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Channel Estimation for Intelligent Reflecting
Surface Assisted MIMO Systems: A Tensor

Modeling Approach
Gilderlan T. de Araújo, André L. F. de Almeida, Senior Member, IEEE, Rémy Boyer, Senior Member, IEEE

Abstract—Intelligent reflecting surface (IRS) is an emerging
technology for future wireless communications including 5G and
especially 6G. It consists of a large 2D array of (semi-)passive
scattering elements that control the electromagnetic properties
of radio-frequency waves so that the reflected signals add
coherently at the intended receiver or destructively to reduce
co-channel interference. The promised gains of IRS-assisted
communications depend on the accuracy of the channel state
information. In this paper, we address the receiver design
for an IRS-assisted multiple-input multiple-output (MIMO)
communication system via a tensor modeling approach aiming at
the channel estimation problem using supervised (pilot-assisted)
methods. Considering a structured time-domain pattern of pilots
and IRS phase shifts, we present two channel estimation methods
that rely on a parallel factor (PARAFAC) tensor modeling of
the received signals. The first one has a closed-form solution
based on a Khatri-Rao factorization of the cascaded MIMO
channel, by solving rank-1 matrix approximation problems, while
the second on is an iterative alternating estimation scheme.
The common feature of both methods is the decoupling of
the estimates of the involved MIMO channel matrices (base
station-IRS and IRS-user terminal), which provides performance
enhancements in comparison to competing methods that are
based on unstructured LS estimates of the cascaded channel.
Design recommendations for both methods that guide the choice
of the system parameters are discussed. Numerical results show
the effectiveness of the proposed receivers, highlight the involved
trade-offs, and corroborate their superior performance compared
to competing LS-based solutions.

Index Terms—Intelligent reflecting surface, channel estimation,
MIMO, tensor modeling, PARAFAC, Khatri-Rao factorization.

I. INTRODUCTION

In a typical wireless propagation environment, the
transmitted signals suffer attenuation and scattering caused
by absorption and reflection, diffraction, and refraction
phenomena. In general, multipath propagation is known as
one of the main limiting factors to the performance of a
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wireless communication system [1]. Indeed, the randomness of
the physical radio environment turns the wireless propagation
uncontrollable.

Intelligent reflecting surface (IRS) (also referred to
as reconfigurable intelligent surface or software-controlled
metasurface) [2]–[7] is an emergent and promising technology
for future (beyond 5G) wireless communications. It consists
of a 2D array with a large number of passive or semi-passive
elements that can control the electromagnetic properties
of the radio-frequency waves so that the reflected signals
add coherently at the intended receiver or destructively to
reduce the co-channel interference. Each element can act
independently and can be reconfigured in a software-defined
manner by means of an external controller. The IRS
does not require dedicated radio-frequency chains and is
usually wirelessly powered by an external RF-based source,
as opposed to amplify-and-forward or decode-and-forward
relays, which require dedicated power sources [6]. In the
literature, IRS is being considered in a number of application
scenarios, such as to provide coverage to users located
in a dead zone and to suppress co-channel interference
when the user is in the edge of the cell [8], [9], and to
improve the physical layer security [10], [11]. Besides, the
IRS can be employed for simultaneous wireless information
and power transfer in an IoT network [8]. Regarding
wireless communication systems, recently, [12] established a
connection between IRS technology and a millimeter wave
(mmWave) hybrid MIMO systems. In this case, the authors
consider a hybrid MIMO-OFDM assisted by IRS working in
the mmWave band.

Recent works have discussed the potentials and challenges
of IRS-assisted wireless communications (see, e.g., [2], [3]
and references therein). Among the several open issues, we
highlight the acquisition of channel state information. One
challenge is related to the assumption that the IRS usually
consists of passive elements, which means that the estimation
of the cascaded channel should be performed at the receiver
based on pilots sent by the transmitter via the IRS. At this
point, the pattern of phase shifts used by the IRS during
the training phase plays an important role. In addition, the
large number of IRS elements imposes an extra challenge to
the address the channel estimation problem. Two approaches
have been proposed in the literature. The first one assumes
a semi-passive structure, where the IRS has a few active
elements connected to receive radio-frequency chains. In this
case, the availability of some baseband processing at the IRS
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facilitates the CSI acquisition. An example of this approach is
discussed in [13], where the involved channels are estimated
by means of compressive sensing. The second approach, which
is the one adopted in this paper, assumes a fully passive
structure, where the IRS operates by reflecting the impinging
waves according to some phase-shift pattern. This is a more
challenging scenario, where the estimation of the cascaded
(transmitter-IRS-receiver) should be done at the receiver based
on pilots sent by the transmitter and reflected by the IRS.

A few works have addressed the channel estimation problem
and provided different solutions to the passive IRS case. In
[14], a minimum variance unbiased estimator is proposed,
and an optimal design of the IRS phase shift matrix is
found. The authors of [15] propose a two-stage algorithm
by exploiting sparse representations of low-rank multipath
channels. In [16], links between massive MIMO and IRS
are discussed in the context of Terahertz communications,
and a cooperative channel estimation via beam training is
presented. In [17], IRS is proposed as a solution to mitigate the
blockage problem in mmWave communications and a channel
estimation approach is presented. The work [18] proposes an
uplink channel estimation protocol for an IRS aided multi-user
MIMO system applying compressing sensing (CS) methods. In
[19], an IRS-aided MIMO system is considered, and channel
estimation is carried out in a two-stage approach, and the
IRS-assisted link is estimated by means of an approximate
message-passing method. Considering an IRS-assisted internet
of things scenario, [20] formulates a joint active detection and
channel estimation based on sparse matrix factorization, matrix
completion, and multiple measurement vector problems.

The authors of [21] propose a channel estimation framework
where the BS-IRS, IRS-UT, and BS-UT channels are
estimated in a two-timescale approach, while in [22] a
practical transmission protocol is proposed to accomplish
channel estimation and passive beamforming. In [23], channel
estimation is carried out by resorting to an on-off strategy
that sequentially activates the IRS elements one-by-one. The
work [24] proposes a parallel factor model to solve the channel
estimation problem in a multi-user MISO setting. In general,
most of the existing works on IRS-assisted communications
consider the multiple input single output (MISO) case, where
the receiver station is equipped with a single antenna.

In the last decade, tensor modeling has been successfully
applied in a variety of signal processing problems [25]–[30],
in particular in the context of wireless communications,
involving the design of semi-blind receivers for MIMO
systems [31], [32], channel estimation methods for cooperative
communications [33], [34], direction of arrival estimation
and beamforming in array processing [35]–[37], and,
more recently, compressed channel estimation in massive
MIMO systems [38], [39]. As discussed in most of these
works, tensor-based signal processing benefits from the
powerful uniqueness properties of tensor decompositions
while exploiting the multi-dimensional nature of the
transmitted/received signals and communication channels. In
this work, we establish an existing connection between
IRS-assisted MIMO communications and tensor modeling.
By assuming a structured time-domain pattern of pilots and

IRS phase shifts, we show that the received signal follows
a parallel factor (PARAFAC) tensor model. By exploiting
the PARAFAC signal structure in two different ways, we
propose two simple and effective algorithms to estimate the
cascaded MIMO channel via decoupling the transmitter-IRS
and IRS-receiver MIMO channels, respectively. The first
algorithm is a closed-form solution based on the Khatri-Rao
factorization (KRF) of the combined BS-IRS and IRS-UT
channels, while the second one consists of an iterative bilinear
alternating least squares (BALS) algorithm. While the first
algorithm is a closed-form algebraic and less complex solution,
the second one can operate under less restrictive conditions on
the system parameters.

The common feature of the two algorithms is that the
estimation of the cascaded channel is achieved via decoupling
the estimation of the two involved channel matrices,
which provides a performance enhancement compared
to the direct estimation of the cascaded channel via
conventional least squares. By focusing on pilot-assisted
channel estimation schemes, this work extends the results
of our previous conference paper [40] by presenting a
more comprehensive formulation of tensor-based IRS-assisted
channel estimation methods, while bringing a discussion on
the uniqueness conditions for the channel estimation problem
considering the proposed receivers, from which useful design
recommendations on the training parameters are derived. We
discuss how to deal with a nonideal setup where the IRS
phase shifts are not perfectly known at the receiver, and
provide a solution to handle this problem. In addition, we also
present generalizations of the proposed approach to multi-user
scenarios. Numerical results corroborate the effectiveness of
the proposed channel estimation methods and highlight the
involved tradeoffs.

The contributions of this work are summarized as follows.

• Resorting to tensor modeling, we connect the channel
estimation problem for IRS-assisted MIMO systems to
that of fitting PARAFAC model to a third-order tensor;

• We derive two simple pilot-assisted channel estimation
algorithms (namely, KRF and BALS) that exploit the
algebraic structure of the PARAFAC model of the
received signals in two different ways;

• We provide system design recommendations for the
proposed KRF and BALS receivers that ensure the
uniqueness of the channel estimation problem;

• We discuss how to handle perturbations/fluctuations on
the IRS phase shifts by means of a joint channel and IRS
matrix estimation at the receiver;

• Generalizations of the proposed tensor signal model
to multi-user scenarios is provided, which include the
multi-UT and the multi-BS cases;

• A detailed derivation of the analytical expressions of the
CRB is provided.

Notation and properties: Matrices are represented with
boldface capital letters (A,B, . . . ), and vectors are denoted
by boldface lowercase letters (a,b, . . . ). Tensors are
symbolized by calligraphic letters (A,B, . . . ). Transpose and
pseudo-inverse of a matrix A are denoted as AT and A†,
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respectively. The operator diag(a) forms a diagonal matrix
out of its vector argument, while ∗, ◦, �, � and ⊗ denote
the conjugate, outer product, Khatri Rao, Hadamard and
Kronecker products, respectively. IN denotes the N × N
identity matrix. The operator vec(·) vectorizes an I×J matrix
argument, while unvecI×J(·) does the opposite operation.
Moreover, vecd(·) forms a vector out of the diagonal of
its matrix argument. The n-mode product between a tensor
Y ∈ CI×J...K and a matrix A ∈ CI×R is denoted as X ×nA,
for 1 ≤ n ≤ N . An identity N -way tensor of dimension
R×R · · ·×R is denoted as IN,R. The operator Di(A) forms
a diagonal matrix from the i-th row of its matrix argument
A. Moreover, Ai. denotes the ith row of the matrix A. The
operator dxe rounds its fractional argument up to the nearest
integer. In this paper, we make use of the following identities:

(A⊗B)(C �D) = (AC) � (BD). (1)

(A �B)H(C �D) = (AHC)� (BHD). (2)

vec(ABC) = (CT ⊗A)vec(B). (3)

diag(a)b = diag(b)a. (4)

If B is a diagonal matrix, we have:

vec(ABC) = (CT �A)vecd(B). (5)

II. SYSTEM MODEL

We consider a MIMO communication system assisted by
an IRS. Both the transmitter and the receiver are equipped
with multiple antennas. Although the terminology adopted
in this paper assumes a downlink communication, where the
transmitter is the base station (BS) and the receiver is the user
terminal (UT), our signal model also applies to the uplink
case by just inverting the roles of the transmitter and the
receiver. The BS and UT are equipped with arrays of M and
L antennas, respectively. The IRS is composed of N elements,
or unit cells, capable of individually adjusting their reflection
coefficients (i.e., phase shifts). The system model is illustrated
in Figure 1. In a time-slotted transmission, we assume that
the IRS adjusts its phase-shifts as a function of the time
t = 1, . . . , T . We also assume a block-fading channel, which
means that the BS-IRS and IRS-UT channels are constant
during T time slots. The received signal is given as [15]

y[t] = G(s[t]�Hx[t]) + b[t], 1 ≤ t ≤ T, (6)

or, alternatively,

y[t] = Gdiag(s[t])Hx[t] + b[t], (7)

where x[t] ∈ CM×1 is the vector containing the transmitted
pilot signals at time t, s[t] =

[
s1,te

jφ1 , . . . , sN,te
jφN
]T ∈

CN×1 is the vector that models the phase shifts and activation
pattern of the IRS, where φn ∈ (0, 2π], and sn,t ∈ {0, 1}
controls the on-off state of the corresponding element at time t.
The matrices H ∈ CN×M and G ∈ CL×N denote the BS-IRS
and IRS-UT MIMO channels, respectively, while b[t] ∈ CL×1
is the additive white Gaussian noise (AWGN) vector.

The channel training time Ts is divided into K blocks,
where each block has T time slots so that Ts = KT . Let us

Fig. 1. IRS-assisted MIMO system

Ts

s[1] . . . s[K]

x[1] x[T ]. . . x[T ]x[1]

T T

. . .

Fig. 2. Structured pilot pattern in the time domain

define y[k, t]
.
= y[(k − 1)T + t] as the received signal at the

t-th time slot of the k-th block, t = 1, . . . , T , k = 1, . . . ,K.
Likewise, denote x[k, t] and s[k, t] as the pilot signal and
phase shift vectors associated with the t-th time slot of the
k-th block. We propose the following structured time-domain
protocol: i) the IRS phase shift vector is constant during the
T time slots of the k-th block and varies from block to block;
ii) the pilot signals {x[1], . . . ,x[T ]} are repeated over the K
blocks. Mathematically, this means that

s[k, t] = s[k], for 1 ≤ t ≤ T, (8)
x[k, t] = x[t], for 1 ≤ k ≤ K. (9)

An illustration of this time-domain protocol is shown in
Figure 2. Under these assumptions, the received signal model
(7) can be written as

y[k, t] = Gdiag(s[k])Hx[t] + b[k, t]. (10)

Collecting the received signals during T time slots for the
k-th block in Y[k] = [y[k, 1] . . .y[k, T ]] ∈ CL×T leads to

Y[k] = Gdiag(s[k])HXT + B[k], (11)

where X
.
= [x[1], . . . ,x[T ]]T ∈ CT×M , and B

.
=

[b[1], . . . ,b[T ]]T ∈ CL×T .

A. Least squares channel estimation

A baseline method consists of estimating a combined
version of the communication channels G and H using least
squares (LS) approach. To derive the LS estimator, we apply
property (5) to (11) to obtain

y[k] =
(
XHT �G

)
sk

= (X⊗ IL)
(
HT �G

)
s[k] + b[k], (12)
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where y[k]
.
= vec(Y[k]) ∈ CLT , b[k]

.
= vec(B[k]) ∈

CLT , and we have used property (1). Defining Ỹ
.
=

[y[1] . . .y[K]] ∈ CLT×K , and X̃
.
= (X⊗ IL) ∈ CTL×ML,

we have
Ỹ = X̃

(
HT �G

)
ST + B, (13)

where S
.
= [s[1], . . . , s[K]]T ∈ CK×N , B ∈ CLT×K is

the noise matrix constructed in the same way as Y. Finally,
defining y

.
= vec(Ỹ) ∈ CLTK , and applying property (3) to

(13), we get

y = (S⊗ X̃)vec
(
HT �G

)
+ b, (14)

or, compactly,
y = Uθ + b, (15)

where U
.
= S⊗ X̃ ∈ CKTL×NML and θ .

= vec
(
HT �G

)
∈

CMLN is the composite channel parameter combining the
BS-IRS and IRS-UT channels. The LS estimate of this
composite channel minimizes the problem

θ̂ = arg min
θ

‖y −Uθ‖2 , (16)

the solution of which is known to be θ = U†y. The
computation of this solution can indeed be simplified to
θ = (S† ⊗ X̃†)y, due to the Kronecker structure of U.

It should be noted that the conventional LS problem ignores
the Katri-Rao structure of the composite channel that is present
in the linearized parameter vector θ. Indeed, the signal model
(11), or equivalently, (13) has a tensor structure, and can
be recast as a PARAFAC tensor model. As we show in
Section III, adopting this tensor modeling allows us to enhance
the channel estimation accuracy (compared to conventional
LS methods). This is achieved by decoupling the estimates
of H and G, rather them estimating θ = vec

(
HT �G

)
as a

whole. Moreover, useful system design recommendations can
be derived from the proposed modeling approach.

B. Tensor signal modeling

In order to simplify the exposition of the signal model, we
remove the noise term from the following developments. The
noise term will be taken into account later. We can rewrite the
signal part of equation (11) as

Y[k] = GDk(S)ZT, Z
.
= XHT ∈ CT×N , (17)

where Dk(S)
.
= diag(s[k]) denotes a diagonal matrix holding

the k-th row of the IRS phase shift matrix S on its main
diagonal. The matrix Y[k] can be viewed as the k-th frontal
matrix slice of a three-way tensor Y ∈ CL×T×K that follows
a PARAFAC decomposition, also known as canonical polyadic
decomposition (CPD) [26], [41]–[44]). Each (`, t, k)-th entry
of the noiseless received signal tensor Y can be written as:

y`,t,k =

N∑
n=1

g`,nzt,nsk,n, (18)

where g`,n
.
= [G]`,n, zt,n

.
= [Z]t,n, and sk,n

.
= [S]k,n.

A shorthand notation for the PARAFAC decomposition (18)
is denoted as Y = [[G,Z,S]]. Using the n-mode product

notation, the PARAFAC decomposition of the noiseless
received signal tensor Y can be represented as

Y = I3,N ×1 G×2 Z×3 S. (19)

Exploiting the trilinearity of the PARAFAC decomposition, we
can “unfold” received signal tensor Y into the following three
matrix forms [41], [42]:

Y1 = G(S � Z)T ∈ CL×TK , (20)
Y2 = Z(S �G)T ∈ CT×LK , (21)
Y3 = S(Z �G)T ∈ CK×LT , (22)

where Y1
.
= [Y[1], . . . ,Y[K]], Y2

.
= [Y

T
[1], . . . ,Y

T
[K]],

and Y3
.
= [vec(Y[1]), . . . , vec(Y[K])]T. In the following, the

algebraic structure of the PARAFAC model (18) is exploited
to formulate two channel estimation methods. The PARAFAC
model is powerful due to its essential factor identification
uniqueness property, which has its roots on the concept of
Kruskal rank (k-rank). Details can be found in [45], [46].

III. CHANNEL ESTIMATION METHODS

Our goal is to estimate the channel matrices H (BS-IRS)
and G (IRS-UT) from the received signal tensor given in (18).
Let us define Y .

= Y + B as the noise-corrupted received
signal tensor, where B ∈ CL×T×K is the additive noise tensor.
Likewise, Yi

.
= Yi+Bi, i = 1, 2, 3, are the noisy versions of

the 1-mode, 2-mode and 3-mode matrix unfoldings (20)-(22)
of the received signal tensor, and Bi=1,2,3 the corresponding
matrix unfoldings of the noise tensor.

The pilot signal matrix X and the IRS phase shifts matrix S
can be designed as semi-unitary matrices satisfying XHX =
T IM and SHS = KIN , respectively. A good choice is to
design both X and S as truncated discrete Fourier transform
(DFT) matrices. The optimal design of the IRS matrix S is
discussed in [14] for the multiple-input single-output (MISO)
case (i.e, for single-antenna users).

A. Khatri-Rao Factorization based channel estimation

First, note that we can rewrite the noise-corrupted matrix
unfolding (22) as:

Y3 = S(Z �G)T + B3

= S
(
HT �G

)T
(X⊗ IL)T + B3,

(23)

where we have applied the property (A ⊗ B)(C � D) =
(AC) � (BD) to the term (Z �G) = (XHT �G). A bilinear
time-domain filtering is applied at the receiver by exploiting
the knowledge of the IRS matrix and the pilot signal matrix,
as follows

Ω
.
= (X† ⊗ IL)YT

3(ST)† = HT �G + B̃3, (24)

where B̃3 = (X† ⊗ IL)BT
3(ST)† is the filtered noise term.

Note that Ω ∈ CML×N is a noisy version of the (Khatri-Rao
structured) virtual MIMO channel that models the IRS-assisted
MIMO transmission. Due to the semi-unitary structure of S
and X, the correlation properties of the additive noise are not
affected by the bilinear filtering step.
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Algorithm 1: Khatri-Rao factorization (KRF)
Procedure
output: Ĥ and Ĝ

begin
Bilinear filtering of Y3:
ΩT ←− SHY3(X∗ ⊗ IL)
for n = 1, . . . , N do

Ω̃n ←− unvecL×M (ωn)

(u1, σ1,v1)←− t-SVD(Ω̃n)

ĥn ←−
√
σ1v

∗
1

ĝn ←−
√
σ1u1

end
Reconstruct Ĥ and Ĝ:

Ĥ←−
[
ĥ1, . . . , ĥN

]T

Ĝ←− [ĝ1, . . . , ĝN ]
end

From (24), we propose to estimate H and G by solving the
following Khatri-Rao least squares approximation problem

min
H,G

∥∥Ω−HT �G
∥∥2
F
. (25)

An efficient solution to this problem is given by the Khatri-Rao
factorization (KRF) algorithm [47], [48]. Note that the
problem (25) can be interpreted as finding estimates of H
and G that minimize a set of rank-1 matrix approximations,
i.e.,

(Ĥ, Ĝ) = arg min
{hn},{gn}

N∑
n=1

∥∥∥Ω̃n − gnhT
n

∥∥∥2
F
, (26)

where Ω̃n
.
= unvecL×M (ωn) ∈ CL×M , while gn ∈ CL×1

and hT
n ∈ C1×M are the n-th column of G and n-th row

of H, respectively. The estimates of gn and hn in (26)
can be obtained from the dominant left and right singular
vectors of Ω̃n, respectively, for 1 ≤ n ≤ N . Hence, our
channel estimation problem translates into solving N rank-1
matrix approximation subproblems, for which several efficient
solutions exist in the literature [49]. A summary of the KRF
algorithm is given in Algorithm 1, where t-SVD denotes a
truncated SVD (t-SVD denotes also tensor SVD in the tensor
literature) that returns the dominant singular vector and its
associated singular value. Once Ĥ and Ĝ are found from
problem (26), we can build the composite channel.

B. BALS channel estimation

From the noisy versions of the matrix unfoldings (20) and
(21), we can derive an iterative solution based on a bilinear
alternating least squares (BALS) algorithm. This algorithm is
a simplified version of the well-known trilinear ALS algorithm
for estimating the factor matrices of a PARAFAC model [50].
In our case, since S is known at the receiver, it consists of

Algorithm 2: Bilinear alternating least squares (BALS)
Procedure
input : i = 0; Initialize Ĥ(i=0)

output: Ĥ, Ĝ

begin
i = i+ 1;
while ‖e(i)− e(i− 1)‖ ≥ δ do

1: Find a least squares estimate of G:

Ĝ(i) = Y1

[(
S �XĤT

(i−1)

)T
]†

2: Find a least squares estimate of H:

ĤT
(i) = X†Y2

[(
S �G(i)

)T
]†

3: Repeat steps 1 to 2 until convergence.
end

end

estimating the matrices G and H in an alternating way by
iteratively optimizing the following two cost functions:

Ĝ = arg min
G

∥∥Y1 −G(S �XHT)T
∥∥2
F
, (27)

Ĥ = arg min
H

∥∥Y2 −XHT(S �G)T
∥∥2
F
, (28)

the solutions of which are respectively given by

Ĝ = Y1

[(
S �XHT

)T
]†
, (29)

ĤT = X†Y2

[
(S �G)

T
]†
. (30)

The convergence is declared when ‖e(i)− e(i−1)‖ ≤ δ, where
e(i) = ‖Y −Ŷ(i)‖2F denotes the reconstruction error computed
at the i-th iteration, δ is a threshold parameter, and Ŷ(i) =

[Ĝ(i),XĤT
(i), Ŝ] is the reconstructed PARAFAC model (c.f.

(11), (18)) obtained from the estimated channel matrices Ĝ(i)

and Ĥ(i) at the end of the i-th iteration. In this work, we adopt
ε = 10−5. Despite the iterative nature of the BALS algorithm,
only a few iterations are necessary for convergence (usually
less than 10 iterations) thanks to the knowledge of the IRS
matrix S that remains fixed during the iterations.

If X and S are column-orthogonal (which requires K ≥
N and T ≥ M ), the right pseudo-inverses in (29) and
(30) can be replaced by matrix products. This leads to a
lower complexity implementation of the BALS algorithm with
simplified estimation steps, as shown in Appendix B.

C. Computational complexity

The computational complexity is in general dominated by
the (truncated) SVD steps involved in Algorithm 1 (KRF)
to compute rank-1 matrix approximations, as well as in
Algorithm 2 (BALS) to calculate the LS estimates of the
channel matrices. First, recall that computing the SVD of a
matrix P × Q has a complexity order of O(PQmin(P,Q)),
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while computing the inner product of two matrices of
dimensions P × F and F × Q has complexity O(PQF ).
The complexity of KRF is that of computing N rank-1
approximation routines from the matrix Ω̃n, n = 1, . . . , N ,
which can be efficiently implemented by means of the
well-known power method [49]. From these results, we find
that the KRF algorithm has a complexity of order O(MLN)
owing to the N rank-1 matrix approximations. As for the
iterative BALS receiver, as discussed in Section III-B, the
computational cost associated with steps 1 and 2 is that of
computing two right pseudo-inverses per iteration, which is
equivalent to O(NKT [2N + L]) and O(MT [2M + LK] +
N2[LK + M ] + MNLK), respectively. Note, however, that
this computational cost is greatly reduced when S and X have
orthogonal columns (which require K ≥ N and T ≥ M ,
respectively). According to the steps derived in Appendix
B, the cost per iteration is that of computing the matrix
products in steps 1 and 2 of Algorithm 3, which corresponds
to O(LN [TK + N ]) and O(M [LKT + LKN + N2]),
respectively.

D. Dealing with IRS perturbations and blockages

In outdoor scenarios, due to the exposure of the IRS to
weather and atmospheric conditions, its elements may be
subject to unknown blockages, as well as time-dependent
fluctuations on their phase and amplitude responses [51]. Such
unknown perturbations have a random nature, and may be
caused by water droplets, snowflakes, dry and damp sand
particles, among others. In this case, the IRS matrix S deviates
from its desired structure, and the assumption of a perfect
knowledge of all the phase shifts at the receiver may not
hold. Otherwise stated, the receiver cannot benefit from the
full knowledge of the IRS phase shifts to estimate the cascade
channel, i.e., it should be able to operate in a semi-blind
way. Adopting our tensor modeling approach, it is possible
to deal with this issue by resorting to a trilinear alternating
least squares (TALS) algorithm that jointly estimates G, H,
and S by fully exploiting the trilinear structure of the received
signal tensor in (18)-(19). The TALS algorithm is an extension
of the BALS one by adding in Algorithm 2 a third estimation
step

Ŝ(i) = Y3

[(
XĤT

(i) � Ĝ(i)

)T
]†

that includes the update/refinement the IRS matrix within the
loop. The TALS arises as a good alternative to deal with
IRS phase shift perturbations. Since the channel matrices are
now estimated in a blind way, i.e., without the knowledge
of the IRS matrix S, more iterations are required to achieve
convergence. Moreover, the complexity is also increased due
to the additional LS estimation step at each iteration. TALS is
a well-known algorithm for fitting a PARAFAC model [42],
[43], [50]. In such a blind approach, we can resort to the
Kruskal’s uniqueness conditions for the PARAFAC model [45]
to obtain useful system design recommendations. A simplified
condition can be obtained when the channel matrices have full

rank.1 In this case, min(L,N) + min(M,N) + min(K,N) ≥
2N + 2 guarantees the uniqueness of G, H and S (see [26],
[46] for a deeper uniqueness discussion in the general case).
It is known that TALS may suffer from slow convergence
due to its sensitivity to the initialization. However, several
enhancements may be used to improve its performance (see
[43] and references therein).

IV. DESIGN RECOMMENDATIONS

The KRF method (Algorithm 1) has a bilinear filtering step
as shown in (24) requiring that the IRS phase shift matrix S
and the pilot symbol matrix X have full column-rank, which
implies the following conditions

K ≥ N and T ≥M. (31)

As mentioned earlier, a good choice is to design X and S are
semi-unitary (or column-orthogonal) matrices, for two reasons.
First, because the the semi-unitary design replaces matrix
inversions in (24) by simple matrix products, simplifying the
receiver processing. Second, because the correlation properties
of the filtered noise term in (24) are preserved.

The BALS method (Algorithm 2) requires that the two
Khatri-Rao product terms M1 = S � XHT ∈ CKT×N and
M2 = S � G ∈ CKL×N have full column-rank, so that
(29) and (30) (resp. steps 1 and 2 of Algorithm 2) admit
unique solutions. This means that the conditions KT ≥ N
and KL ≥ N must be satisfied. Combining these two
inequalities implies min(KT,KL) ≥ N , or, equivalently,
Kmin(T, L) ≥ N . In addition, the condition T ≥ M in
(28) is required, since X must have full column-rank to be
left-invertible. Hence, the following conditions are necessary

Kmin(T, L) ≥ N. and T ≥M (32)

Comparing the conditions (31) and (32), we can note that
BALS has a less restrictive requirement on the minimum
number K of time blocks for the channel training compared to
KRF method. Note that, in the special case L = 1 (MISO or
SISO system), the inequalities (31) and (32) are identical, i.e.,
BALS and KRF are subject to the same training requirements.
The advantage of BALS over KRF appears in the MIMO
case, since BALS can operate under K < N , while KRF
requires K ≥ N 2. On the other hand, KRF usually has a
lower computational complexity than BALS, as will be shown
later in the discussion of our numerical results.

Note that condition (32) is necessary but does not guarantee
the uniqueness of the BALS estimates. Sufficient conditions
can be derived by studying the rank properties of M1 = S �
XHT ∈ CKT×N and M2 = S �G ∈ CKL×N . To this end,
let us invoke the following result.

1The condition min(L,N)+min(M,N)+min(K,N) ≥ 2N +2 usually
implies more restrictive choices on the system parameters L, M , and K,
compared to the conditions discussed in Section V, which are valid when
considering the perfect knowledge of the IRS matrix.

2Note that if K = 1, KRF reduces to the conventional LS estimator.
However, in this case we cannot resolve/decouple the estimation of the two
channel matrices, and the performance gain obtained with such a decoupling
via solving problem (25) is lost.
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Lemma 1 (Rank of the Khatri-Rao product [46], [52]): For
A ∈ CI×N and B ∈ CJ×N , if rank(A) ≥ 1 and rank(B) ≥
1, then rank(A � B) ≥ min (rank(A) + rank(B)− 1, N) . A
concise proof of this lemma can be found in [46], [53]. This
result means that the Khatri-Rao product of A and B will
have full column-rank if rank(A) + rank(B) ≥ N + 1.

The application of Lemma 1 to the Khatri-Rao structured
matrices M1 = S � XHT and M2 = S � G leads to the
following conditions that guarantee the uniqueness of the
channel estimates via solving the problems (27) and (28)

rank(S) + rank(XHT) ≥ N + 1 (33)
rank(S) + rank(G) ≥ N + 1 (34)

Let us consider that our channel training design parameters,
namely, the IRS phase shift matrix S and the pilot symbols
matrix X are designed to have full rank. The above conditions
yield useful corollaries for the system design, when BALS is
used. In the following, we discuss these corollaries.

A. The BS-IRS and IRS-UT channel matrices have full rank

Assuming that both channel matrices H and G have full
rank (e.g. i.i.d. Rayleigh fading), conditions (33)-(34) can be
rewritten as

min(K,N) + min(M,N) ≥ N + 1 (35)
min(K,N) + min(L,N) ≥ N + 1. (36)

We may distinguish two cases, as follows.

• N ≥ T ≥ M and N ≥ L: In this scenario, the BS and
the UT have small to moderate antenna array sizes, whose
number of antennas are smaller than the number of IRS
elements. In this case, conditions (33)-(34) reduce to

M + min(K,N) ≥ N + 1 (37)
L+ min(K,N) ≥ N + 1 (38)

• T ≥ M ≥ N : In this scenario, the BS is assumed to be
equipped with a large antenna array, which has as many
antennas as the number of IRS elements (massive MIMO
setup). Since condition (33) is always satisfied regardless
of the value of K, the uniqueness of the channel estimates
only depends on (34), which translates to

min(K,N) + min(L,N) ≥ N + 1 (39)

The conditions (37) and (38) establish a tradeoff between
the time dimension (number K of IRS training blocks) and
the two spatial dimensions (number M and L of transmit
and receive antennas, respectively) from a channel recovery
viewpoint. For instance, if K < N , these conditions imply
M +K ≥ N + 1 and L+K ≥ N + 1, which is equivalent to
min(M+K,L+K) ≥ N+1. Hence, reducing the number of
transmit (or receive) antennas should be compensated by an
increase on the number of time blocks in order to ensure the
uniqueness of the channel estimates via the BALS algorithm.

B. The BS-IRS and IRS-UT channel matrices are
rank-deficient

In millimeter-wave MIMO systems, the large number
of transmit/receive antennas combined with scattering-poor
propagation may result in low rank channel matrices H
and G. Let us assume that the signal propagating between
the BS and IRS experiences R1 clusters, while the signal
propagating between the IRS and the UT experiences R2

clusters. Moreover, assume that each cluster contributes with
one ray that has a complex amplitude and an associated angle
of arrival/departure. We can represent the BS-IRS and IRS-UT
channels as follows [54]

H = AIRSdiag(α)AH
BS, (40)

G = BUTdiag(β)BH
IRS, (41)

where ABS ∈ CM×R1 , AIRS ∈ CN×R1 , BUT ∈ CL×R2

and BIRS ∈ CN×R2 are the array response matrices, and the
vectors α and β hold the complex amplitude coefficients of the
BS-IRS and IRS-UT channels, respectively. More specifically,
we have rank(H) = R1 and rank(G) = R2, where it
is assumed that R1 ≤ min(M,N) and R2 ≤ min(L,N)
(rank-deficient case).

First, note that the conditions (31) required by the KRF
algorithm to solve the decoupled channel estimation problem
are not affected by the rank deficiency of the channel matrices.
However, this is not the case for BALS, since the uniqueness
of the LS estimates of G and H depend on the rank of these
matrices, as shown in conditions (33) and (34). Considering
BALS, we can draw useful corollaries as follows.
• T ≥M : Conditions (33) and (34) reduce to

min(K,N) +R1 ≥ N + 1 (42)
min(K,N) +R2 ≥ N + 1 (43)

It is worth discussing the following cases. If K ≥ N ,
we conclude that these conditions are always satisfied,
irrespective of the ranks of the channel matrices. If
K < N , the these conditions reduce to K + R1 ≥
N + 1 and K + R2 ≥ N + 1, yielding a useful
design recommendation the number K of blocks that
guarantee the uniqueness of the channel estimates in the
rank-deficient case.

• K ≥ N : In this case, conditions (33) and (34) are always
satisfied, irrespective of the rank of G and H.

Discussion: It is worth noting that the proposed channel
estimation methods still work for K = 1. However, in this
setup only the cascaded channel C = Gdiag(s)H can be
estimated. The performance enhancements that come from
the decoupling of the estimates of H and G (via KRF or
BALS) cannot be obtained. Otherwise stated, leveraging extra
training time diversity by increasing the number K of IRS
phase shift patterns allows us to extract additional gains in
comparison to the traditional LS estimator, as will be shown
in our numerical results. However, such gains come at the
expense of an increase on the training resources. Therefore,
here we clearly see a trade-off between training overhead and
performance.
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In addition, it is clear from conditions (33)-(34), or
equivalently, from conditions (35) and (35), that BALS can
operate under more flexible choices for K than KRF, since
the latter always requires K ≥ N . Note that, for M ≥ N and
L ≥ N , these conditions are satisfied even for small values
of K. In practice, this means that BALS may operate with a
much lower training overhead than KRF and the traditional
LS methods. However, our experience shows that for a large
number of IRS elements, working with small values of K
results in a slower convergence speed of BALS due to the
limited time diversity. Therefore, a trade-off between training
overhead and complexity arises when BALS is considered.

Note also that, in terms of the required training time
resources, BALS becomes equivalent to KRF in the single
transmit antenna case (M = 1) and/or in the single receive
antenna case (L = 1). Otherwise stated, for MISO and/or
SIMO IRS-assisted systems, BALS and KRF have exactly the
same requirement K ≥ N . Thus, we can say that BALS is
advantageous over KRF in terms of training overhead when
considering the MIMO case. Likewise, performance gains of
KRF and BALS over the baseline LS method also arise in
the MIMO setup, where spatial degrees of freedom at the
transmitter and the receiver are efficiently exploited to obtain
more accurate channel estimates. Finally, one can note that the
channel estimates Ĝ and Ĥ are affected by scaling factors3

satisfying Ĥ = ∆HH and Ĝ = G∆G, where ∆H∆G = IN .
These scaling ambiguities are irrelevant in our context since
they compensate each other when building the estimate of the
cascade BS-IRS-UT channel.

V. GENERALIZATIONS TO MULTI-USER SCENARIOS

Although we have focused on the single BS and single
UT scenario, the proposed approach as well as the derived
results can be easily generalized and adapted to IRS-assisted
muliple-access/multi-user MIMO systems. Let us take the
uplink case as an example. The downlink case follows exactly
the same model by just inverting the roles of BS and UT. We
can distinguish two scenarios, which are discussed as follows.

A. Multiple users communicate with a single BS via the IRS

Let us consider U UTs communicating with a single BS
via the IRS. The direct link between the UTs and the BS
is assumed to be too weak or unavailable. Assuming for
simplicity that all the users have the same number L of
transmit antennas, we can adapt equation (17) such that the
contribution of the u-th user to the received signal at the BS
is given as

Yu[k] = HTDk(S)GT
uX

T
u (44)

where Xu ∈ CT×L and Gu ∈ CL×N are respectively the
u-th user pilot matrix and uplink channel matrix. Note that
the IRS-BS channel H is common to all the users. The total

3The permutation ambiguity inherent to blind estimation is not present due
to the knowledge of the IRS phase shift matrix S at the receiver.

signal received from the U users at the k-th time block, in the
noiseless case, can then be expressed as

Y[k] = HTDk(S) (X1G1)
T

+ · · ·+ HTDk(S) (XUGU )
T

= HTDk(S)

[
U∑
u=1

(XuGu)T

]
.

(45)
Defining X

.
= [X1, . . . ,XU ] ∈ CT×UL, and G

.
=

[GT
1, . . . ,G

T
U ]T ∈ CUL×N , equation (45) translates to4

Y[k] = HTDk(S)Z
T

Z
.
= XG ∈ CT×N . (46)

Comparing (46) with (17), we can see that the multi-user
signal model has the same tensor structure as the single-user
one, the essential difference being on the definition of the
factor matrix Z which is now given by inner product of block
matrices composed of U blocks (each having L columns as
in the single-user scenario). Otherwise stated (46) corresponds
to a PARAFAC model of Y ∈ CM×T×K with factor matrices
(HT,XG,S), and unfoldings 1-mode and 2-mode given as
Y1 = HT(S �XG)T and Y2 = XG(S �HT)T, respectively.
Since the structure of the tensor model is not changed, both
KRF and BALS algorithms can be directly applied to the
multi-user model (46) under more restrictive choices for T ,
due to the fact the full rankness of X now requires T ≥ UL.
In this case, assuming that the channel matrices have full rank,
the application of Lemma 1 leads to

min(K,N) + min(UL,N) ≥ N + 1 (47)
min(K,N) + min(M,N) ≥ N + 1. (48)

These conditions are analogous to (35)-(36), by exchanging
the roles of M and L, while adding the factor U .

B. Multiple users communicate with multiple BSs via the IRS

We consider that P BSs receive the signals transmitted by
the U users via the IRS. Without loss of generality, the BSs
are assumed to be equipped with the same number M of
antennas. The model (46) is only slightly modified by adding
a dependency of the received signal on the index p of the
receiving BS, i.e.,

Yp[k] = HT
pDk(S)Z

T
, Z

.
= XG. (49)

In particular, in a cooperative setting where the P BSs
communicate (e.g. via a common backhauling structure), we
can derive an equivalent augmented signal model as follows

Y[k] =

Y1[k]
...

YP [k]

 =

 HT
1

...
HT
P

Dk(S)Z
T

= H
T
Dk(S)Z

T
,

(50)
where H

.
= [H1, . . . ,HP ]T ∈ CPM×N is the composite

channel combining the IRS links to the P BSs. The received
signal (50) corresponds to a PARAFAC model of Y ∈
CPM×T×K with factor matrices (H,XG,S). Note that,

4Note that the positions of H and G in are swapped in (46) compared to
(17) in addition to transposition, since channel reciprocity is assumed for the
UT-IRS and IRS-BS links.
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Fig. 3. NMSE of the estimated channels Ĥ and Ĝ.

differently from the single-user single-BS model (17) and the
multi-user single-BS model (46), in the multi-user multi-BS
model (50) the dimensionality of the first mode of the received
signal tensor has been increased by a factor P due to the
assumption of cooperating BSs. In this scenario, condition
(47) remains the same, while condition (48) slightly changes
to min(K,N) + min(PM,N) ≥ N + 1.

As a final remark, in terms of receiver processing, it is clear
that both KRF and BALS have an increased computational
complexity in the discussed multi-user scenarios, due to the
increased dimensionality of the channel matrices G and H.

VI. NUMERICAL RESULTS

In this section, several numerical results are presented to
evaluate the performance of the proposed channel estimation
methods, while comparing to competing approaches. We also
evaluate the CRB as a reference for comparisons. The channel
estimation accuracy is evaluated in terms of the normalized
mean square error (NMSE) given by

NMSE(Ĥ) =
1

R

R∑
r=1

‖H(r) − Ĥ(r)‖2F
‖H(r)‖2F

, (51)

where Ĥ(r) is the BS-IRS channel estimated at the r-th run,
and R denotes the number of Monte Carlo runs. The same
definition applies to the estimated IRS-UT channel. The SNR
(in dB) is defined as

SNR = 10log10(‖[Y]‖2F /‖[B]‖2F ), (52)

where Y is the noiseless received signal tensor generated
according to (18), and B is the additive noise tensor.

We assume that the entries of the BS-IRS and IRS-UT
channel matrices H and G are independent and identically
distributed zero-mean circularly-symmetric complex Gaussian
random variables. The Figures 3, 5 and 6, represent an
average from R = 5000 run Monte Carlo runs for the fixed
system parameters {T = 4, L = 2,K = 50,M = 3} and
N ∈ {50, 100}.

Figure 3 depicts the NMSE vs. SNR curves for the KRF
and the BALS algorithms. We can see that both algorithms
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Fig. 4. NMSE for the equivalent channel θ̂.
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Fig. 5. Average runtime of KRF and BALS algorithms.

provide satisfactory performances. The performance degrades
as the number of IRS elements is increased, which is an
expected result since the number of channel coefficients in
G and H to be estimated also increases with N . In Figure 4,
the NMSE of the composite parameter vector θ is shown. The
parameters used get this figure was K = 100, M = 3, T = 4,
L = 20, N ∈ {10, 50, 100} and 1000 Monte Carlo runs. The
results are in line with those of the previous figure, where
we observe a performance degradation as N is increased,
which confirms our expectations. An approach to overcome
such a performance degradation is to partition the IRS into
groups, and activate/deactivate each group in a sequential way
in the time domain, so that the at each time, the sub-channels
associated with a given group are estimated [22], [55], [56].
This approach, however, would increase the total training
time by a factor corresponding to the number of groups.
The following experiments compare the average runtime of
KRF and BALS. The results are depicted in Figure 5, and
corroborate the higher complexity of BALS compared to KRF.
Note that the runtime of BALS grows faster then that of KRF
with the increase on the number N of IRS elements. On the
other hand, as we pointed out earlier (comparison between
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Fig. 6. Number of iterations to convergence of the BALS algorithm.

(31) and (32)), BALS can operate under less restrictive choices
(smaller values) for K in comparison to KRF. Hence, there is
a tradeoff between complexity and operating conditions for
the two proposed channel estimation methods.

In Figure 6, we evaluate the required number of iterations
of the BALS algorithm to achieve the convergence according
to the criterion discussed in Section III-B. We can note that
the required number of iterations grows with N , as expected.
The difference in the convergence speed for different values
of N is more pronounced in the low SNR range. For high
SNRs, the convergence becomes less sensitive to N .

In Figure 7, we consider the uplink multi-BS scenario,
which follows the signal model (50). We assume P = 2, M =
1, and U = 1. We compare the KRF receiver with a competing
channel estimation method proposed recently in [57], which
considers the single-antenna multi-user reception scenario5.
Therein, the channel estimation requires three sequential
stages, i.e., three time windows. In the first stage, the direct
channel is estimated. In the second one, the equivalent channel
between the first user and the BS is estimated. Finally, in the
third stage, the channel associated with the remaining users are
estimated. Similar to our model, in [57] the equivalent channel
is obtained by stacking the contributions of the U users, i.e.,
G �H =

[
(Hdiag(g1))

T
, . . . , (Hdiag(gU ))T

]T
. We can see

that KRF outperforms the competing method, providing an
SNR gain of nearly 5dB. Indeed, KRF jointly estimates all the
involved channels in a single training stage, while in [57] the
channel estimation is carried out in a sequential way, which
can induce error propagation. This is a key difference that
explains the performance gap in Figure 7.

In Figure 8, we compare the results of the proposed KRF
method with the conventional LS method. In this experiment,
we consider K = N = 50, T = M = 20, L = 8, and 1000
Monte Carlo runs. The CRB derived in Appendix A (equations

5In [57] the authors assume multiple receiving single-antenna UTs and
a single multi-antenna BS in the downlink, while our model (50) assumes
multiple receiving BSs and a single multi-antenna UT in the uplink. Due to
the channel reciprocity assumption, the signal model of [57] is equivalent to
our signal model (50). For a fair comparison, we assume P = 2 UTs for
the channel estimation method of [57]. In this case, the dimensions of the
channel matrices are exactly the same for both methods.
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Fig. 7. NMSE of the estimated cascaded channel via the method of [57].
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Fig. 8. Normalized CRB for the equivalent Khatri-Rao channel θ.

(68)- (68)) is also plotted here as a reference for comparison.
Recall that the CRB considers the equivalent linear model
obtained from the vectorized version of the received signal
model given in (15), which we repeat here for convenience

y = vec (Y) = Uθ + b,

where U =
(
S⊗ X̃

)
and θ = vec

(
HT �G

)
∈ CMNL

is the parameter vector consisting of a vectorized version
of the (Khatri-Rao structured) channel matrix combining the
IRS-UT and the BS-IRS channel matrices. The conventional
LS method plotted in the figure estimates this vectorized
channel parameter as θ̂ = U†y, which ignores the Khatri-Rao
structure that is lost in the vectorization of the signal model.
In contrast, the proposed KRF method exploits the Khatri-Rao
channel structure, and builds θ̂ from the decoupled estimates
Ĥ and Ĝ obtained according to Algorithm 1.

We can see that the LS solution attains the CRB.
Furthermore, an interesting result can be noted. The proposed
KRF algorithm outperforms the LS solution. The gain in terms
of SNR is around 7dB. This result is explained by the fact
that KRF effectively exploits the Khatri-Rao structure that
is present in the equivalent channel model. Note that the
KRF method solves the problem by reshaping the ML × N
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Fig. 9. NMSE of the θ̂ assuming that Ĥ and Ĝ are rank-deficient.
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Fig. 10. TALS performance under IRS amplitude/phase perturbations.

Khatri-Rao channel in the form of N IRS subchannels of
dimension M × L, which provides a noise rejection gain
thanks to the rank-1 approximation steps. Naturally, when
M and L increase (which is the case, for instance, when
assuming massive antenna arrays at the BS and UT), the larger
is the spreading of the noise across the noise subspace and,
consequently, higher levels of noise rejection will be achieved.
This is a distinctive feature of the KRF method that is not
exploited by the conventional LS channel estimator.

In Figure 9, we assume that the channel matrices H and G
are rank-deficient. In this experiment, the channel matrices
are generated according to the model given in (40)-(41).
We assume uniform linear arrays at the BS and UT. The
IRS has a uniform rectangular array structure. The angles of
arrival (AoAs) and angles of departure (AoDs) are randomly
generated according to a uniform distribution. At each Monte
Carlo run, the azimuth and elevation angles are drawn
within the intervals [−π/2, π/2] and [0, π/2], respectively. We
consider a single path scenario, where R1 = R2 = 1, and
assume K = N = 64, L = 4 and T = M ∈ {4, 20}.
As a reference for comparison, we also plot the NMSE of
the LS-based channel estimation method proposed in [58].

Therein, the time-domain pilot protocol is the same as the
one considered in this work, which consists of dividing the
total training time into K blocks across which the phase shift
pattern of the IRS is varied. In [58], a two-stage scheme
is proposed. In the first stage, the cascaded channel Ck =
GDk(S)H associated with every time block k is individually
estimated via an LS method. We refer to this approach as
a “block-LS” method. The second stage extracts the AoA
and AoD parameters by combining the K cascaded channel
matrices. Since our method does not estimate the angular
parameters of the channel matrices, we compare the proposed
KRF method with the first stage of the block-LS method of
[58], which also provides the unstructured estimate of the
channel matrices H and G. We can see that KRF outperforms
block-LS in the two considered system setups. Note that the
performance of the block-LS method is not affected when
the number M of transmit antennas (assuming T = M ) is
increased. This is in contrast to the KRF method that provides
more accurate channel estimates for larger antenna arrays. In
particular, the SNR gain of KRF over block-LS is nearly 3.5
dB for M = T = 4, and increases to 5.5dB for M = T = 20.
Indeed, higher values of M and/or L imply higher levels of
noise rejection provided by the KRF method via exploiting
the Khatri-Rao structure of the cascaded channel. These gains
come at the expense of an increased computational complexity,
as well as an increase on the length of the pilot sequences.
Note that the channel ranks R1 and R2 do not need to be
known by our channel estimation methods. Nevertheless, a
performance enhancement could be obtained by exploiting the
knowledge of these ranks (see, e.g. methods like [59]), or,
alternatively, by means of compressed sensing methods that
capitalize on sparse representations of the channel matrices H
and G. This is an interesting topic for a future research.

In Figure 10, we assume that the IRS is affected by
amplitude and phase perturbations, as well as unknown
blockages, due to hardware and/or environmental-induced
impairments. In this scenario, the receiver has an
imperfect knowledge of the IRS phase shift matrix. The
estimation/refinement of these phase shifts is carried out
using the TALS algorithm, which extends BALS by including
an additional LS estimation step associated with the update
of S within the loop, as discussed in Section III-D. To model
these impairments, we assume sk,n = (ak,nfk,n) s̄k,n, where
s̄k,n is the originally designed phase shift (i.e., (k, n)-th
element of a DFT matrix), ak,n ∈ {0, 1} models the presence
or not of a blockage at the n-th element and k-th block,
fk,n ∼ CN(0, γ) models the hardware impairments [60],
[61], and γ denotes the variance of these perturbations. In the
TALS algorithm, the initialization of Ŝ is chosen as a DFT
matrix, following its original design. This initialization always
provides better results than a random one. Our simulations
assume T = M = 50, K = 100, L = 4, γ = 0.01, 20%
blocked IRS elements, and i.i.d. channel matrices. Although a
performance degradation is observed in comparison with the
perfectly-known IRS phase shifts case, we can see that the
TALS algorithm can handle this more challenging scenario.
In particular, the NMSE gap with respect to the ideal case
increases as more elements are used in the IRS. Indeed, in
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the imperfect IRS scenario, the total number of parameters
to be estimated by the TALS algorithm is (K + M + L)N ,
in contrast to (M + L)N in the perfectly-known IRS case,
implying an addition of KN unknown factors.

VII. CONCLUSION AND PERSPECTIVES

We have proposed novel pilot-assisted receiver designs
for IRS-assisted MIMO communication systems via a tensor
modeling approach. The proposed KRF and BALS receivers
effectively exploit the tensor structure that is present in the
received signal. Both solutions yield decoupled estimates of
the BS-IRS and IRS-UT channels at the receiver for a passive
IRS. The closed-form KRF method has a lower complexity
but a more restrictive requirement on the training parameter
K, while the iterative BALS method, although being more
computationally complex, can operate under more flexible
choices for this parameter with a lower training overhead.
Our design recommendations provide useful conditions on
the system parameters that guarantee the uniqueness of the
channel estimates. Our numerical results have demonstrated
the superior performance of KRF and BALS compared to
the conventional LS estimator, which ignores the Khatri-Rao
structure of the combined channel matrix. In addition, the
proposed tensor modeling approach allows to deal with a
nonideal setup where the IRS phase shifts are not perfectly
known at the receiver due to phase perturbations/fluctuations.
In this more difficult setup, leveraging the trilinear structure of
the received signal by means of a TALS algorithm provides us
a joint estimation of the channel matrices and the IRS phase
shift matrix. The proposed solutions also provide better results
than recently proposed competing methods. Generalizations of
our tensor modeling approach to multi-user scenarios have also
been discussed, and analytical expressions for the CRB have
been derived. The proposed approach can easily be extended
to better deal with the millimeter wave scenario by assuming
hybrid analog digital structures at the BS and UT sides.
Combining the proposed algorithms with compressed sensing
methods could provide further performance enhancements
for low-rank (sparse) channels. In addition, leveraging to
data-driven receivers capable of a joint channel estimation and
symbol recovery would be desirable to save training resources.
To this end, an extension of the proposed tensor modeling
approach to the semi-blind case is a perspective of this work.

APPENDIX A
EXPECTED CRAMÉR RAO LOWER BOUND

In the following, we derive the closed-form CRB
expressions for the channel estimation problem proposed in
this work. The CRB provides the lower bound on the variance
of achieved by an unbiased estimator. If θ̂ is an unbiased
estimate of θ, the NMSE measurements is lower bounded by
the CRB such as,

E‖θ − θ̂‖2 ≥ Tr{CRB(θ)}, (53)

where CRB(θ) is given as the inverse of the Fisher Information
Matrix (FIM), denoted by F(θ), such as

CRB(θ) ≥ F(θ)−1. (54)

An extension for complex-valued parameters is derived in
[62] by working on the structured parameter vector θc =[
θ̄

T
θ̃

T]T
, where θ̄ = Re(θ), and θ̃ = Im(θ). Thereby, with

a nuisance parameter γ, the CRB for complex-valued random
parameters is given as

E‖θc − θ̂c‖2 ≥ Eθ̄,θ̃,γ

{
Tr{CRB(θ̄)}+ Tr{CRB(θ̃)}

}
.

(55)
For an observation vector that follows a complex circular

Gaussian distribution, y ∼ CN(µ,R), a useful way used to
obtain the FIM is to use the Slepian-Bangs (SB) formula [63]:

[F(θ)]i,j = 2Re

{(
∂µ

∂[θ]i

)H
R−1

(
∂µ

∂[θ]j

)}
(56)

+ Tr

{(
∂R

∂[θ]i

)
R−1

(
∂R

∂[θ]j

)
R−1

}
.(57)

Let us recall (22):

[Y](3) = S
[
(X⊗ IL)

(
HT �G

)]T
= S

(
HT �G

)T
(X⊗ IL)

T
,

(58)

or, equivalently,

[Y]
T
(3) = (X⊗ IL)

(
HT �G

)
ST. (59)

Considering the vectorized version of the 3-mode unfolding
[Y]

T
(3), the following linear model with respect to the

parameters of interest is obtained according to

y = vec
(

[Y]
T
(3)

)
= Uθ, (60)

where U = (S⊗X⊗ IL), and

θ = vec
(
HT �G

)
∈ CMNL (61)

denotes the vectorized version of the Khatri-Rao structured
channel. From the observation vector y given by (60), the
statistics of the noisy observation is given by

y ∼ CN (µ1,R1) , (62)

where,

µ1 = Uθ, (63)
R1 = σ2I. (64)

As R1 parameter-invariant, the second term of the SB
formula vanishes, hence the (2MNL) × (2MNL) FIM,
obtained after the calculation from (56), is given by

F(θc) =
2

σ2

[
Re{UHU} −Im{UHU}
Im{UHU}T Re{UHU}

]
. (65)

Considering the trace and the inverse of a 2×2 block matrix,
we obtain

Tr{CRB(θ̄)} =
σ2

2
Tr

{(
M̄ + M̃M̄−1M̃

)−1}
, (66)

Tr{CRB(θ̃)} =
σ2

2
Tr
{

M̄−1 − M̄−1M̃
(
M̄ +

+M̃M̄−1M̃
)−1

M̃M̄−1
}
,

(67)
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where M̄ = Re
{
UHU

}
and M̃ = Im{UHU}. Let us recall

that U = (S⊗X⊗ IL), XHX = T IM , and SHS = KIN .
Hence, UHU = KT IMNL. This implies that M̃ = 0. The
two above expressions can be simplified as

CRB(θ̄) =
σ2

2KT
IMNL, (68)

CRB(θ̃) =
σ2

2KT
IMNL. (69)

Therefore, using definition (55):

E‖θc − θ̂c‖2 ≥
σ2

KT
MNL. (70)

It is important to note that there is no need to derive the
mathematical expectation in the right-hand side of (55) over
the parameters of interest and of nuisance due to the simple
expression of the CRB.

APPENDIX B
SIMPLIFIED VERSION OF BALS

Under the column-orthogonality assumption for X and S,
the right pseudo-inverses in (29) and (30) can be replaced
by lower complexity matrix products, leading to a faster
implementation of the BALS algorithm. Defining M1

.
=

S �XHT and M2
.
= S �G, and using property (2), we have

MH
1M1 = (SHS)� (HXHXHH)

= KT

‖h1‖2
. . .
‖hN‖2

 .
= KTΣH (71)

and

MH
2M2 = (SHS)� (GHG)

= K

‖g1‖2
. . .
‖gN‖2

 .
= KΣG, (72)

which implies that

Ĝ = (1/KT ) ·Y1M
∗
1Σ
−1
H (73)

ĤT = (1/KT ) ·XHY2M
∗
2Σ
−1
G . (74)

Due to the diagonal structure of ΣH and ΣG, these
expressions provide lower complexity implementations of (29)
and (30), respectively, by replacing matrix inversions by
simpler matrix products. In particular, each update of Ĝ and
Ĥ can be viewed as a set of N independent processes (one
for each IRS element) that can be carried out in parallel. The
BALS is summarized in Algorithm 3.
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output: Ĥ, Ĝ
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