
HAL Id: hal-03081289
https://hal.univ-lille.fr/hal-03081289v1

Preprint submitted on 2 Aug 2021 (v1), last revised 18 Dec 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programmed mathematics
Liesbeth de Mol

To cite this version:

Liesbeth de Mol. Programmed mathematics. 2024. �hal-03081289v1�

https://hal.univ-lille.fr/hal-03081289v1
https://hal.archives-ouvertes.fr


CHAPTER 6:
MATHEMATICS AND TECHNOLOGICAL CHANGE
"PROGRAMMED MATHEMATICS"

Liesbeth De Mol

I. Introduction
In 1976, the renowned historian of mathematics, Kenneth O. May, was invited as a keynote 

speaker to an influential conference on the history of computers that gathered an international set of 
well-known people from the field of computing including, amongst others, Stanislaw Ulam, 
Friedrich Bauer, Donald Knuth and Andrei Ershov. The aim was to present their thoughts on and 
contributions to the short history of the field of computing and to raise awareness of the significance
of writing their histories. Since many in computing were still looking into the direction of 
mathematics and formal logic as a basic discipline (if not foundational) for their field, it made sense
to invite a historian of mathematics and to hear about his views. His talk was titled Historiography: 
A perspective for computer scientists and one of its purposes was to emphasize the significance of 
the computer for the history of mathematics and to integrate the history of computing into the 
history of mathematics.1

Interestingly, May did not view the computer as just another technology belonging to the 
field of so-called applied mathematics. Quite on the contrary, in his understanding, “[t]o say that 
[…] [the computer is] one of the most important inventions in mathematics or in the history of 
mathematics would be an understatement” (May 1980). This fitted with a view that opposed an idea
of applied versus pure mathematics: according to May it was a myth, a construction, that there is 
some part of mathematics that is disconnected from the world and purely theoretical and a part that 
is only applied without theory. Instead he proposed another distinction: that between mathematical 
science and mathematical technology with both containing more theoretical and more practical 
developments. The latter included an algorithmic tradition (which he called the software side of 
mathematical technology) and one that concerns calculating devices (on the hardware side). It was 
then because of the computer that mathematical technology has gotten the place it deserves in the 
history of mathematics (May 1980): 

“[Mathematical technology] developed steadily in history without an elaborate literature, so 
that it doesn’t appear in the historical record as a central thing. […] If we look at the history 
of mathematics this way, it seems to me that one of the effects of the coming of the 
electronic computer is that for the first time mathematical technology has become a 
consciously recognized discipline [...] instead of just being for practitioners who didn’t seem
to be in the mainstream, computing now becomes the Queen of Technology.

May’s remarks go into two directions, attracting the history of computer science in the realm of the 
history of mathematics (which did not work out, see the last section), but also enlarging the focus of
historians of mathematics to mathematical technology and computing. It is the aim of this chapter to
focus on this second direction in order to evaluate the role of (modern) computing as a 
mathematical technology: how do the histories of computing and mathematics intertwine (or not) 
and what does this tell us about (the history of) mathematics itself and how it is perceived today?  

Of course, it is not possible within the scope of one chapter to tell the complete histories and
so the focus here will be on overall developments in the 20th and early 21st century of a (changing) 
relation between, on the one hand, mathematics – its practice, its self-perception and its results  – 
and, on the other,  computational technologies and the academic fields which are anchored in it 
historically. That history is very broad. In order to give focus in this chapter, I will concentrate 
mainly on the U.S. It should be emphasized here that this does not mean that there are no interesting
histories to write in relation to other national and cultural contexts and their relations to the U.S. 
(see for instance, (Gerovich 2002) for Russia and (Mounier-Kuhn 2011) for France).  The chapter 

1 May died unexpectedly in 1977 the paper was constructed by his colleagues on the basis of  the recording of his talk 
at Los Alamos.



will develop along four major topics: the early history of computers in relation to mathematics (sec. 
1); the use of computational technology within mathematics (Sec. 2); mathematics as a tool for 
computation (Sec. 3) and, finally, the changing disciplinary identity of mathematics from the 
perspective of computational technologies (Sec. 4). 

Mathematical Tables and other Aids to Computation: a rapprochement between mathematics 
and computation

While the rise of the modern computer should not be reduced to developments in 
mathematics (Campbell-Kelly et al 2014), it is also clear that the field was an important driving 
force for the early history of  large- scale machine computation. So, how is it that mathematics and 
mathematicians became involved with the making and use of this technology?   

One important impetus came from an increased need for mathematics research in the context
of military science (see also Chapter 2 of this volume). In that context it became clear that brute-
force computation would be a necessary tool to develop and deploy ever more sophisticated 
weapons. Military science in the US became more important during WWI as is witnessed by the 
creation of the National Research Council in 1916, an initiative of the National Academy of 
Sciences, to serve as an advisory board for scientific matters relevant to the state. For mathematics 
specifically, there were a number of influential figures, like G.D. Birkhoff, O. Veblen and F.R. 
Moulton, who got involved with military applications (Archibald et al, 2014). During WWII the US
mathematical community was mobilized to getting involved with the war effort amongst others 
through the establishment of the joint War Preparedness Committee of the American Mathematical 
Society and the Mathematical Association of American and, later, the Applied Mathematics Panel 
(AMP). The latter was led by Warren Weaver with Mina Rees as his executive assistant. Its purpose 
was `to bring mathematicians as a group more effectively into the work being carried on by 
scientists in support of the nation's war effort.’ (Bush, Conant, Weaver 1946, p. vii). That meant that
most of the work of the AMP was requested by Army, Navy or other NDRC agencies, that is, 
mathematics in the service of others. By the end of the war, the AMP had undertaken around 200 
studies, half of which were upon direct request from the military. That computation was considered 
a major method in this context is clear from the fact that from the four major topics mentioned in a 
series of three AMP summary reports from 1946, one is devoted to  computational services. These 
include the making of tables and charts, the evaluation of integrals in several settings (going from 
the computation of ballistic trajectories to the shape of shells) and research into the potential of 
computing equipment. 

Of particular interest here is the establishment of the Aberdeen Proving Ground (APG) 
which was the first U.S. Proving Ground and constituted just a few months after the US had entered
World War I. It was here that weapons were being designed and tested and it played a major role in 
bringing closer mathematics and military applications. In 1918, Veblen was put in charge of 
experimental ballistics with the aim of producing firing tables. These tables were used in the field to
aim fire. The trajectory of a shell is determined by a large number of factors like the density and 
temperature of the air, the wind velocity, the elevation of the gun, etc. Firing tables contained the 
necessary informations related to these different parameters which could then be used to aim the 
firing device correctly.  



Fig. ??. A view on the
ENIAC with Marlyn Wescoff
and Ruth Lichterman wiring

the machine.

Such tables had to be
computed for ever new weapon and so, as the military efforts of the US increased, there was a 
growing need for such tables. The computation of these firing tables at APG and, more specifically, 
its Research Department – which was renamed the Ballistic Research Lab (BRL) in 1938 – became 
a major contributor to computational technologies not just with respect to the technology itself but 
also with respect to the development of improved mathematical methods (Aspray 1990). Steadily it 
became a hub for work with and exploration of computing technology and computational methods, 
attracting a diversity of mathematicians as consultants including, amongst others, Haskell B. Curry, 
John von Neumann and Isaac Jacob Schoenberg.  

At the BRL, computation of firing tables relied mostly on human computers, aided by desk 
calculators, and, in the 1930s, computations coming from two differential analyzers and which were
modeled after the differential analyzer by Bush and Caldwell developed at MIT. Today, we would 
characterize these as analog computers, that is, calculators that work with measurement rather than 
with numbers. By the late 1930s these had achieved a large generality in their ability to solve any 
differential equation that fitted the size of the machine and so they were well suited to solve the 
basic differential equations involved in the computation of ballistic trajectories. 

However, at BRL, even with the help of the differential analyzers, one could not keep up 
with the demands for firing tables. Thus, when in 1943, John W. Mauchly from the Moore School 
of Electrical Engineering – an institute in close contact with BRL – made a first proposal to the 
army to build an electronic high-speed machine to compute firing tables, it was accepted quite 
quickly. This was the start of the construction of one of the first large-scale electronic computers 
that became known as ENIAC (See Fig. ??). It took until 1946 to complete the machine. Even 
though it was too late to serve its initial purpose, it was realized that the ENIAC could  be used for a
host of other applications. These included computations for number theory (by Derrick and Emma 
Lehmer), computations for weather prediction in the context of the Meteorology Project (led by 
Jules Charney) and the famous Monte Carlo calculations used in the design of nuclear weapons (led
by John von Neumann who was deeply involved with the Manhattan project – see Chapter II of this 
volume). This approach relied on the use of random numbers to look at the (simulated) paths of a 
large number of neutrons determined by fission, scattering, absorption or escape in order to get a 
statistical picture of their behavior. As will be shown later, the introduction of high-speed discrete 
computation would have a major impact on the numerical methods used.  

But while the increased relevance of computation for military science was certainly an 
important force that accelerated developments related to computational technology this was rooted 
in a more general realization of the potential of computational methods. Indeed, in the first half of 
the 20th century, one sees the rise of a number of (large-scale) scientific projects that relied on 
extensive computation, often through the production of numerical tables (Grier 2005)  which need 
to be contextualized in a longer tradition of the making and using of numerical tables (Campbell-
Kelly et al 2003). Within these projects one often relied on calculating and other technical devices 
that allowed to make more efficient the computational process. These included, amongst others, 
desk calculators,  tabulators and assemblies of smaller interconnected calculators. Fig. ??, for 
instance, shows a Brunsviga-Dupla machine that was used by Leslie J. Comrie for astronomical 



computations.  He established in the 1930s the first private firm specialized in scientific 
computation.

Fig. ??: The Brunsviga-Dupla calculator as presented by Comrie in 1928 before the Royal
Astronomical Society in 1928. 

These mechanized computations often went hand-in-hand with computational work by (teams of) 
so-called “computers”, in some cases, organized by a principle for the division of labor (note that 
our current notion of “computer” thus derived from humans computing).  Some well-known 
examples of larger projects are: the project at the Nautical Almanac Office in the UK which under 
the direction of Comrie in the 1930s introduced desk calculators; the Mathematical Tables project in
New York led by Arnold Lowan and Gertrude Blanch and which relied almost exclusively on a 
division of labor principle with over 100 computers hired at a certain point; the astronomical work 
at the Astronomical Computing Bureau, led by Wallace J. Eckert and which later became the J. 
Watson Scientific Laboratory for astronomical computations, recognizing the support from IBM 
and Thomas J. Watson in particular. Once te first large-scale machines were built, these were often 
perceived as automations of the work of the human computer. For instance, as Maurice Wilkes 
pointed out in the context of the EDSAC (see below): 

“With the EDSAC the analogy between the machine and a computor is a close one in that 
the problem is presented to the machine in the form of a series of orders […] In a 
metaphoric sense the machine may be said to understand the same language as a computor” 
(Wilkes, M. 1949. “Programme design for a high-speed automaic calculating machine”, 
Journal of Scientific instruments, 26, pp. 217–220).  
These kind of practices got more organized and contributed to establishing computing as a 

valuable scientific method. That process was aided by the establishment of organizations like the 
Mathematical Tables Committee in the UK or the  National Research Council Committee on the 
Bibliography of Mathematical Tables and other aids to Computation (Grier 2005). Under the 
leadership of Raymond C. Archibald the latter founded the journal  Mathematical Tables and other 
aids to Computation (MTAC) in 1943. Its purpose was to report on developments in mathematical 
tables and other computational techniques. Very soon, in the late 1940s, it also played a key role in 
reporting on work done in relation to the new large-scale computing machines. It even became the 
recommended journal of the Eastern Association for Computing Machinery (EACM), later the 
ACM, before it started its own journal in 1954. In the 1950s, interest in MTAC declined. This, 



ironically, was due, at least partially, to the rise of the modern computer: precomputed values in 
mathematical tables had become obsolete since, with these computers, one could quickly compute 
values as they were needed (see below) and so attention shifted more to the mathematics of 
computation itself. In 1959, MTAC was renamed and became Mathematics of Computation. Today, 
topics covered by the journal include: numerical analysis and computational discrete mathematics.  

Despite the fact that the relevance of mathematical tables steadily declined with the rise of 
the modern computer, many of those involved with such table making and other computational 
projects became pioneers for the modern computer and computing. Archibald, through the 
establishment of MTAC, is one such example.  But there are others who contributed to the 
construction and use of large-scale computing machines. Eckert, for instance, who already worked 
with IBM in the 1930s  for his astronomical computations, became the director of the IBM SSEC 
project – a semi-electronic large-scale computer tat was built by IBM after Watson had a fallout 
with Howard Aiken. 

Aiken was a Harvard graduate student of  electrical engineering who realized the need for 
extensive computation of differential equations to study the behavior of electrons in vacuum tubes. 
Even though Harvard University – where there was a longer tradition of human computational 
practices via the Harvard Observatory –  could pay salaries of human computers to attack such 
problems, Aiken believed that such help would not be enough for his problem and so he started to 
consider the possibility of building a machine to attack such problems. IBM decided to help in the 
construction of such a machine and so made available its machines and engineers to construct the 
ASCC, the Automatic Sequence Controlled Calculator. This referred to the fact that, unlike desk 
calculators, this machine should be able to automatically carry out a sequence of (coded) 
mathematical operations which were “read” by the machine from a punched tape. The ASCC soon  
became known as the Harvard Mark I and was basic to the history of the first computers. Its 
nickname was Bessie because it was used, amongst others, to compute tables of Bessel functions 
(some fifty volumes of Bessel functions were published). It was also used by the US Navy under the
leadership of Grace Hopper, who got her PhD from Yale in mathematics in 1934 and who became a 
major contributor to automatic programming in the 1950s.

Jean Bartik was hired at BRL as a human computor and then became one of the many 
women involved with programming the ENIAC. She also made important contributions to the 
conversion of the ENIAC into a kind of stored-program machines (rather than wiring it directly it 
became possible to code porgrams relying on the order code) and later moved to work with 
UNIVAC – one of the first US commercial electronic computer. 

Maurice Wilkes, director of the Cambridge Mathematical Laboratory was a committee 
member and later chairman of the British Mathematical Tables Committee. It was under his 
leadership that the EDSAC was built. That computer was, amongst others, important because of the 
programming practices that developed around it and which led to the publication of what is often 
considered the first programming handbook Preparation of Programs for Electronic Digital 
Computers authored by Wilkes, David Wheeler and Stanley Gill.

In the US then again, Derrick H. Lehmer (see also Chapter II of this volume) became one of 
the first ENIAC users. He was a number theorist who learned from his father (also a number 
theorist) that number theory requires exploration and, by consequence, extensive computation. To 
this end, he had already constructed several special-purpose devices to help in the computation of 
tables of prime numbers (these were so-called prime sieves) and was a specialist in number-
theoretical tables. In 1943, he became a member of the editorial board of MTAC and a co-editor 
with Archibald in 1944. During WWII he became involved with research for the Applied 
Mathematics Panel as an employee of the University of California. In that role, he constructed, 
amongst others, a special-purpose device to “simulate” random-bombing operations. This is 
probably how he became one of the members of the US Army Computations Committee that was to
test, amongst others, the newly built ENIAC. Later, Lehmer would be an important advocate of so-
called computer-assisted mathematics (see below).    



The rise of the modern computer is certainly not just the result of mathematicians being 
mobilized for the war effort. There was already a more general evolution towards using 
computational methods not just in the military but in science, administration and engineering in 
general. Thus, when the US entered WWII there was already an important know-how and 
preparedness to rely on computation and exploration to attack certain problems. In such context, 
mathematicians were faced with a need for large-scale computation which required not just a good 
training in abstract mathematics but also a willingness to engage with computing machinery and 
engineering. The result of that process is that many a mathematician also became a computing 
pioneer who, alongside engineers and operators, shaped the field of electronic computing, its basic 
problems and, later, the identity of the disciplines that resulted from it. 

III. Doing mathematics with the computer
As explained, mathematics was not only an important factor in the construction and use of the first 
computers, it was also realized that high-speed computation make it possible to study certain 
problems that were not solveable with traditional methods. The resulting mathematics was soon 
described as experimental, explorative or quasi-heuristic. By consequence, the apparent opposition 
between mathematics, on the one hand, which is viewed by many as being about proofs and 
theorems, and, on the other hand, experimentation, would haunt the field of so-called “experimental
mathematics” and gave rise to occasional controversy between advocates and opponents. 

One important set of problems concerned the mathematical analysis of non-mathematical 
phenomena (for instance, turbulence, nuclear reactions, problems of pattern bombing) that were too 
complex to understand or solve with classical methods of analysis (Galison 1997). Often, these 
were non-linear problems. In that context, even before the first high-speed computers, some had 
already shifted to alternative methods. For instance, there was von Neumann’s work in relation to 
the Manhattan project which studied phenomena like implosion and chock waves relying on 
calculating aids like the punched-card machines at BRL or the Harvard Mark I. Another example 
relates to problems studied within the AMP to determine the probability of hitting a certain area 
with pattern bombing (the simultaneous release of all bombs carried by a formation of aircraft) and 
which were handled by so-called “model experiments” that aimed for statistical models by using 
randomized methods. However, while mechanical aids and new methods could help, they were 
limited by the speed of these processes. With high-speed electronic computers much more could be 
achieved. As has been  emphasized by several advocates and pioneers of computer-assisted 
mathematics, the change of several orders of magnitudes should not be dismissed as being but a 
mere quantitative change – that would be like saying that modern automobiles and aeroplanes are 
no different than walking (Hamming 1963). For instance, as was emphasized on several occasions 
by von Neumann, it is only with high-speed computation that one can envision to computationally 
attack higher-dimensional non-linear problems like turbulence or meteorological forecasting. 
Moreover, the high-speed also allowed to consider problems that required a more complex and 
longer program structure like the earlier mentioned Monte Carlo computations which, at a later 
stage, also involved amongst others, a subroutine for generating random numbers as they were 
needed, rather than relying on a table of random numbers.

While, in the early years, these developments were still often regarded as developments in 
applied and mathematical physics, today they have resulted in specialized fields of computer 
simulation and modeling (think of climate science for instance) where mathematics is more a tool to
be used by others. However, besides the fact that these developments of course raised interest in the 
mathematics of computation (see below) it also resulted in a rejuvenating of older mathematical 
ideas where the computer now made possible new ways to revisit and study those ideas. One basic 
example here is research in non-linear dynamics and chaos  (Aubin and Dalmedico 2002) – a field 
that revived due to the work of people like Ulam, Pasta, Fermi, von Neumann and Charney. Ulam 
and von Neumann, for instance, introduced and studied the special case xn = 4xn-1(1-xn-1) of the 
logistic map in the context of their research into procedures for generating (pseudo-)random 
numbers and today known to be chaotic. Ulam, Pasta and Fermi started to explore non-linear 



dynamics with computational methods using the MANIAC computer at Los Alamos in 1955; 
Charney worked on the Meteorology project (using amongst others the ENIAC) and contributed in 
that context to the issue of long-term predictability which became a main result later of Lorenz who 
proved that this is practically impossible due to sensitivity to initial conditions (this is known as the 
butterfly effect – the idea that a small change like butterfly flapping can have large effects on the 
weather). Clearly, within that field, computers have played a rather basic role in that they made 
accessible certain properties through extensive computations and their visualizations. Well-known 
visualizations are the phenomenon of strange attractors or the Feigenbaum diagram (see Fig ??) 
which could then be further explored and studied. 

 

Fig. ??: On the left a visualization of the Feigenbaum diagram of the logistic map; on the right the 
Lorenz attractor that shows the well-known butterfly effect in weather prediction.  

But the first high-speed computers were not only used to study problems from other fields (typically
problems of physics) but also to study problems of mathematics proper. Most notably here is the use
of the computer in number theory. In that setting, there was already an older tradition of using 
computations to investigate open conjectures like the Riemann hypothesis, Fermat’s theorem or 
Goldbach’s conjecture or simply to explore properties of certain classes of numbers.  Probably the 
earliest example is the number-theoretical computation on ENIAC by Derrick and Emma Lehmer 
which concerned the computation of a specific kind of tables (tables of exponents) that could help 
in the identification of so-called composite numbers, that is, numbers b for which 2b ≡2mod b
with b not prime. That computation was a test problem which showed that a high-speed computer 
could be useful even for doing something as sophisticated as number theory. In the UK, Turing 
continued his earlier work on the Riemann hypothesis for which he had already constructed special 
purpose devices, on the Manchester Mark I. His ambition was to look for counterexamples that 
would invalidate the conjecture by computing more and more values of the Riemann zeta function. 
Lehmer did similar work on ENIAC and later on SWAC. 

A recurring approach in that time and which is continued today, was to use the idle time of a 
given computer to compute more and more values of a given number-theoretical function. So, for 
instance, ENIAC was used in its idle time by Reitwiesner to compute expansions of π and e – later 
used by von Neumann as possible random sequences – and Fermat quotients which were relevant to
proving Fermat’s  last theorem. The program was called Slow Moses and not only served number 
theory but was in fact aimed at illustrating the stability of the ENIAC hardware. On EDSAC in the 
UK, idle time was used to compute Mersenne primes (a Mersenne prime Pn is a prime of the form 
2n – 1), a program that was then picked up also for the Pilot ACE which was faster than EDSAC. 

As is clear from these few examples, one general use in number theory of computers (which 
continued an older tradition) was to compute larger values for certain functions to find 
counterexamples or to provide new insights into existing problems. The Mersenne prime program is



one such example, the Riemann-Zeta computation is another one. This tradition has been continued 
up to today. One interesting example is the so-called Great Internet Mersenne Prime Search 
(GIMPS). It is a large-scale distributed computing project – a project where a large number of 
connected computers are used together to compute – to which anyone who installs the relevant 
software can contribute with their idle computer time. As was the case with the “Slow Moses” 
program on ENIAC, also here the project not only serves  number theory but was also significant 
for advances in computing: it was one of the first major examples showing the potential of 
distributed computing. Also work on Fermat’s little theorem was continued by amongst others, the 
Lehmers and Vandiver on the SWAC (Corry 2009). Today, there are still several examples to be 
found, like the continuing search for exceptions to the Collatz conjecture also known as the 3n+1 
problem, the ongoing search for prime gaps as well as research on prime constellations (eg twin 
primes that differ only by 2) which is relevant to several conjectures in number theory. Clearly, this 
kind of research is not restricted to the mere computation of cases but involves sophisticated 
methods that look for instance for patterns and so help to determine heuristically certain properties 
that can then assist in proving conjectures or formulate new ones. Interestingly, these kind of 
researches are not just relevant for the sake of number theory only, as a side effect they have 
resulted in new algorithms (think for instance of the Lehmer pseudo-random number generators) or 
insights into existing hardware and software. One relatively recent example in this context was the 
discovery of the famous FDIV Pentium bug by Thomas Niceley, a number theorist, and which 
costed millions of dollars to Intel. Niceley had found an inconsistency in his results while doing 
research on prime gaps and realized there was an error on the hardware level (a wrong value in a 
hardwired look-up table for division). 

But it was not just the advances in hardware and software that resulted in improved ways for
doing mathematics, also the internet enabled this. The Online encyclopedia for Integer Sequences 
(https://oeis.org/), initiated by Neil Sloane and which currently contains more than 300,000 integer 
sequences is one basic instance. It is used as an explorative tool and has resulted in several 
mathematical papers (see http://oeis.org/wiki/Works Citing OEIS for over 2000 papers that 
reference the encyclopedia in their work). One interesting feature of OEIS is that, attached to it, is a 
mail service which allows you to submit integer sequences to an algorithm called Superseeker 
which tries to find an explanation for your sequence by relying on OEIS combined with an 
extensive library of programs.

But computers have not only been used in pure mathematics to establish experimental 
results but are also used to prove theorems. One simple example was the “discovery” of the Bailey-
Borwein-Plouffe formula for computing pi and which resulted in an improved algorithm. As the 
authors indicated, it was not found through formal reasoning but a combination of inspired guessing
and extensive searching using the so-called PSLQ algorithm which is used to find integer relations 
between a set of real numbers. 

But there are more controversial examples which are known as computer-assisted proofs. 
Such proofs usually involve a large number of particular cases that need to be determined and then  
verified, relying on a complex of computer programs. Probably the oldest such proof is by Emma 
and Derrick Lehmer, William H. Mills and John L. Selfridge which, amongst, proved and 
determined the finite set of primes which do not have a triplet of cubic residues.  That proof went 
mostly unnoticed but there are more famous examples. Probably the most controversial was the 
four-color theorem proved by Kenneth Appel and Wolfgang Haken and which showed that any map
can be colored using only four colors in such a way that no adjacent regions have the same color. 
The result was published in 1976 and was  not considered a real proof by most of the mathematical 
community and this for a variety of reasons (MacKenzie 2004). Amongst others, its length and the 
complexity of the programs involved not only made the proof unsurveyable for human 
mathematicians but it was not guaranteed that there were no errors involved due to program 
mistakes or hardware failures. Moreover, it was also seen as a proof that does not provide 
mathematical understanding of why the theorem is true, amongst others, because not all details can 
be accessed by humans. A more recent and well-known result is Thomas Hales’ solution to the 



sphere packing problem also known as Kepler’s problem. Simply put, the problem Hales solved 
was that of determining the most efficient way to arrange (identical) spheres in a 3-dimensional 
space. It was published in Annals of Mathematics in 2005 after a review process by a team of 
reviewers who worked on it for several years. Even then,  it was concluded that they were only 99%
sure that the proof did not contain errors.

Uses of the computer in applied and pure mathematics discussed here share one basic 
feature: that is the apparent experimental and quasi-heuristic nature of the methods and results 
involved. This was realized and emphasized on several occasions by those involved sometimes in 
quite provocative styles inviting discussion if not controversy. 

In the context of applied mathematics and the kind of research done by von Neumann and 
Ulam, there has been a large debate over the experimental nature of their research and which still 
continues today in the history and philosophy of computer simulations (Galison 1997). In how far 
are computer simulations similar to physical experiments is one key question here. Von Neumann 
was quite clear in viewing computation as a kind of in-between, which is not too mathematical in 
the traditional sense but still closer to mathematics than experiments with wind tunnels (which he 
regarded as a kind of analog computers). He emphasized on several occasions that this approach 
allows to build up an intuition for certain problems and to use computers heuristically either in a 
traditional manner (testing hypotheses) or as simulations. Ulam spoke of “probabilistic 
experiments” with reference to Monte Carlo methods and also later “experiments on paper” with the
help of the computer. 

But also in the framework of pure mathematics one started to speak about experiments, 
exploration and heuristics even in the case of the computer-assisted proofs. Most outspoken here in 
the earlier years was Lehmer. As explained, he already inherited from his father a more explorative 
stance with respect to number theory and emphasized on several public occasions the significance 
of the computer for this kind of mathematics and drew a sharp contrast between, what he called, 
explorative mathematics and more traditional forms of doing mathematics. He was perhaps most 
explicit about this during his Gibbs lecture, a prestigious mathematical prize awarded by the AMS  
(Lehmer 1966): 

The most popular school now-a-days favors the extension of existing methods of proof to 
more general situations. This procedure tends to weaken hypothesis rather than to strengthen
conclusions. It favors the proliferation of existence theorems and is psychologically 
comforting in that one is less likely to run across theorems one cannot prove. Under this 
regime mathematics would become an expanding universe of generality and abstraction, 
spreading out over a multi-dimensional featureless landscape in which every stone becomes 
a nugget by definition. Fortunately, there is a second school of thought. This school favors 
exploration as a means of discovery.

This rhetorics of contrasting experimental mathematics with more traditional forms of mathematics 
is recurrent and anchored in the fact that this form of doing mathematics has often been considered 
as a lower form of mathematics because of its lack of rigor and “real” proofs. Often the results are 
probabilistic and there is a lack of trust in the complex of programs and hardware used which might 
give rise to errors or hardware failures. Some advocates of experimental mathematics have, in fact, 
embraced their role as one that goes against the establishment. Féjès Toth, an important contributor 
to the sphere packing problem and one of the reviewers of Hales’ proof compared these kind of 
computer-assisted proofs to experimental science where reviewers also cannot (always) certify the 
correctness of an experiment. Doron Zeilberger has perhaps been the most explicit advocate here 
with his plea for what he calls semi-rigorous mathematics that relies on probabilistic truths. Other 
leading figures in this setting are Stephen Wolfram,  Jonathan Borwein and David Epstein. The 
latter also contributed significantly to the institutionalization of experimental mathematics through 
their two-volumed work on experimental mathematics (2006) and the establishment of the journal 
Experimental mathematics in 1992. 



But while the field has been taken more serious in the last decades it still gives rise to debate
often in a context of opposing two different views on mathematics: one that is led by an idea of 
rigor and formal proof, another, which believes that mathematics is not just about formal truths and 
is perhaps closer to the sciences than one used to think. A fairly recent clash of these viewpoints can
be found in the Jaffe-Quinn debate that was instantiated by Arthur Jaffe and Frank Quinn in a paper 
published in 1993 in the Bulletin of the AMS. In that paper they distinguish between rigorous 
mathematics and so-called theoretical mathematics. The former refers to proof-oriented 
mathematics, the latter to speculative and intuitive work. When the paper was published a sequence 
of responses was published, most notably one by William P. Thurston who argued that the Jaffe-
Quinn paper was very much about the projection of the sociology of mathematics onto a one-
dimensional scale (contrasting speculation with rigor). 
 Interestingly and perhaps ironically it was exactly in the context of such debates that 
Thomas Hales embarked on a new project known as the Flyspeck project: given the many 
uncertainties that surrounded the sphere packing proof, he decided to provide a formal proof, that is,
a proof that is formally verified by a proof assistant and thus, again, computer-assisted. The project 
has been finished and in the meantime also formal proofs of the four-color theorem have been 
provided. These kind of projects led to important collaborations between computer scientists, 
logicians and mathematicians constructing software that not only formally verifies proofs but also 
existing programming tools. Most notable here is the CompCert project which works on the formal 
verification of the C compiler (the C compiler is perhaps the most basic compiler for programming 
languages). As will be shown later, research into the formal verification of programs is an important
branch in the history of programming and which led, in the 1980s to the important formal 
correctness debates. 

Today, computer-assisted mathematics is more accepted than it used to be in the 1950s and 
1960s.  The possibilities only grew as memory and speed increased. That process went hand-in-
hand with an easier access to the computer and improved peripherals (which made possible, 
amongst others, better visualizations). In that process the computer became much more than a 
simple brute force of computation – it became a heuristic tool that not only provided data but also 
did (and does) much of the analysis on those data by providing visualizations, graphics, etc. This 
resulted in important cross-fertilizations between mathematics and the computing field. The 
Flyspeck example, GIMPS or the discovery of the Pentium bug are clear examples here. But it is 
also known that the development of software packages like Maple and Mathematica has contributed
significantly to the popularization of computer-assisted mathematics: the Borwein-Epstein book 
relies entirely on Maple and it was Wolfram’s experimental research in the 1980s and 1990s on 
cellular automata that led him to the development of Mathematica. One major new problem arising 
in those contexts is a problem of accessibility: both Maple and Mathematica are closed and 
proprietary which means that the many programs used in this software are not accessible to the 
mathematicians using them. 

Mathematics of computation
Mathematics was and is not only a field of application for high-speed computation. It is also 

a basic field for developing new or improved algorithmic and programming methods to gain 
amongst others a higher efficiency in speed and memory and improved programming tools. 
Moreover, once it became clear that high-speed computation gives rise to a number of different 
problems that were there to stay, a new field started to develop that allowed to study computation 
and the computer as a theoretical topic in and by itself. In that sense, mathematics is not only a telos
for computation that allows to gain new mathematical insights, it also shapes the way computations 
are done (methods) and how they can be understood (theory). The computer is not just a tool for 
mathematics, mathematics itself is a tool for the computer. It is thus not surprising that as computers
became more broadly available, the role of mathematics for computing did not remain restricted to 
mathematical research departments at universities but also had its significance in other departments 



(most notably, computer science). Moreover, mathematics also found its way more easily into 
business and industry. As such, work within what we here call the mathematics of computation 
often found itself at the borderline between a number of fields (mathematics, computer science, 
engineering) and so strict borderlines between disciplines cannot easily be drawn.

The modern computer soon resulted in the realization that old methods would have to be  
reconsidered and that new approaches would be needed. This development fits in a broader 
transition of the steady replacement of human computational work by machines and a history of 
automation. This meant that methods had to be adapted to the specifics of the technology rather 
than to humans and this against the background of the basic philosophical question of what can be 
automated. 

In the early years especially, it was pointed out by several pioneers that methods that work 
well for a human do not necessarily work well for a machine and vice versa.  As was pointed out for
instance by Douglas Hartree, a UK mathematician who became involved with the construction and 
use of calculating machines (amongst others, different differential analyzers and the ENIAC) and 
wrote one of the first historical overviews titled  Calculating instruments and machines (published 
in 1949) wrote that: 

“in programming a problem for the machine, it is necessary to try to take a “machine’s-eye 
view” of the operating instructions, that is to look at them from the point of view of the 
machine which can only follow them literally, without introducing anything  not expressed 
explicitly by them, and try to foresee all the unexpected things that might occur […] it is 
quite difficult to put oneself in the position of doing without any hints which intelligence 
and experience would suggest to a human computer”

Besides this general change of perspective, the specifics of a changing computing technology also 
required different approaches. First of all, the fact that the modern computer works digitally, implies
that one needs to state a mathematical problem in a discrete algorithmic form and to replace non-
discrete mathematical operations (eg transcendental operations like integration) by elementary 
arithmetical operations and explicit steps.  This implies a more constructive and finitist approach to 
mathematical problems and a move towards what one could call discrete mathematics (see chapter 
1). 

Moreover, increases in speed and, later, memory also had basic effects on the methods used 
and studied and resulted in new fields, or, the thriving of older fields. An early example is the rather
swift transition from using mathematical tables in a computation – which was the human way of 
working – to algorithms that allow to compute values in tables as they are needed. That shift was 
anchored in the fact that, at the time, the technology for electronic memory was lagging behind on 
high-speed computation. This implied that, if during a computation one needed additional data, one 
had to rely on much slower electro-mechanical devices like punched cards implying a significant 
slow-down of the computation. Hence, it was far more interesting and achievable to compute values
in tables as they were needed. A rather well-known example here is the replacement of cards of 
random numbers by von Neumann’s pseudo-random generator in the ENIAC Monte Carlo 
computations. That is, rather than using numbers that were generated by some outside random 
device and then stored in some table (see for instance the work by the RAND corporation who 
published a table of one million random numbers generated with a roulette wheel) they used an 
algorithm. In these kind of examples mathematical tables (data) were replaced by more 
sophisticated programming techniques – a trade-off that was quite common in the early years.  

 The computer has motivated the development, adaptation and improvement of a broad 
range of different algorithmic methods with a diversity of applications, ranging from cryptography 
to methods for computer graphics and sound analysis. The steady evolution of the computer from a 
difficult to access technology to one that is ubiquitious has increased the need for such methods and
has thus resulted in the thriving of domains that were before more marginal to mathematics.  A 
prominent example here is the field of numerical analysis which is mostly concerned with 
approximation methods for analytical problems, like differential equations. The field has a long 
history and was already gaining in significance before the introduction of high-speed computation 



with the increased need for mathematical tables such as the firing tables mentioned before. Those 
required to solve two basic differential equations through a step-by-step method of successive 
approximations since they could not be solved by classical methods. The computer however, gave it
a new set of problems. An indicative example here is the problem of rounding-off errors and error 
estimates.  If one is working with discrete machines, one cannot represent reals exactly and one 
needs to work with finite approximations that have only a certain number of places used to 
represent a given number. For instance, with 10 places, one could represent pi as 3.141592654. If 
then, for instance, we would have two 10-place numbers that are finite approximations of existing 
numbers and they are multiplied, one needs to round-off to another 10-place number resulting in a 
certain error. This problem became much more significant with the rise of the electronic computer: 
to put it roughly, if one can do 10000 computations rather than 100 then the potential effects of 
rounding off become much more dramatic, as was shown, for instance, by Ulam’s work on the 
logistic map where small differences in the initial condition grow exponentially with every new 
iteration. The problem of estimating the errors arising from rounding-off has become one classic 
subfield of numerical analysis. Since many problems in computing  required numerical analysis, the
need for improved methods grew significantly with the steady spread of the computer in science 
and society and its changes on the technological level. It was for instance the work by Ingrid 
Daubechies (see also Chapter 1) on wavelets which allowed, amongst others, to improve methods of
image compression – wavelets are, for instance, used in the jpeg compression algorithm; another 
more recent example is the reliance on optimization techniques in the setting of so-called Deep 
Learning, an AI technology which, if one were to believe its promotors (especially those with 
commercial interests) is yet again revolutionizing our world.

While the field of numerical analysis is concerned with numerical solutions to problems and 
so concerns calculation, the computer soon also required another type of algorithms that are able to 
attack what one could call non-numerical problems and identified as nonnumerical analysis by the 
renowned mathematician Donald E. Knuth. In a series of books titled The art of computer 
programming, and known colloquially as the bible of programming, Knuth introduces this term to 
indicate the scope of his multi-volumed series and also speaks in this context of analysis of 
algorithms. Some basic classes of algorithms studied and analyzed in that series are: sort and search
algorithms, data structures and pseudo-random generators (which are identified as semi-numerical). 
 This kind of work is a clear marker of the transition from calculation to computation and has 
extended significantly the realm of what can be automated. They lie at the borderline between 
mathematics, programming and computer science. 

But where mathematical methods that are used to improve on computational technologies 
could be understood as a more practical development, such developments have often also stimulated
more theoretical studies. The Knuth book series mentioned above, is one example here: besides 
providing practical methods, they are also analyzed according to, amongst others their time and 
space efficiency – a practical problem but one that is also core to what is know as computational 
complexity theory and which, today, is mostly a theoretical field (see below). A prototypical 
example in that setting is the Traveling salesman problem: given a set of cities and the distances 
between pairs of cities, find the shortest path in such a way that every city is visited only once and 
that you return to your point of origin. While this problem is a problem of operations research, it is 
also perhaps the most famous example of so-called NP-hard problems as studied within 
computational complexity theory.  Another example is the field of computability over the reals 
which is motivated by numerical analysis but mostly a pure theoretical field. 

As explained, mathematics has been basic to developing computational methods adapted to 
the computer and its widespread use. However, it was also realized that there was a large number of 
problems that appeared to be specific to computation and programming itself and soon, 
mathematics found itself facing a newly emerging discipline known as computer science (Mahoney 
2011). Computer science became an established field in the 1950s and 1960s and went hand-in-
hand with the establishment of computer science departments at the universities. In the US the first 



computer science department was established in 1962 at Purdue university. From the start, the field 
was haunted by debates concerned with its disciplinary identity (see the next section), its content 
and scope and even its name (think of the use of “Informatique” in France or cybernetics in Russia).
Despite these disciplinary debates one can identify some clear theoretical developments. We focus 
on two principal developments: first the use and study of formal models for computing machinery, 
second, the use of formal logic in programming. 

When the first computers were being built, the few pioneers who were also familiar with 
developments in mathematical logic, realized that a connection could be made with developments 
from the 1930s in the setting of the foundational debates in mathematics and, more specifically, 
work on so-called decidability problems (De Mol 2018). In the early 20th century, several such 
problems had been proposed, most notably perhaps, Hilbert’s 10th problem. That is, the problem of 
whether or not there exists a uniform method (today, we would speak of an algorithm)  to decide for
any given Diophantine equation, whether or not it has an integer solution. Another example is the 
so-called Entscheidungsproblem for first-order logic: to decide with a (uniform) finite procedure for
any proposition in first-order logic whether or not it can be derived in that logic. In the 1920s, 
David Hilbert was convinced that, in fact, it would be possible to provide such procedures as is 
clearly captured in the phrase “Wir müssen wissen, wir werden wissen” (we must know, we shall 
know). Others, including von Neumann were more critical and understood that if ever such a 
procedure would be found, it would imply the existence of a mechanical set of rules to solve any 
mathematical problem (Gandy 1988). In the 1920s and 1930s such problems were solved in the 
negative and independently by Alonzo Church (1936), Emil Post (1921) and Alan Turing (1936). In 
that work one finds, what one would nowadays call, different abstract models of computability 
which are logically equivalent. If one agrees that these models capture the intuitive notion of 
computability, then it follows that, amongst others, the Entscheidungsproblem and any other 
logically equivalent problem is uncomputable – that is, there exists no algorithm that will decide 
every instance of the problem. Variants of this statement are often identified as the Church-Turing 
thesis, Church’s thesis, Turing’s thesis or Post’s thesis. Most well-known, Turing showed how 
computability of any real number  reduces to computability by what came to be known as a Turing 
machine. The implication is that any number that cannot be computed by a Turing machine cannot 
be computed in general. 

Fig. ??: A schematic representation of a Turing machine, which is instate q1 scanning the symbol 1
and should in the next step print some symbol, move one square to the right and move to state qi.



The Turing machines were derived by Turing by providing an informal analysis of all the possible 
(human) processes that can be carried out in computing a number and which resulted in a basic set 
of operations to be carried out by an abstract machine. That machine is always in a given state and 
works on a linear tape consisting of squares containing symbols. When in a given state, the machine
reads the symbol on the square it is scanning and depending on its value, makes a movement to an 
adjacent square (left or right), prints some symbol and goes to the next state. Most importantly for 
later, Turing also constructed a so-called universal machine: an abstract machine that is capable to 
simulate the operations of any other Turing machine and was used as a model for the modern 
computer. It was that machine which would be used (and is still used) as a model for the general-
purpose modern computer: just like the universal Turing machine, so goes the argument, the 
computer is also able to compute anything that is computable. Moreover, once one has a certain 
number of primitive operations, it is not required to add any further complications in order to 
compute more.  A few operations suffice. 

In the 1940s von Neumann and Turing picked up this model to reflect on the possibilities 
and limitations of modern computers. In the 1950s this and other models were used in a context of 
what came to be known as automata studies and which, at least initially, could be seen as a 
rapprochement between logic and computer engineering. The universal Turing machine was then 
used by, amongst others, mathematically-oriented engineers like Shannon or Moore who  concluded
that  only a few operations suffice to built a general-purpose computer and they pursuid a project of 
determining the smallest possible numbers of operations needed to build a computer. Moreover, 
logicians like Martin Davis and Hao Wang derived improved models for the modern computer like 
the Post-Turing machine and which, amongst others, resulted in another model known as register 
machines which were considered to be closer to the modern computer than the Turing machine. 
This tradition of developing and reasoning with formal models of computation is continued until 
today, following and affecting new computational technologies. So, for instance, today we have 
formal models for concurrent computation (e.g. the pi-calculus), quantum computation (e.g. 
quantum Turing machines) or biocomputation (e.g. petri-nets). 

It was also in this setting of automata studies that focus shifted to the efficiency of time and 
space for algorithmic methods that solve a specific problem and their upper and lower bounds. 
These problems are studied theoretically in the field of computational complexity theory where one 
has determined a rather large number of different classes of computational problems classified 
according to their so-called space and time complexity. In that setting, the Turing machine is still 
one of the most basic models used. Most well-known here is the so-called P=NP problem and which
asks whether these two classes are identical or not. It is one of the seven Millenium Prize problems 
proposed by the Clay Mathematics Institute of Cambridge Massachusetts – the one who can solve it
gets a 1,000,000$ prize. The fact that a problem that belongs to (theoretical) computer science is 
considered as a basic problem in mathematics is symptomatic of a more general development in 
which mathematics is no longer perceived as the (only) queen of the sciences (see the next section). 

While automata studies and, in general, models of computation, are concerned with the 
theoretical study of computation, its limits and possibilities, another basic role of formal logic and 
mathematics was to be played in the context of computer programs and software (Priestley 2011). It
was realized very soon that the design of programs and programming for a high-speed computer 
gives rise to a number of basic challenges which became a major problem in and by themselves 
resulting in, amongst others, the so-called software crisis in the late 1960s. The use of formal logic 
in that context is not too surprising: formal devices such as those developed by Church or Post were
understood as an abstract formal game played with marks on a piece of paper, following a set of 
rules that did not require an understanding of what is being done. That, of course, fitted well with a 
computer which was assumed to not have any insight and understanding (see in this context the 
quote of Hartree on p. ??). 

Given the high-speed of the machine, programs need to be, in a sense, ahead of time and 
function as a control over the computational process to be. It is here that formal logic could play a 
basic role as is explicit from the following quote by von Neumann:



[C]ontemplate the prospect of locking twenty people for two years during which they would 
be steadily performing computations. And you must give them such explicit instructions at 
the time of incarceration that at the end of two years you could return and obtain the correct 
result for your lengthy problem! This dramatizes the necessity for high planning, foresight, 
and consideration of the logical nature of computation. This integration of logic in the 
problem is a consequence of the high speed. 

Together with Hermann Goldstine, von Neumann then developed a step-wise process for planning 
and coding a computer. Central to their idea was the use of so-called flow diagrams (see Fig. ??) 
which, in a sense, capture the structure of a high-speed computation. They would remain a basic 
program technique for many decades (Ensmenger 2016). 
when the first computers were built, it was clearly understood that programming a machine using a 
low-level machine code turned out the be extremely hard and the work by von Neumann and 
Goldstine fits in that context. This became much more problematic once computers were 
commercialized (late 1940s and early 1950s) and so used by a broader group of people who wanted 
to do more with computers than just scientific computation and use them, for instance, in 
accounting. 

Fig. ??: A flow diagram as used by von Neumann and Herman Goldstine. 

Programming had to be less difficult. This resulted in the 1950s in what was known as automatic 
programming or automatic coding and entailed at least two developments. First, the development of
a notation that is easier to work with than the machine code and, second, the automatic “translation”
of such notations to machine code (by a compiler or an interpreter). In the late 1940s the logician 
Haskell Curry had already worked on that problem and developed a so-called theory of program 
composition which was much affected by his logical work on combinators but did not result in an 



actual implementation. That work, however, went largely unnoticed and it was in the 1950s that 
most progress was made with the construction of the first compilers that resulted in the first high-
level programming languages like FORTRAN and LISP. Since most people involved with 
programming had a background in mathematics, also the notations were mathematical and/or 
logical in nature. John Backus who worked for IBM and made major contributions to FORTRAN 
spoke about an algebraic notation; John McCarthy who is the inventor of LISP relied on Church’s 
models of effective calculability – lambda-calculus and general recursive functions – in defining the
LISP language. Most notably was the work around the ALGOL language, influential for later 
languages and which was an international effort originating in the general need for a universal 
programming language which, so it was hoped, would become the main programming language at a
time when a multiplicity of programming languages was already developing (Nofre et al 2014).  
Just like LISP also ALGOL was conceived of as a formal language and, around it, one can find a 
number of different aspects of how formal logic could be used into this context.  For instance, one 
of Post’s model for generating sequences of finite words – known today as Post production systems 
– were used in the formulation of the so-called Backus-Naur form that was used for the definition of
the formal syntax. These systems had also entered the field of programming via another path: in the 
1950s Noam Chomsky and Marcel-Paul Schützenberger had worked and classified formal 
grammars into a hierarchy of grammars. Post production systems played a basic role here and 
would enter the theory of compilers via that path.   

But ALGOL also had important in giving programming a more mathematical identity (see 
also the next section). Amongst others, ALGOL stands for ALGOrithmic Language and in one of 
the main magazines of computer science,  Communications of the ACM, a new section was 
established on Algorithms in which approved “algorithms,” expressed in the ALGOL language (of 
course, an ALGOL program is a program, not an algorithm), would be published on a regular basis 
and a specific standard was introduced for the publication of these algorithms. In connection to this,
it is also interesting to point out that algorithms also became a major focus of theoretical research in
Russia where, amongst others, Andrei Markov, Andrei Kolmogorov and Vladimir Uspensky worked
extensively in determining an abstract model for algorithms. 

The need for reviewed algorithms however was also anchored in another problem that was 
becoming more basic as more people were using a computer: many a computer program contained 
errors – a basic problem even today. The problem of error went hand-in-hand with a larger issues 
related to the fact that as computers were used by more people in a variety of ways, the system of 
programs designed and programmed to use the machine was become more and more complex up to 
the point that providing good software in time was considered to be a major problem in and by 
itself. This problem is known as the software crisis. One reply to these issues came from a number 
of mathematically minded programmers and engineers: to provide a mathematical basis for 
programming. In that context, several more logical and mathematical techniques were developed. 
Perhaps most famous from that context was research that aimed at the formal verification of 
programs which prove that a given program is “correct” with respect to its formal specification and 
so, supposedly, does not contain any errors and is doing what it is supposed to be doing. The main 
idea was to provide a formal proof showing that a program is correct using some formal model of 
the program at hand, for instance, a (formal) semantics of a programming language. The idea of the 
correctness of programs became very popular in the 1970s  even though it was realized at the time 
that it was not realistic for a number of reasons to prove the formal correctness of every program. 
This ultimately resulted in the late 1970s and 1980s in a clash between those who were convinced 
of the need of such high standards for programs and those who did not believe this was the right 
path to follow or, worse, if it was even possible (MacKenzie 2004, Tedre 2014)

Interestingly, as explained in the previous section, even though the popularity of correctness 
proofs waned, today there is a renewed interest in formal verification which can now be used more 
extensively and efficiently thanks to the development of so-called proof assistants like COQ and 
programming system which have their historical roots both in mathematical logic (most notably, 
work on the so-called Curry-Howard isomorphism and Martin-Löf type theory) and earlier work 



from the 1950s on automated theorem proving (aimed at, amongst others, the automatic generation 
of theorems in formal logic). The use of formal verification is considered key to one of two basic 
approaches to safety-critical systems like self-driving cars. As explained in the previous section, it is
also in this same context that mathematicians like Thomas Hales have found a new interest since 
this kind of mathematical technology can and has also been used in providing formal proofs for 
providing a certified proof for specific problems like the sphere-packing problem. 

Disciplining mathematical technology (1953 – 2021) – changing roles and disciplinary 
identities

A short summary of what will be written here
The purpose of this concluding and shorter section is to bring together what was written in the 
introduction and the main sections: in May’s view, the idea was still to bring the history of 
computing into the history of mathematics. That view can be seen as a confirmation of a then still 
popular view that the computing field is very much about mathematics. However, today the history 
of computing is very distinct from the history of mathematics – there are only few who really 
engage with that connection (De Mol and Bullynck 2019). Why is that the case? This is at least 
partially anchored in a changing relation between mathematics and the field of computing. When it 
became clear that computation and the computer gave rise to a set of new questions, it was not clear
what this new field should look like. This gave rise to the search for a disciplinary identity that 
would allow to establish the field as a respected discipline alongside others. In that setting, many 
looked into the direction of mathematics (eg Knuth and Dijkstra) as a foundation for the field. In 
fact, as is clear from the introduction  to the book of the Los Alamos conference mentioned in the 
introduction, it was believed that theory should be the captain and application the soldier. In the 
meantime, however, things have evolved significantly and this due to the widespread use of the 
computer in the sciences and in society. Today, the identity of the computing field is still under 
debate but the relation between mathematics has significantly changed. The field has matured and is
perhaps steadily taking over the role of mathematics as something that is basic to any other science. 
At the same time, the significance of computing in mathematics has also changed (see Fig. ??) and 
hence mathematical technology is steadily gaining in significance within the broader field of 
mathematics. 



Fig. ??: A graphic representation of the evolution of the number of papers classified either under
computer science or numerical analysis in Zentralblatt
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