluctuation in the local wall shear stress on the cleaning efficiency 394 under CIP conditions. One can draw a parallel here with these previous observations 395 (Chovet and Aloui, 2016; Tisné et al., 2003), as the presence of the WSS fluctuations induced 396 by the foam at the top wall appeared to play a role in the detachment mechanism and was 397 clearly visibly under the 1D flow regime. However, for the 70%, foam quality, larger sized 398 bubbles were observed at the top wall, which failed to ensure cleaning efficiency. 399 Conversely, the increase in foam velocity meant a re-arrangement of the bubble sizes at the 400 top wall (smaller bubbles). This phenomenon appeared to be unfavorable for efficient 401 cleaning, as despite an increase in mean WSS, fluctuation amplitude decreased. Local wall 402 shear stress decreases dramatically while bubble passes and increases to a maximum 403 between bubbles (Tisné et al., 2003). Therefore, the frequency of fluctuation of the local 404 wall shear stress with large bubbles is less than the fluctuation with small bubbles but the 405 amplitude is higher and would explain the differences in the spores' removal.

406 The kinetics of bacteria spore detachment in the different flow and foam quality 407 conditions were investigated and modelled according to previous work (Benezech and

408 Faille, 2018) on biofilm removal under CIP conditions. An identical simple two-phase model 409 was found to be suitable for describing biofilm removal kinetics. The first bacterial removal 410 phase corresponded to a quick removal of biofilm matrix with embedded cells, while the 411 second phase accounted for the removal of cells directly attached to the steel surface. For 412 bacterial spores removed by foam flow, the mechanisms appeared to be totally different, 413 as the bacteria were evenly distributed on the stainless steel surfaces with very few clusters. 414 This is unlikely to explain the quick and strong removal at the very beginning of the cleaning 415 (less than 1 min). The parameter f corresponding to the part of the spore's population easily 416 affected by the foam flow appeared to be significantly higher at the lowest velocities and 417 for the wettest foam (β =50%). This also corresponded to the highest values of the Kmax1 418 constant rate, i.e. the first phase of the removal kinetics. However, the second kinetic phase 419 did not significantly improve the cleaning efficiency as a whole, whatever the conditions. 420 For biofilms, it was observed that the chemical action contrarily to the mechanical action 421 induced by the foam flow, was only involved in the first removal kinetic phase. The addition 422 of chemicals such as NaOH during CIP conditions would largely improve this initial kinetics 423 removal phase (Benezech and Faille, 2018). The difficulty in removing the remaining spores 424 during the second phase of the kinetics was probably due to the stainless steel surface finish 425 2B used, which was proven to be less hygienic than other finishes, such as bright annealed 426 2R, as it presents boundary grains where spores can accumulate. The fluctuations in the 427 liquid film thickness and/or of the wall shear stress appeared to impact the detachment 428 phenomenon to a lesser extent.

429 A comparison with previous work on particles detachment by bubbles moving in a 430 capillary duct, will allow the potential role of the capillary forces in the bacterial detachment 431 to be taken into account. Two types of particles in terms of surface energy (hydrophobic 432 and hydrophilic) of a size comparable to the Bacillus spores were used (Kondjoyan et al., 433 2009b), the entire air-liquid interface was modelled and the time-variation of the capillary 434 force during transit of the bubble at the surface was determined. The particle detachment 435 curve was thus predicted from near zero velocity to the highest velocity value, at which 436 capillary force was supposed to vanish.

The approach was validated using latex particles 2µm in diameter. The bell-shaped detachment curves experimentally obtained showed a width dependent on the value of the contact angle of the particles, the curve being narrower for hydrophilic particles than for 440 hydrophobic ones. The effective contact angle values of the particles could thus be deduced 441 directly from the width of the detachment curves. Bacillus amyloliquefaciens 98/7 spores 442 according to previous work were highly hydrophilic (Faille et al., 2010) with a contact angle 443 to water of 20.5° (data not shown). For hydrophilic particles (Kondjoyan et al., 2009b), the 444 detachment occurred at bubble velocities of around 3 cm s⁻¹ and dramatically decreased at 445 5 cm s⁻¹. As far as a direct comparison is conceivable, such a velocity range corresponded 446 to the variation range $(2.2 - 5 \text{ cm s}^{-1})$, where the greatest detachment rate was observed, 447 as illustrated by high Kmax1 constant rate values under 1D flow conditions. For 448 hydrophobic particles, the bell-shaped detachment rate was wider and detachment started at greater bubble velocities, starting at 3 cm s⁻¹ and peaking at around 7 cm s⁻¹. This could 449 450 partly explain the very low cleaning efficiency of surfaces soiled by the Bacillus cereus 98/4 451 spores by the best foam cleaning conditions observed for *B. amyloliquefaciens*. *B. cereus* 452 spores presented a high contact angle value (111.1°) as described recently (Faille et al., 453 2019a), largely over the value of 59° for the hydrophobic particles deduced from the bell-454 shaped curve (Kondjoyan et al., 2009b). With B. cereus spores, greater foam velocities 455 should be tested, while conserving the bubble pattern obtained in this work under 1D flow 456 conditions.

Time-variations relating to the capillary forces as an inlet condition in a modified adhesion and dynamic model were suggested as a way of predict the nano- and micromovements of particles during their detachment from a surface (Kondjoyan et al., 2009). These movements are probably emphasized by the shear force fluctuations in our experimental conditions, which differ greatly to capillary flow conditions.

462 **Conclusions and perspectives**

463 This work constitutes a cornerstone for future work on the implementation of foam flow 464 cleaning in the industry. This requires further activities on foam flow characterisation in 465 order to be able to design a new efficient cleaning foam structure e.g. less drainage 466 phenomenon and increase of the wall shear stress at the bottom of the ducts, which would 467 take into account the surfactant used (more profitable and usable industrially) than the SDS 468 and the temperature of the foam. The decrease of the temperatures seemed to play a 469 significant role in its cohesion strengths (data not shown) potentially corresponding to food 470 processing sectors working under positive cold conditions e.g. fresh-cut or frozen vegetable

- 471 and fruit industries. The novelty of this concept is to clean complex equipment while using
- 472 far less potable water, at a lower energy consumption level.

473

474 Acknowledgments

475This work was supported by the project Veg-I-Tec (programme Interreg V France-476Wallonia-Flanders GoToS3), ANIOS laboratories and the European Regional Development

- 477 fund via the Hauts-de-France region.
- 478

479 **References**

- Benezech, T., Faille, C., 2018. Two-phase kinetics of biofilm removal during CIP.
 Respective roles of mechanical and chemical effects on the detachment of single cells
 vs cell clusters from a Pseudomonas fluorescens biofilm. J. Food Eng. 219, 121–128.
 https://doi.org/10.1016/j.jfoodeng.2017.09.013
- Blel, W., Legentilhomme, P., Bénézech, T., Fayolle, F., 2013. Cleanabilty study of a Scraped
 Surface Heat Exchanger. Food and Bioproducts Processing 91, 95–102.
 https://doi.org/10.1016/j.fbp.2012.10.002
- Blel, W., Legentilhomme, P., Le Gentil-Lelièvre, C., Faille, C., Legrand, J., Bénézech, T.,
 2010. Cleanability study of complex geometries: Interaction between B. cereus spores
 and the different flow eddies scales. Biochemical Engineering Journal 49, 40–51.
 https://doi.org/10.1016/j.bej.2009.11.009
- Bretherton, F.P., 1961. The motion of long bubbles in tubes. Journal of Fluid Mechanics 10,
 166. https://doi.org/10.1017/S0022112061000160
- 493 Chovet, R., 2015. Experimental and numerical characterization of the rheological behavior
 494 of a complex fluid: application to a wet foam flow through a horizontal straight duct
 495 with and without flow disruption devices (FDD). Université de Valenciennes et du
 496 Hainaut-Cambresis.
- Chovet, R., Aloui, F., 2016. Liquid Film Thickness: Study and Influence over Aqueous Foam
 Flow. J. Appl. Fluid Mech. 9, 39–48.
- Chovet, R., Aloui, F., Keirsbulck, L., 2014. Gas-Liquid Foam Through Straight Ducts and
 Singularities: CFD Simulations and Experiments.
 https://doi.org/10.1115/FEDSM2014-21190
- 502 Cunault, C., Faille, C., Briandet, R., Postollec, F., Desriac, N., Benezech, T., 2018.
 503 Pseudomonas sp. biofilm development on fresh-cut food equipment surfaces a
 504 growth curve fitting approach to building a comprehensive tool for studying surface
 505 contamination dynamics. Food and Bioproducts Processing 107, 70–87.
 506 https://doi.org/10.1016/j.fbp.2017.11.001
- Dallagi, H., Al Saabi, A., Faille, C., Benezech, T., Augustin, W., Aloui, F., 2019. Cfd
 Simulations of the Rheological Behavior of Aqueous Foam Flow Through a Half-

- Sudden Expansion, in: Proceedinge of the Asme/Jsme/Ksme Joint Fluids Engineering
 Conference, 2019, Vol 1. Amer Soc Mechanical Engineers, New York, p. UNSP
 V001T01A030.
- Dallagi, H., Gheith, R., Al Saabi, A., Faille, C., Augustin, W., Benezech, T., Aloui, F., 2018a. 512 513 CFD Characterization of a Wet Foam Flow Rheological Behavior, in: Volume 3: 514 Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and 515 Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid 516 Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics. Presented at 517 the ASME 2018 5th Joint US-European Fluids Engineering Division Summer 518 Meeting, ASME, Montreal, Quebec, Canada, p. V003T20A004. 519 https://doi.org/10.1115/FEDSM2018-83338
- Dallagi, H., Gheith, R., Al Saabi, A., Faille, C., Augustin, W., Benezech, T., Aloui, F., 2018b. 520 521 CFD Characterization of a Wet Foam Flow Rheological Behavior, in: Volume 3: 522 Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid 523 Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics. Presented at 524 525 the ASME 2018 5th Joint US-European Fluids Engineering Division Summer 526 ASME, Quebec, Canada, V003T20A004. Meeting, Montreal, p. 527 https://doi.org/10.1115/FEDSM2018-83338
- Dogan, B., Boor, K.J., 2003. Genetic diversity and spoilage potentials among Pseudomonas
 spp. isolated from fluid milk products and dairy processing plants. Appl. Environ.
 Microbiol. 69, 130–138.
- 531 Faille, C., Bihi, I., Ronse, A., Ronse, G., Baudoin, M., Zoueshtiagh, F., 2016. Increased 532 resistance to detachment of adherent microspheres and Bacillus spores subjected to a 533 step. Colloids and Surfaces B: Biointerfaces 143. 293-300. drying 534 https://doi.org/10.1016/j.colsurfb.2016.03.041
- Faille, C., Cunault, C., Dubois, T., Benezech, T., 2018. Hygienic design of food processing
 lines to mitigate the risk of bacterial food contamination with respect to
 environmental concerns. Innov. Food Sci. Emerg. Technol. 46, 65–73.
 https://doi.org/10.1016/j.ifset.2017.10.002
- 539 Faille, C., Lemy, C., Allion-Maurer, A., Zoueshtiagh, F., 2019. Evaluation of the 540 hydrophobic properties of latex microspheres and Bacillus spores. Influence of the 541 particle size on the data obtained by the MATH method (microbial adhesion to 542 **B-Biointerfaces** hydrocarbons). Colloid Surf. 182. **UNSP** 110398. 543 https://doi.org/10.1016/j.colsurfb.2019.110398
- 544 Faille, C., Lequette, Y., Ronse, A., Slomianny, C., Garénaux, E., Guerardel, Y., 2010. 545 Morphology and physico-chemical properties of Bacillus spores surrounded or not 546 with an exosporiumConsequences on their ability to adhere to stainless steel. 547 International Journal Microbiology 143, 125-135. of Food 548 https://doi.org/10.1016/j.ijfoodmicro.2010.07.038
- Gahleitner, B., Loderer, C., Fuchs, W., 2013. Chemical foam cleaning as an alternative for
 flux recovery in dynamic filtration processes. Journal of Membrane Science 431, 19–
 27. https://doi.org/10.1016/j.memsci.2012.12.047

- 552 Geeraerd, A.H., Valdramidis, V.P., Van Impe, J.F., 2005. GInaFiT, a freeware tool to assess 553 non-log-linear microbial survivor curves. International Journal of Food Microbiology 554 102, 95-105. https://doi.org/10.1016/j.ijfoodmicro.2004.11.038 555 Jullien, C., Benezech, T., Gentil, C.L., Boulange-Petermann, L., Dubois, P.E., Tissier, J.P., 556 Traisnel, M., Faille, C., 2008. Physico-chemical and hygienic property modifications 557 of stainless steel surfaces induced by conditioning with food and detergent. 558 Biofouling 24, 163-172. https://doi.org/10.1080/08927010801958960 Kondjoyan, A., Dessaigne, S., Herry, J.-M., Bellon-Fontaine, M.-N., 2009a. Capillary force 559 560 required to detach micron-sized particles from solid surfaces-Validation with 561 bubbles circulating in water and 2µm-diameter latex spheres. Colloids and Surfaces 562 B: Biointerfaces 73, 276–283. https://doi.org/10.1016/j.colsurfb.2009.05.022 Li, G., Tang, L., Zhang, X., Dong, J., 2019. A review of factors affecting the efficiency of 563 564 clean-in-place procedures in closed processing systems. Energy 178, 57-71. 565 https://doi.org/10.1016/j.energy.2019.04.123 Mai, Z., Butin, V., Rakib, M., Zhu, H., Rabiller-Baudry, M., Couallier, E., 2016. Influence 566 567 of bulk concentration on the organisation of molecules at a membrane surface and 568 flux decline during reverse osmosis of an anionic surfactant. J. Membr. Sci. 499, 257– 569 268. https://doi.org/10.1016/j.memsci.2015.10.012 570 Moerman, F., Rizoulières, P., Majoor, F.A., 2014. 10 - Cleaning in place (CIP) in food processing, in: Lelieveld, H.L.M., Holah, J.T., Napper, D. (Eds.), Hygiene in Food 571 572 Processing (Second Edition). Woodhead Publishing, pp. 305-383. 573 https://doi.org/10.1533/9780857098634.3.305 574 Peng, J.-S., Tsai, W.-C., Chou, C.-C., 2002. Inactivation and removal of Bacillus cereus by 575 sanitizer and detergent. Int. J. Food Microbiol. 77, 11–18. 576 Pietrysiak, E., Kummer, J.M., Hanrahan, I., Ganjyal, G.M., 2019. Efficacy of Surfactant 577 Combined with Peracetic Acid in Removing Listeria innocua from Fresh Apples. J. 578 Food Prot. 82, 1959–1972. https://doi.org/10.4315/0362-028X.JFP-19-064 579 Ribeiro, M.C.E., Fernandes, M. da S., Kuaye, A.Y., Gigante, M.L., 2019. Influence of 580 different cleaning and sanitisation procedures on the removal of adhered Bacillus 581 cereus spores. Int. Dairy J. 94, 22-28. https://doi.org/10.1016/j.idairyj.2019.02.011 582 Srey, S., Jahid, I.K., Ha, S.-D., 2013. Biofilm formation in food industries: A food safety 583 concern. Food Control 31, 572-585. https://doi.org/10.1016/j.foodcont.2012.12.001 584 Tauveron, G., Slomianny, C., Henry, C., Faille, C., 2006. Variability among Bacillus cereus 585 strains in spore surface properties and influence on their ability to contaminate food 586 equipment. Int. Microbiol. 110, 254-262. surface J. Food 587 https://doi.org/10.1016/j.ijfoodmicro.2006.04.027 588 Tisné, P., Aloui, F., Doubliez, L., 2003. Analysis of wall shear stress in wet foam flows using 589 the electrochemical method. International Journal of Multiphase Flow 29, 841-854.
- 590 https://doi.org/10.1016/S0301-9322(03)00038-7
- 591 Tisné, P., Doubliez, L., Aloui, F., 2004. Determination of the slip layer thickness for a wet
 592 foam flow. Colloids and Surfaces A: Physicochemical and Engineering Aspects 246,
 593 21–29. https://doi.org/10.1016/j.colsurfa.2004.07.014

Figure 1. Diagram of foam cleaning in place prototype

Figure 2: Bubble velocities measured at the top and lateral walls of the transparent duct measured at three positions (in red) in relation to the number of generators (one: square, two: diamond, three: triangle) and with the foam qualities (white: 50%, grey: 60% and black: 70%)

Figure 3. Foam visualization at the top wall of the transparent Plexiglas duct just upstream of the test ducts for the three foam qualities and foam flow conditions induced by the generators

Figure 4. Bubble size (mm) pattern; A: one generator, B: 2 generators, C: 3 generators and frequency of bubbles' passage (D) in front of the optical probe at the top wall for the three foam qualities: 0.5 (dark blue), 0.6 (light blue), 07 (yellow)

Figure 5. Removal kinetics of *B. amyloliquefaciens* spores under different flow conditions (mean values): 1 generator (square), 2 generators (diamond), 3 generators (triangle) for the foam qualities of 50% (A), 60% (B) and 70% (C); Removal kinetics with the foam quality of 50%, one generator compared to CIP ("foam quality" being equal to zero in that case) (D)

Figure 6. Decimal reduction of the *Bacillus amyloliquefaciens* spores induced by different flow conditions at 20 min cleaning time: comparison of the combined effects of the flow conditions and the foam quality including CIP conditions

Figure 7. Variations induced by the combination of the foam quality (including CIP conditions for the last two graphs) and the flow rate induced by one, two or three generators on the kinetics parameters f, Kmax1 and Kmax2. According to the Tukey grouping, letters were indicated with potentially three classes A, AB and B; common letters meaning no significant differences

Figure 8. Comparison between the removal of *Bacillus amyloliquefaciens* and *Bacillus cereus* spores: cleaning with foam of β =50% and one generator

Figure 9. Observations of the stainless steel coupon contamination before cleaning and after 15 s, 3 min and 20 min with a foam quality of β =50% using one generator or with CIP

	Foam 50% 1 Generator	CIP
Before cleaning	clusters <u>50 μm</u>	
15 s		
3 min		
20 min		

Liquid flow rate (l.h ⁻¹)	Air flow rate (I.h ⁻¹)	Foam quality β	Mean velocity (cm.s ⁻¹)	$ar{ au}w$ (Pa)	Re
6	6		2.0	2.2	43
9	9	50%	4.0	4.2	87
13.5	13.5		6.1	5.9	130
4.2	6.3		2.4	2.2	51
8.4	12.6	60%	4.9	4.4	101
12.6	18.9		7.3	6.0	151
4.2	9.8		2.9	2.4	67
8.4	19.6	70%	5.7	5.1	135
12.6	29.4		8.6	6.4	202
650	-	0 (no foam)	120	5.1	14500

Table 1. Flow conditions for the foam flow and the CIP (foam quality = 0)