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Abstract

Large-scale identification of native binding orientations is crucial for understanding the role
of protein-protein interactions in their biological context. Measuring binding free energy is
the method of choice to estimate binding strength and reveal the relevance of particular con-
formations in which proteins interact. In a recent study, we successfully applied coarse-
grained molecular dynamics simulations to measure binding free energy for two protein
complexes with similar accuracy to full-atomistic simulation, but 500-fold less time consum-
ing. Here, we investigate the efficacy of this approach as a scoring method to identify stable
binding conformations from thousands of docking decoys produced by protein docking pro-
grams. To test our method, we first applied it to calculate binding free energies of all protein
conformations in a CAPRI (Critical Assessment of PRedicted Interactions) benchmark data-
set, which included over 19000 protein docking solutions for 15 benchmark targets. Based
on the binding free energies, we ranked all docking solutions to select the near-native bind-
ing modes under the assumption that the native-solutions have lowest binding free ener-
gies. In our top 100 ranked structures, for the ‘easy’ targets that have many near-native
conformations, we obtain a strong enrichment of acceptable or better quality structures; for
the ‘hard’ targets without near-native decoys, our method is still able to retain structures
which have native binding contacts. Moreover, in our top 10 selections, CLUB-MARTINI
shows a comparable performance when compared with other state-of-the-art docking scor-
ing functions. As a proof of concept, CLUB-MARTINI performs remarkably well for many tar-
gets and is able to pinpoint near-native binding modes in the top selections. To the best of
our knowledge, this is the first time interaction free energy calculated from MD simulations
have been used to rank docking solutions at a large scale.
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Introduction

Protein-protein Interactions (PPIs) play a central role in all cellular processes. Proteins rely on
their binding capacity to construct complexes and build interaction networks to fulfill biologi-
cal functions (e.g., [1], [2], [3]). Knowledge of binding affinity and native binding modes of
proteins are essential to gain a thorough understanding of protein-protein interactions in rela-
tion to their function (e.g., [4], [5]). During the last decades, experimental techniques such as
yeast two-hybrid, tandem affinity purification, mass spectrometry and protein micro-arrays for
large scale determination of protein-protein interactions, as well as immunoblots, ELISA and
gel electrophoresis for calculation of binding strength, have been developed to identify and
annotate protein interaction (e.g, [6-8]). However, owing to the exceeding cost of experimental
techniques, computational approaches are increasingly useful to estimate binding affinity and
to assist in finding the best possible interaction candidate (e.g, [9], [10]).

Molecular docking is a low-cost and fast approach to predict binding orientations, which
has been developed specifically for this purpose. (e.g., [11], [5]). Docking includes two steps to
predict binding modes: the first step is searching the conformational space of the protein mole-
cules and generating (very many) docking poses. The second step is scoring the solutions con-
structed in the first step, with the aim of finding native or near-native ones. Often, the two
steps are combined in one docking tool. Several types of algorithms exist to address the docking
search problem (see Huang [12] for a recent comprehensive review). Also for the second step,
various kinds of scoring functions have been developed [4][13], including, empirical or knowl-
edge-based potentials [14][15][16] and physics-based potentials [17][18].

Although much effort has been devoted to the application of docking to PPI, accurate pre-
diction remains a challenge that is far from solved, especially the second step which scores and
ranks docking conformations. Kastritis and Bonvin (2010) found a poor correlation between
scores produced by docking scoring functions and experimental binding affinities; none of the
scoring function were able to predict binding affinities correctly in all situations [9]. On the
other hand, it is reported that binding free energy calculation based on molecular dynamics
(MD) simulations are much more accurate than docking scoring functions when used to mea-
sure binding affinities, and can even approach accuracies of experimental determination [9,
19]. One may assume that MD simulations, given long enough simulation time and an accurate
force field, will yield the bound state of protein complex as its free energy minimum (e.g., [20]).
However, simulations require long timescales for sufficient sampling to search the lowest free
energy stable state, and are computationally very costly. To speed up these MD simulations, in
our recent study [21] we successfully applied the coarse-grained (CG) MARTINI protein force
field instead of a full atomic description to estimate binding affinities for proteins. Basically, we
sacrifice forcefield detail for enhanced sampling. However, the CG method was shown to be as
accurate as full-atom MD simulation for binding free energy estimation for the two protein
complexes studied, but 500-fold less time-consuming. The achieved speedup now opens up the
possibility to combine the docking searching strategy to produce a set of near-native binding
decoys, which is quick and inexpensive, with estimated binding free energies from coarse-
grained MD simulations, as a relatively expensive but accurate scoring method. We find this
approach to achieve a good balance between efficiency and effectiveness for protein binding
orientation prediction.

To illustrate this, we here evaluate the capacity of estimated binding free energy from
coarse-grained MD simulations to locate near-native binding poses amongst conformations
produced by docking programs. We present a proof of concept for the approach of using Free
Energy calculation to score binding orientations from protein-protein docking. The bench-
mark dataset we used is the CAPRI Score_set, which contains over 19,000 structures from 15
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published targets from the CAPRI docking experiment [13]. For most of the targets with near-
native conformations we obtain significant enrichment of acceptable or higher quality struc-
tures in our top 100 selected structures. For targets with few near-native binding modes, our
method can identify structures which include native interface contacts.

Materials and Methods
2.1 Force fields and Software

To calculate the coarse-grained (CG) potential of mean force (PMF) for our proteins of inter-
est, we used the procedure developed in our previous work [21]. In short, we used the MAR-
TINI force field [22] with default time step of 20fs to perform the CG simulations. The Coarse-
graining of protein structures was done using the MARTINI model which maps about 4 heavy
atoms into a single interaction center. All 20 amino acids are considered as four different types
of particles: polar (P), nonpolar (N), apolar (C), or charged (Q) [23]. GROMACS 4.0.5 [24]
was employed to perform all MD simulations, using parameters for the MD simulations as
described previously [21]. A tool that calculates the PMF from a single starting conformation
in a PDB file was developed in Python. The code is available upon request.

2.2 Estimating Interaction strength

To evaluate the Free energy difference between bound and unbound states, one needs to inte-
grate a path between these states. As described previously [21], a series of closely spaced dis-
tances (r) between the two centers of mass (COM) was used and for each distance a constraint
force was applied to maintain the interaction of the two proteins at the set distance during the
MD simulations. In detail, first, the distance between the two centers of mass of the docking
conformation was calculated (dockcopr). When performing the simulation, 23 distances spaced
at 0.05 nm starting -0.1 nm below dockcoyr and 9 distances spaced at 0.1 nm starting at 1.15
nm beyond dockcops, were used as MD simulation coordinates. From the resulting profile of
force as function of distance, now the PMF was calculated as described previously [21]. The
PMEF describes the interaction free energy between two structures as function of distance. For
each conformation of two interacting proteins, the binding free energy (AG®”) was obtained
from the difference between the lowest PMF value at r,,;, and highest PMF at larger distance
I'max Where 1,,;, < ... This binding free energy is used as an approximation of the binding
strength, and in this work to rank the docking poses.

2.3 Datasets

To assess the ability of our method to distinguish near-native from incorrect binding modes,
we used the CAPRI Score_set as a benchmark dataset [13]. CAPRI is well known as a commu-
nity-wide experiment on the critical assessment of prediction of interactions. The CAPRI Scor-
e_set, which comprises around 19,000 complexed structures from multiple rounds of CAPRI
experiments, is published as a realistic benchmark dataset for protein docking scoring func-
tions. The interest of this dataset is that it does not contain the true target (crystal) structures,
but includes many ‘real life’ non-occuring or incorrect, acceptable and native-like docking
poses. The dataset collects structures from 15 published CAPRI targets predicted by 47 differ-
ent predictor groups, which represent the state of the art of protein docking [13]. The CAPRI
benchmark set used in this study is annotated regarding structural correctness, and as such
does not reflect a typical research situation. However, an individual researcher may generate an
input decoy dataset of any size using various docking servers that are readily available online.
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In this dataset, about 10% of the structures represent acceptable quality or better, based on the
three measures used in CAPRI:

o fuar: fraction of native ligand-receptor contacts;

o L-rms: Root mean square deviation (RMSD) over the ligand backbone atoms with both of
the receptors fitted on each other (docking versus solved structures);

o I-rms: RMSD of backbone atoms of interface residues between docking structures and the
solved structures.

Using these measures, each structure is assigned to one of four categories based on the clas-
sification used in CAPRI:

1. High quality: f,,,, > 0.5 and L-rms < 1.0 and I-rms < 1.0

2. Medium quality: f,,,, > 0.5 and L-rms > 1.0 and I-rms > 1.0 or 0.3 < f,,,, < 0.5 and (L-
rms < 5.0 or I-rms < 2.0)

3. Acceptable: f,,,; > 0.3 and L-rms > 5.0 and I-rms > 2.0 or 0.1 < fnat < 0.3 and (L-
rms < 10.0 or I-rms < 4.0)

4. Incorrect: f,,,; < 0.1 or L-rms > 10.0 and I-rms > 4.0

As a measure for target difficulty, we take the fraction of docked structures of acceptable or
better quality. In most figures, we organised the targets from ‘easy’ to ‘hard’ based on this
measure.

2.4 Sampling procedure

First, binding free energy (AG®) of each structure is calculated from a single MD simulation
(replicate) at each distance (in May et al., 2014 [21], 10 or 20 replicates per distance were used).
Based on these free energies, we then rank the binding orientations for each target under the
assumption that a lower free energy is more stable. Using this ranking, we selected the best
(lowest) 50% structures for each target. For this subset, we ran four more replicates per distance
to increase sampling and obtain a more accurate estimate of AG?. Based on the average AG%
over the five replicates (for the best 50% structures), we picked the top 1, 5, 10, 20 and 100 low-
est binding free energies for each target. These sets we analysed and compared to the bench-
mark dataset. Note that, the crystal structure (PDBID: 2W83) of Target 37 includes a JNK-
interacting protein JIP4 which contains a leucine zipper domain (90 A elongated long coiled-
coil) [25]. Due to its size, and the fact that simulations are performed in explicit water, this
PME calculation experiment required an excessive amount of CPU hours. Therefore, for Target
37, only one replicate simulation was performed.

To evaluate the performance of our method and compare binding strength among different
quality binding poses, we also calculated the binding free energies of the X-ray crystal struc-
tures from the PDB for all targets by Coarse-Grained MD simulation using 20 replicates.

Results and Discussion

For each of the 19,000 structures (docked conformations) of the 15 targets in the CAPRI Scor-
e_set, we estimated the binding affinity (AG®) using the CLUB-MARTINI CG MD simula-
tions and constraint force integration, as detailed above in Methods. We then use these data to
rank the docking conformations on increasing AG% (lowest, strongest binding, first).
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3.1 Near-native structures with lower binding free energies

To investigate the potential of AG% as a scoring function, we first correlate the binding free
energies to the Score_set benchmark parameter interface RMSD (I_rms), which is the most
important determinant of the binding interface quality [13]. Fig 1 shows the comparison
between AG% (one replicate) and I-rms for all docking decoys of Target 47 (which is an easy
target with many high quality docking solutions; results for other targets can be found in S1
Fig). For all docked structures, lower I_rms values reflect near-native binding poses and a
lower AG% reflects a more stable binding pose with a higher binding strength. As can be seen
from Fig 1, there is a clear separation between low and high I-rms especially for lower binding
free energies (AG < -105). Previously we showed that our method can be used to approxi-
mate experimental binding free energies [21]. The separation shown in Fig 1 demonstrates that
binding free energies calculated are also accurate enough to be used as a scoring function for
ranking docked conformations.

Fig 1 also shows that there is a large AG® variation among low I_rms structures. This
might reflect true differences in stability, even for very similar structures, however, we expect
this to be mainly the uncertainty in our calculated AG% which could be a limiting factor when
applying our method to rank docking binding orientations. The AG% calculations might be
not accurate enough. To obtain more accurate binding free energies, more simulations are
needed as already observed by May et al, 2014 [21]. To obtain some estimate of this accuracy,
we selected the first target, Target 29, to run two replicate simulations for each structure in the
Score_set and compare the rank position differences between the two replicates (data not
shown). The average rank difference over all 2083 complexes for Target 29 was 400, which is
around 25% of the number of structures for this target. Based on this variation estimate, we
may select the best scoring (lowest) half on the AG® using a single replicate simulation with

18
Target 47 . |
= - 16
- 14
W S -4 12 I-rms
i1 @
.: [r . L -.;' - 10
.h-l-'..: 1s
- - i 6
44
".... -.".:'..‘_' B, . -2
. — Tt —t—p—1—| 0

T
-160 -140 -120 -100 -80 60  -40  -20 0 20
AG 4 (kJ/mol)

Fig 1. Distribution of AG°T over all structures vs. interface quality parameter |_rms (Target 47). Each
dot represents one structure in the Score_set of Target 47. The x axis shows the RMSD of backbone atoms
of interface residues between docking decoys and crystal structures (I_rms); the y axis shows AG°" which
describes the predicted binding strength. Same plots for other targets are in S1 Fig.

doi:10.1371/journal.pone.0155251.g001
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reasonable reliability. For that selected best 50% of docking conformations, we ran four addi-
tional replicates to get more accurate AG® estimates. This approach was applied to all targets.
We average the NG calculations over the total of five replicates, and based on this we select
the candidate near-native structures.

To assess whether our sampling has been sufficient to improve accurate estimations of the
binding strength, we checked the distribution of AG* in different quality categories (high,
medium, acceptable and incorrect) using only 1 or 2, or all 5 replicates. For comparison, we
also calculated the AG® based on the native binding mode of the crystal structure using 20
replicates. Here we take Target 47 as an example (results for all targets are included in S2 Fig).
Fig 2A shows the distributions of AG® from 1, 2 and 5 replicate MD simulations. The four
bars for each represent high (red), medium (orange), acceptable (yellow) and incorrect (gray)
structures respectively. From the plot, we observe that the mean AG% separates clearly
between high, medium, acceptable and incorrect. Moreover, as hypothesized, the predicted
binding free energy increases from high to low quality structures. This clearly shows that
CLUB-MARTINTI is able to predict lower binding free energies for near-native binding poses.
Fig 2B shows that the spread of AG% within each quality category decreases with increasing
number of replicates. Moreover, for ‘high’ quality structures, the mean AG% is quite stable
and close to that of the crystal structures (in purple) and gets even closer with more replicates.
This trend suggests that further improvement of binding free energy calculation may be possi-
ble with more replicates. For the other targets, we observe similar trends in most cases (see S2
Fig). For Target 50 (S2 Fig), we see that the initial (single replicate) AG% for high quality struc-
tures is higher than that of the crystal structure, which is likely due to errors arising from using
a limited number of replicates. Reassuringly, we indeed see this gap decreasing when more rep-
licates are used.

3.2 Enrichment in selecting near-native structures in CAPRI Score set

After ranking our docking structures based on the binding free energy calculation, we com-
pared the percentage of acceptable or better quality structures in our top selections with that in
CAPRI Score_set. Fig 3 shows the comparison of the top 100 structures for each target. The
two bars represent the percentage of structures in each quality category in Score_set and our

[ crystal structure

R I high
20 4 Target 47 (A) | [ medium 20 Target 47 (B)
[Jacceptable
04 [incorrect 04
20 l = 20 4 l X
-40 | -40
60 - 60
ES
&
9 -80 -| -80
-100 4 -100
-120 | - . 120 2
-140 4 -140
A7 7777 77777 T T T 7T 7T
| 1 replicate ‘ | 2 replicates ‘ \ 5 replicates \ crystal high medium acceptable incorrect

Fig 2. Distribution of NG for structures in different quality categories (Target 47). (A) NGO
distributions using 1, 2 or 5 replicate MD simulations (left to right). Each includes four bars for high, medium,
acceptable and incorrect structures, from left to right, respectively. (B) Direct comparison within each quality
category, and crystal structure. Each quality category contains three bars, showing the AG° distribution
using 1, 2 and 5 replicates, from left to right, respectively. Corresponding plots for the other Targets can be
found in S2 Fig.

doi:10.1371/journal.pone.0155251.g002

PLOS ONE | DOI:10.1371/journal.pone.0155251 May 11,2016 6/14



@’PLOS ‘ ONE

CLUB-MARTINI: A Coarse-Grained Simulation Approach to Scoring Docking Decoys

[__Jacceptable
100 o 50 24 - 6 I:I:egium
_ i _ i I hig
_ 20 - 5 _
80 + 40 4
0 -
Fy 1 16 4
]
-] 60 30 . .
“6 e
o - i 12 L 3
[=)]
£ _ ]
S 40 20 B
S 8 2
o . 4
20 | | 104 H . ;
0 N | | G N N T N |y o 1 H El s

0 A o4 0 R
T47 T4 T40 T53 T50 T29 T37 T32 T46 T54 T35 T39 T30
Targets

Fig 3. Enrichment of acceptable or better structures. For each of the 13 targets with acceptable or better
decoys, two columns (from left to right) show the CAPRI Score_set and the top 100 in our rank of binding free
energy calculation. Red, orange and yellow represent the fractions of high, medium and acceptable quality
structures, respectively, of the number of the selected docking decoys. The ordering of the targets is based
on the fraction of acceptable or better structures in each target; easy targets with a high fraction are on the
left, hard targets with low fraction on the right. Note that for improved readability, the vertical scale decreases
from left to right.

doi:10.1371/journal.pone.0155251.g003

top 100 selections, respectively. The targets in Fig 3 are ordered on the fraction of acceptable or
better structures in the CAPRI Score_set, which should correspond to the level of difficulty in
docking prediction [26][27] (note that for clarity the y axis scale decreases from left to right).
For almost all of the Targets that include near-native binding orientations in the Score_set,
CLUB-MARTINI can retain at least acceptable quality structures in the top 100 selection, with
two exceptions, target 29 and target 35, which will be discussed below in section 3.5 Future
Improvements. Moreover, for most of the targets, our method enriches the percentage of near-
native structures (high in red, medium in orange and acceptable in yellow in Fig 3), except for
targets 29, 32 and 35. For target 47, which is an easy docking problem, our complete top 100
selection is of at least acceptable and by far most are of high quality. In addition, for targets
which have high quality models in the data set (T47, T41, T40, T29), our approach always
enriches that fraction, with the single exception of target 29 which has only 2 high quality con-
formations in 2083 structures to begin with. It turned out that the small random variations in
the single replicate AG% caused these to be lost during the first ranking. From these results,
we can conclude that CLUB-MARTINI is able to enrich near-native binding modes at any dif-
ficulty level.

For Target 36 and Target 38 (the hardest docking problems), there are no acceptable confor-
mations in the data set, i.e., they are all ‘incorrect’. To also illustrate our prediction performance
here, we compare our method based on the native interface contacts using average Recall (f,,,)
and Precision (1-f,,5,.q:) as defined in Score_set [13]. This measure is similar to using the frac-
tion of predicted binding residues [28], but the fraction of native contacts is more sensitive to
the interface quality. Fig 4 shows the comparison among Score_set, our top_half, top_100 and
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Fig 4. Enrichment of native-contacts between Score_set and our method. Four bars for each target
represent the Recall in Score_set, Top_half, Top_100 and Top_10, respectively (left to right). For most of the
Targets, Top_10 obtains the best Recall. The ordering of the targets is the same as in Fig 3. (hardest on the
right). Note that for improved readability, the vertical scale decreases from left to right.

doi:10.1371/journal.pone.0155251.9g004

top_10 for all targets. The fact that the Recall increases from Score_set, top_half, to top_100 for
most targets shows that our method is able to enrich the interface native-contact. For the two
most difficult targets (T36, T38), containing only incorrect models, we do obtain structures
with native binding contacts, and in particular we obtain a significant enrichment for Target 38
(Precision follows the same trend as Recall, as can be seen in S3 Fig).

3.3 Selecting near-native structures in our top ranked solutions

Table 1 summarizes the quality of structures selected in the Top 1, 5, 10 and 20 for multiple tar-
gets. For the top 1, we can select one high quality structure for Target 47, and one acceptable
for Target 53 (2 targets out of 13). In the Top 5, we can select acceptable or better ones for two
additional targets (4/13) and again one more (5/13) in the Top 10 and six targets (6/13) in the
Top 20. This indicates that our method is quite able to enrich native binding modes for almost
half the targets. CLUB-MARTINI is indeed capable of obtaining favourable candidates within
a reasonably small selection, which shows its potential to be directly used to limit the range of
putatively correct binding solutions that may aid other expensive experiments, such as for
example in drug design. Furthermore, such a selection of candidates is small enough to be sub-
jected to visual inspection, which may further help to pinpoint the solutions of highest rele-
vance. In practice, when investigating how two proteins interact with each other, we envision
an approach in which one first generates a set of docking solutions using several cheap docking
approaches, and then our CLUB-MARTINI can be employed to rank the docking orientations
and find the most relevant binding poses.

3.4 Comparison between CLUB-MARTINI and other scoring methods in
CAPRI

We also compare our method with the overall performance of other scorers participating in
the CAPRI scoring rounds [29], [27, 30]. Each ‘scorer’ ranked and submitted up to 10 selec-
tions from an anonymized set of docked conformations uploaded by ‘predictors’. The Score_set
in this paper is identical to an anonymized set, with the exception of a few structures removed
in the construction of Score_set based on additional tests (for example, minimum sequence
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Table 1. Success selections of top ranked structures.

Selection Target

TOP 1 T47
T53
TOP 5 T47
T41
T53
T37
TOP 10 T47
T4
53
T37
T50
TOP 20 T47
T41
53
T37
T50
T40

Quality Total (%)

I
Q
=

Medium Acceptable

100
100
100
80
60
40
100
80
60
30
10
100
3 85
60
30
15
15

- O O OO - O 0O 0O O NOOO WwOoO —
N O A WA OO W= = WNOONDNO O
O W N O =+ O =+ O 0l N O O WwSH»O = O

The table is derived from 5-replicate MD simulation for all targets, except Target 37 where only one replicate simulation was available due to limits on

computational resources.

doi:10.1371/journal.pone.0155251.t001

coverage of 70%)[13]. Note that, ‘scorers’ are allowed to modify the selected structures, so
sometimes what scorers submit is of better quality than what they initially selected. In the cur-
rent work, we did not attempt such improvements, although the simulation based method on
principle could support that.

Fig 5 shows the comparison between the percentage of acceptable or better models in our
top 10 and top 100 selections and the overall selection of ‘scorers’ in CAPRI. Our top 100 is

B CLUB_MARTINI top 10
— Gm [ CLUB_MARTINI top 100
[ Capri Scorers

80 4 [ 8

60 - 6 -

40 4

20 |_H Iﬂz

MR I o
T40 T53 T50 T29 T37

T T
T47 T41 T32 T46 T54 T35 T39 T30

Percentage of decoys acceptable or better

Targets

Fig 5. Comparison with overall performance of ‘scorers’ in CAPRI experiments. There are three bars for
each target: red for CLUB-MARTINI Top_10, orange for CLUB-MARTINI Top_100 and yellow for CAPRI
‘Scorers’. We consider our Top_100 performance significantly better for five targets: T41, T53, T54, T39 and
T30 (higher than 1.5 fold relative to CAPRI Scorers); and similar for four more: T47, T40, T37 and T46 (0.67 to
1.5 fold). The ordering of the targets is the same as in Fig 3 (hardest on the right).

doi:10.1371/journal.pone.0155251.g005

PLOS ONE | DOI:10.1371/journal.pone.0155251 May 11,2016 9/14



@’PLOS ‘ ONE

CLUB-MARTINI: A Coarse-Grained Simulation Approach to Scoring Docking Decoys

Table 2. Comparison of top 10 selections between CLUB_MARTINI and state of art docking scoring functions.

Groups T47
Bates 10/10**
Bonvin 10/9% **/1**
Elber

Fernandez-Recio 10/4***[6**
Wang 2/2%**
Weng 9/6***/3**
Zou 10/10* **
CLUB_MARTINI 10/7***/3*%*

T46 T50 T53 T29 T35 T37 T40 T41 Total
2% 2% 1/1%* 4/2%* 6/1*** 10/9%** 4* 8
2% 2% 8/3** 9/5* * 2/1%* 10/2%** 10* 8
1* 2% 5/1%* 8/3*** 1* 5
6/1%* 4/1%* 5/1*** 0 3/2%* 5
7/6** 5/1%* 1* 6/4%* 8/1*** 7* 7
3* 1* 3/1%* 3/2%* 2/1*** 7/2%** 4* 8
1* 2/1%* 1* 4/2%** 10/2%** 10/2* * * 7
0 1* 6/1%* 0 0 3¥* 0 8/1** 5

The Table lists the number of acceptable or better quality models from different groups. For each group, the number of submitted correct models of each
category are listed: high(***), medium(**), and acceptable (*) are listed. For example, ‘10/7***/3** means that there are 10 acceptable or better quality
binding poses in total, of which 7 structures are with high quality and 3 models are with medium accuracy. Note that all number in the table except our
method are from previous CAPRI paper [26][27].

doi:10.1371/journal.pone.0155251.1002

significantly better for five targets: T41, T53, T54, T39, T30 (5/13) and similar for four more:
T47, T40, T37, T46 (in total 9/13 better or similar). Our top 10 selections obtain similar or
higher fractions acceptable or better for T47, T41, T53, T37 (4 out of 13 targets).

In addition to this overall comparison between our method with the average ‘scorer’ perfor-
mance in CAPRI, we also compared our method with the performance of individual state-of-
the-art ‘scorers’ in the CAPRI rounds. Table 2 shows details of the near-native binding poses
identified by seven best ‘scorers’. Targets without near-native solutions and those for which all
the seven ‘scorers’ did not predict, are not shown in the table. Full details for all targets and
scorers are presented in S1 Table. For most targets for which these ‘best scorers’ give at least
acceptable quality predictions, our method is also able to select near-native binding modes (5/
9). Moreover, we rank 2nd for Target 53, 3rd for Target 47, 3rd for Target 41, 5th for Target 37
and 7th for Target 50. Our method is not able to find the correct binding modes in our top 10
selections for two ‘hard’ targets (Target 46 and Target 35) and two ‘easy’ targets (Target 29 and
Target 40). We will discuss some possible reasons for this in the next section. In conclusion,
our method works well for most targets and even better than the majority of the ‘best’ scoring
functions for some targets.

3.5 Further Improvement

As shown above, CLUB-MARTINI can enrich near-native structures for most targets, even for
‘hard’ ones with no or few high or medium quality decoys. Even for Target 37, we can obtain
strong enrichment even though we only performed a single replicate simulation due to compu-
tational constraints. Nevertheless, our method is unable to obtain high performance for some
targets, notably, Target 29 and Target 35, as reflected by both the enrichment and precision
analysis. Here we will discuss same contributing factors to this low performance for these two
targets. S2 Fig shows that for T29 the average binding free energies of ‘incorrect’ structures are
lower than those of the crystal structure. This explains why our method based on binding free
energies calculation was unable to separate different quality binding poses. There may be sev-
eral reasons for this. First, the CG MARTINI forcefield may not accurately represent the inter-
action for this particular pair of proteins. Second, the quality of the docking conformations for
each target is judged based on the respective crystal structure. However, the crystal structure
may not reflect the functionally relevant binding conformation; or there may be alternate
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binding modes of which the crystal structure only represents single one, while the forcefield
captures another. For example, in Fig 1, some incorrect structures (high I-rms ones) have low
binding free energies; some of these might represent alternative binding modes, and hence
have favourable free energies. This factor may introduce errors into the evaluation of our rank-
ing based on binding free energy calculations. For Target 40, a special situation occurs, that the
crystal structure contains two distinct binding modes. In S2 Fig, we show the binding free
energy for both of them, and we can observe that one has a significantly lower binding free
energy than the other. When ranking decoys for such a target, only binding modes correspond-
ing to the lowest will end up being selected. Without concrete data on alternative binding
modes from a crystal structure, we cannot know if this may be the case as well for other targets.

In this work, we spent 1.1 million CPU hours for all simulations. Although we speed up MD
simulation by using the coarse-grained model, the computational cost clearly is still a limiting
factor for our method. By clustering conformations of similar orientation, either from the
docking or the snapshots from the simulations, we may obtain effectively increased sampling
and save on CPU hours for that particular binding orientation.

We investigated whether better enrichment may be achieved when more replicate simula-
tions are performed. S4 Fig shows the percentage of acceptable or better structures in our top
100 selection for all targets using 1, 2 or 5 replicates. Three bars for each target represent the
enrichment for 1, 2 and 5 replicates from left to right. For most targets, despite the increased
accuracy of AG% as shown above (Fig 2 & S2 Fig), there are no big differences in enrichment
with more replicates, except for T40 and T50 whose enrichment increases more than 5 percent
points. As shown in Fig 2 and S2 Fig, the variance of binding free energy for near-native struc-
tures shrinks with more replicates and gets closer to the ‘real’ structures. This indicates the bind-
ing free energies become more accurate with increased sampling. For targets where the binding
free energy of the crystal structure is unfortunately higher than the incorrect binding poses, for
example target 29, more replicates would not lead to improved enrichment. However, for most
of the targets the interaction free energy of the crystal structure is lower than that of the incor-
rect structures. Therefore, we would expect that using more replicates (e.g., 10 or 20 as in our
original analysis [21]) would further improve the enrichment. This opens up the possibility for
researchers to attain higher precision by investing more CPU resources for selected targets.

Conclusions

Ranking all docking solutions effectively and identifying the native-solutions correctly are the
leading demand of a scoring function. Here, we have shown that calculating binding free ener-
gies from Coarse-grained MD simulations using the MARTINI force-field can be an effective
way to detect favourable interactions amongst many diverse binding orientations. To the best
of our knowledge, this is the first time that interaction free energy from force field simulations
is used as a scoring method to rank docking solutions at a large scale. As an outlook, our
approach, unlike most other docking scoring functions, is closer to the physical reality, which
opens up the possibility to provide an absolute and quantitative description of protein interac-
tions, allowing the prediction of complete interactomes in silico.

Supporting Information

S1 Fig. Distribution of AG®” over all structures vs. interface quality parameter I-rms. Each
dot represents one structure in the Score_set of Targets. The x axis shows the RMSD of back-
bone atoms of interface residues between docking decoys and the crystal structure; the y axis
represents the AG% which describes the binding strength.

(PDF)
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S2 Fig. Distribution of AG®” for structures in different quality categories for all Targets.
(A) Distributions of AG from 1, 2 or 5 replicate MD simulations (left to right). Each set of
NG includes four bars which stand for high, medium, acceptable and incorrect structures
respectively (left to right). (B) Direct comparison of the same quality category for AG% from
1, 2 or 5 replicates. Each quality category contains three bars: distribution from 1, 2 and 5 repli-
cates (left to right). Note that Target 37 includes a JNK-interacting protein JIP4 which contains
a leucine zipper domain (90 A extended long coiled-coil)[25]. It needs huge amount of CPU-
hours even with coarse-grained model and the result is based on only one replicate simulation.
* Target 40 has two native interfaces (between chain AC and BC).

(PDF)

$3 Fig. Comparison of precision of native contacts between Score_set and our method.
Four bars for each target represent precision in Score_set, Top_half, Top_100 and Top_10,
respectively (left to right).

(PDF)

$4 Fig. Comparison of acceptable or better structures in Top 100 selection using one, two
or five replicate simulations. Three bars (left to right) of each target represent top 100 selec-
tion in one, two and five replicate simulations. (The last bars for each targets correspond to the
middle bar in Fig 3.)

(PDF)

S1 Table. The performance of all docking scoring functions participating CAPRI for all 15
Targets in CAPRI Score_set. All docking scoring functions participating the CAPRI competi-
tions for the 15 targets and the number of acceptable or better quality models selected by these
methods are listed. For each group, the number of submitted correct models of each category
are indicated: high accuracy (***), medium accuracy (**), and acceptable (*). Data obtained
from [26] and [27].

(PDF)

S1 File. The PMF calculation results for all 15 targets (S1_File.zip).
(Z1P)
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