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The stochastic dynamics of gene expression is often described by highly abstract models involving only the

key molecular actors DNA, RNA, and protein, neglecting all further details of the transcription and translation

processes. One example of such models is the “gene gate model,” which contains a minimal set of actors and

kinetic parameters, which allows us to describe the regulation of a gene by both repression and activation. Based

on this approach, we formulate a master equation for the case of a single gene regulated by its own product—a

transcription factor—and solve it exactly. The obtained gene product distributions display features of mono- and

bimodality, depending on the choice of parameters. We discuss our model in the perspective of other models in

the literature.
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I. INTRODUCTION

Gene expression is a stochastic but tightly regulated process

[1–3]. From a physics point of view, the transcription of a gene

can be represented in an abstract way as a biochemical network

involving DNA, mRNA, and proteins, while ignoring all details

of the transcription and translation process: polymerase and

ribosome activities, as many other processes, are assumed to

be taken into account by a proper choice of reaction rates.

Then, denoting, e.g., the biomolecular actors as a gene (G),

RNA (R), and proteins (P ), the stochastic dynamics of a gene

is described by the time evolution of the triplet (G,R,P ), in

which G can assume two states only (e.g., on, off), while R,P

are variables with integer ranges of molecule numbers (m,n).

The literature on this general family of models is becoming

increasingly hard to overlook, given the many variants of

possible interactions that can be considered (binding of

transcription factors to promoter sites, dimerization, etc.);

an exemplary and still not exhaustive list is Refs. [4–28].

Obviously, an increase of the number of interactions will

enlarge parameter space and allow for an increasingly rich

stochastic dynamics. The question then arises as to what the

modeling criterion is: as the models are highly reduced to

begin with, (a) what can be considered as essential in them

and (b) according to what criterion?
Undoubtedly, one of the first models addressing stochastic

gene regulation by a master equation approach is the model by

Peccoud and Ycart (in what follows PYM) [4]. One can easily

characterize the complexity of this model by the number of

its variables (3) and parameters (reaction rates, 4). A deficit of

the PYM model is that a gene cannot be regulated: hence there

is, in particular, no feedback interaction of a gene product on

a gene. The “gene gate model” (GGM) we base our work on

here is of the same complexity as the PYM in the above sense,

but it allows for the interaction with transcription factors and

hence in particular for a feedback interaction with its own

product; one may thus consider it as a “minimal” model for a

regulated gene. The GGM was introduced originally in Ref. [5]

and further developed in Refs. [6,7]; it has so far been used for

Gillespie-based simulations of small gene circuits, up to the

level of the repressilator, and its deterministic limit has also

been studied.

In the nomenclature proposed in Ref. [19], in its simplest

version the gene gate model is an example of a “two-state”

model; i.e., it only contains the gene and a single product

variable, which can be interpreted as either an RNA-molecule

or a protein; we here choose to call the output protein for

definiteness. The completion of the model to include both

RNA and protein is trivial and hence ignored here. The main

modeling issue we consider in this paper is the treatment

of the proteins in terms of their feedback interactions with

one isolated gene, i.e., the regulation of a single gene by

its own product, assumed to be a transcription factor, and

the obtention of an exact solution for this model. This is not

a technical feat by itself, as exact solutions have already been

given for more detailed models (but in general, the GGM does

not reduce to one of them). The specific questions we address

and answer here for the self-regulated gene are: what does

such a maximally reduced model produce as output and hence

what will additional interactions modify? The latter point is

addressed by putting our model in the context of some of the

recently discussed other models at the end of the paper. In that

manner we contribute to the discussion of auto-regulation of a

single gene.

II. THE GENE GATE MODEL FOR THE

SELF-REGULATED GENE

We begin by introducing the rate equations of the applica-

tion of the GGM to the self-regulated gene. It comes in two

variants describing an auto-repressed and an auto-activated

gene, respectively. In the repressed case (R), the gene G can

be constitutively transcribing at a rate ε,

G →ε G + P , (1)

which is considered the “on” state of the gene. Proteins degrade

at a rate δ,

P →δ 0 . (2)

The feedback of a protein P on the gene can affect gene activity

by putting the gene into its second state. This is described by

the reaction

G + P →r G′ + P. (3)
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FIG. 1. Schematic representation of gene-protein interaction,

making use of a Feynman-graph-like notation. Left, the gene goes

from state G to G′ after “scattering” with a protein P ; right, the gene

“absorbs” the protein, turns from state G to G′, and then returns to

state G while “emitting” a protein.

In the repressed case, the gene state G′ is not productive and

simply relaxes back to G at a rate η,

G′ →η G. (4)

G′ is thus the “off” state of the gene. In the activated case (A),

the gene is productive in state G′ via

G′ →η G + P, (5)

hence, it relaxes back to gene state G while producing protein

P , provided the rate η > ε. Here, G and G′ change roles: G

is now the “off” state (although never fully off) and G′ is the

“on” state. We note that in the case η < ε, the gene is actually

repressed but left with protein production at a finite rate η.

This case (not shown) does not differ qualitatively from the

case (R).

It is worth commenting on reaction Eq. (3), which in

conjunction with Eqs. (4) and (5) is key to the GGM. The

GGM does not have a state of a protein bound to the promoter

(a transcription factor-DNA complex), in contrast to most

(but not all) other models. One can compare the two cases

by alluding to the analogy of the presence of “bound state”

as an “absorbing” state of the gene, while the GGM in this

terminology only has a “scattering” state; see the illustration

in Fig. 1. Here, the gene “propagates” in time in state G when at

a time t a protein interacts and puts it instantaneously into state

G′. In the absorbing state, G′ describes a gene “propagating”

with the transcription factor bound to its promoter site. The

neglect of the bound state in the GGM is a crucial simplifying

assumption of the model, made in order to make the model as

minimal as possible and keeping it regulated at the same time.

We stress again that this simple set of reactions with

variables G,G′,P and parameters (ε,δ,r,η) corresponds in

terms of its complexity exactly to the PYM. The major

difference between the two is that a gene in the PYM never

interacts with proteins, and hence reaction Eq. (3) occurs

without P intervening. Further, the reaction Eq. (5) of case

(A) does not apply. The main difference between the GGM

and the PYM lies, in fact, precisely in this reaction Eq. (5), as

it leads in the master equation to state changes involving both

the gene state and protein number at the same time, and this

difference requires us to obtain a (novel) exact solution of the

corresponding master equation of the GGM for the single gene.

III. THE MASTER EQUATION OF THE

SELF-REGULATING GENE AND ITS EXACT

STEADY-STATE SOLUTION

The master equations for the two versions of the GGM are

readily established along the same line as for the PYM. We

denote the basal state of the gene by 0, its second state by

1, and count protein number by n, so that we can introduce

time-dependent probability distributions p i,n(t), with i = 0,1.

In case (R), Eq. (4) applies and the master equations read as

∀n � 0 : ∂tp 1,n = nrp 0,n − ηp 1,n

+ δ[(n + 1)p 1,n+1 − np 1,n]

∂tp 0,0 = ηp 1,0 − εp 0,0 + δp 0,1 (6)

∀n � 1 : ∂tp 0,n = ηp 1,n + εp 0,n−1 − (ε + nr)p0,n

+ δ[(n + 1)p 0,n+1 − np 0,n],

while in case (A), for which Eq. (5) applies, and we have

∂tp 0,0 = −εp 0,0 + δp 0,1

∀n � 1 : ∂tp 0,n = −(ε + nr)p 0,n + εp 0,n−1 + ηp 1,n−1

+ δ[(n + 1)p 0,n+1 − np 0,n]

∀n � 0 : ∂tp 1,n = −ηp 1,n + nrp 0,n

+ δ[(n + 1)p 1,n+1 − np 1,n]. (7)

Introducing the generating functions G0(z,t) =
∑∞

n=0 p 0,n(t)zn and G1(z,t) =
∑∞

n=0 p 1,n(t)zn, the master

equations above are transformed into first-order differential

equations in t and z. For case (R), we have

∂tG0 = ηG1 + ε(z − 1)G0 − (δ(z − 1) + rz)∂zG0
(8)

∂tG1 = −ηG1 − δ(z − 1)∂zG1 + rz∂zG0,

while in case (A), we have

∂tG0 = ηzG1 + ε(z − 1)G0 − (δ(z − 1) + rz)∂zG0
(9)

∂tG1 = −ηG1 − δ(z − 1)∂zG1 + rz∂zG0.

At this point it is instructive to compare the differential

equations for the GGM to those of the PYM. The reaction

Eq. (3), which describes the state change of the gene from G to

G′, is protein-number dependent and leads to a change from a

term ∼rG0 to a term ∼z∂zG0; otherwise, the equations remain

unchanged for case (R). In case (A), the notable difference is

the presence of the term ∼ηzG1 in the equation for G0, which

results from reaction Eq. (5). Note that the corresponding

η-dependent term in the equation for G1 does not depend

on z: the symmetry between the equations is broken.

We begin by solving the equations for case (A). As in

Ref. [24], instead of solving for G0 and G1 separately,

we introduce the total generating function GT = G0 + G1

with straightforward biological interpretation, allowing us

to determine the mean value of the protein number and its

fluctuations.

In case (A), the term (z − 1) can be placed in front in the

equation for GT , i.e.,

∂tGT = (z − 1)[−δ∂zGT + ε(GT − G1) + ηG1]. (10)

Obviously, a system singularity arises at z = 1. The equality

Eq. (10) is trivially satisfied at z = 1, because GT (1,t) = 1 ∀t .

A stationary solution requires ∂tGT (z,t) = 0 ∀z,t . For z �= 1

this implies

−δ∂zGT + εGT + (η − ε)G1 = 0. (11)

Using Eq. (11), we can express G1 and ∂zG1 in terms of

GT (z,t). For the stationary solution, expression Eq. (9) can be
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rewritten in a second-order differential equation

{δ[δ − z(r + δ)]}∂2
z gT (z) + (−δε + δzε + rzη − ηδ)∂zgT (z)

+ηεgT (z) = 0, (12)

with gT (z) ≡ limt→∞ GT (z,t). Substitution of x = δ[δ −

z(r + δ)] in Eq. (12) leads to the familiar Kummer equation,

x
∂2

∂x2
g̃T (x) + (a + bx)

∂

∂x
g̃T (x) + cg̃T (x) = 0. (13)

Here, a = (εr + δη)/(r + δ)2, b = (δε + rη)/[δ2(r + δ)2],

c = ηε/[δ2(r + δ)2], and gT (z) = g̃T (x). Since x = 0 is a

weak singular point of the differential Eq. (13), according

to the method of Frobenius, a power series solution can be

found around the singular point, i.e.,

g̃T (x) = C1

∞
∑

n=0

anx
n + C2x

1−a

∞
∑

n=0

bnx
n. (14)

The substitution of the first term, i.e., the power series
∑∞

n=0 anx
n, into Eq. (13), leads to the KummerM or the

hypergeometric function a01F1(c/b,a; −bx). The second term

corresponds to the KummerU function, which can be discarded

because the probability of n proteins does not tend to zero for

n → ∞. Consequently, the appropriate generating function

gT (z) reads

gT (z) = C ′
11F1{c/b,a; bδ[z(r + δ) − δ]}. (15)

The coefficient C ′
1 is determined by the condition

limz→1 gT (z) = gT (1) = 1 due to the continuity of the hy-

pergeometric function 1F1, so that C ′
1 = 1F1(c/b,a; bδr). The

asymptotic solution in all the parameters equals

gT (z) = 1F1

{

ηε

δε + rη
,
εr + ηδ

(r + δ)2
;

(δε + rη)[z(r + δ) − δ]

δ(r + δ)2

}

/

1F1

{

ηε

δε + rη
,
εr + ηδ

(r + δ)2
;

(δε + rη)r

δ(r + δ)2

}

. (16)

From the total generating function Eqs. (11) and (15), we

can also separately derive the asymptotic solutions g0(z) =

limt→∞ G0(z,t) and g1(z) = limt→∞ G1(z,t). The full expres-

sions of the asymptotic solutions are

g0(z) = C ′
1

[

1F1{c/b,a; bδ[z(r + δ) − δ]}

+
1

η − ε

(

ε1F1{c/b,a; bδ[z(r + δ) − δ]}

− δ2c
r + δ

a
1F1{c/b + 1,a + 1; bδ[z(r + δ) − δ]}

)]

(17)

g1(z) = C ′
1

1

η − ε

(

− ε1F1{c/b,a; bδ[z(r + δ) − δ]}

+ δ2c
r + δ

a
1F1{c/b + 1,a + 1; bδ[z(r + δ) − δ]}

)

.

(18)

The probability for measuring n proteins, p 0,n + p 1,n, is

obtained from (1/n!)∂n
z gT (z = 0). We obtain an analytical

expression for the stationary protein distribution P (n)

P (n) =
1

n!

[

δε + rη

δ(r + δ)

]n
(

ηε

δε+rη

)

n
[

εr+ηδ

(r+δ)2

]

n

×
1F1

[

ηε

δε+rη
+ n,

εr+ηδ

(r+δ)2 + n;
−δ(δε+rη)

δ(r+δ)2

]

1F1

[

ηε

δε+rη
,

εr+ηδ

(r+δ)2 ;
(δε+rη)r

δ(r+δ)2

]

,
(19)

with (·)n being the Pochhammer symbol.

The mean protein number E and its fluctuations V are easily

obtained from the first and second derivative of the generating

function gT (z) with respect to z, evaluated at z = 1. In the

activated case the resulting expressions are given by

E = C ′
1

cδ(r + δ)

a
1F1(c/b + 1,a + 1; bδr) (20)

and

V = C ′
1

c(c/b + 1)bδ2(r + δ)2

a(a + 1)
1F1(c/b + 2,a + 2; bδr)

+C ′
1

cδ(r + δ)

a
1F1(c/b + 1,a + 1; bδr)

−

[

C ′
1

cδ(r + δ)

a
1F1(c/b + 1,a + 1; bδr)

]2

. (21)

In case (R), the set of Eqs. (8) corresponds to the master

equations of the gene model studied before by Hornos et al.
[11,24] when identifying G0 ≡ α, G1 ≡ β, ε ≡ gα , r ≡ h,

δ ≡ k, η ≡ f , and putting gβ = 0. In terms of our terminology,

we can proceed as before and obtain the following asymptotic

solution for gT (z) = g0(z) + g1(z),

gT (z) = 1F1

{

η

δ
,
(ε + η)r + δη

(r + δ)2
;
ε[z(r + δ) − δ]

(r + δ)2

}

/

1F1

{

η

δ
,
(ε + η)r + δη

(r + δ)2
;

εr

(r + δ)2

}

, (22)

from which the probability distribution of the protein number,

mean, and variance can be derived.

Figure 2 shows the resulting characteristic probability

distributions for the activated (A) and the repressed gene (R).

If protein degradation dominates over protein production, the

protein probability is peaked at n = 0 [shown for (A), but

likewise for (R)] (a). An increase of protein production lets

a peak at finite n grow out of the peak at n = 0 (b). At a

sufficiently high protein production, the distribution turns into

a boundary bimodal when tuning down the basal rate (c). To be

more specific, in function of decreasing protein number n, the

distribution curve lowers monotonically in value from the peak

at finite n (due to the sufficiently high protein production rate)

to n = 1, followed by a sudden increase, a jump at n = 0. In the

limit of the basal rate to zero, n = 0 becomes an absorbing state

[23]. Concerning the repressed gene gate model, a boundary

bimodal is generated with a more gradual change in derivative

toward the n = 0 state, i.e., from the peak at finite n, the

probability is first lowered, after which it gradually rises to

n = 0 (d). As a last characteristic probability distribution, a

clear monomodal protein distribution appears with a peak at

finite protein number for (A) if we retain the same parameter
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FIG. 2. The probability distribution P (n). Models and parameters

from (a) to (e): (a) (A), ε = 0.01; η = 0.1; r = 1.0; δ = 0.1; (b) (A),

ε = 0.01; η = 0.1; r = 1.0; δ = 0.04; (c) (A), ε = 0.0001; η = 30;

r = 1; δ = 0.5; (d) (R), ε = 10; η = 0.1; r = 0.005; δ = 1; (e) (A),

ε = 0.01; η = 0.1; r = 1.0; δ = 0.008.

values as in (b) but lower the degradation rate even further

(e). Our analytical results of the gene gate models predict

accurately the results of the stochastic dynamics simulations

of these simple gates. For the parameters r = 1, ε = 0.01,

η = 0.1, and δ = 0.001, our Eq. (19) reduces approximately

to a Poisson distribution,

P (n) ≈
λn

n!
e−λ, (23)

with a mean λ = (δε + rη)/[δ(r + δ)] ≈ 99 proteins in

steady-state, in accordance with the simulations for the auto-

activated gene gate [5].

IV. THE TIME-DEPENDENT PROBLEM

In this section, we show, for completeness, that the master

equation of the gene gate model of the self-regulated gene

can be solved also in the time-dependent case, for both the

activated and repressed gene, using the approach developed in

Ref. [24].

Activated case. The time-dependent equations for the

generating function G0(z,t) and G1(z,t) are

∂

∂t
G0(z,t) = ε(z − 1)G0(z,t) + δ(1 − z)

∂

∂z
G0(z,t)

− rz
∂

∂z
G0(z,t) + ηzG1(z,t) (24)

∂

∂t
G1(z,t) = δ(1 − z)

∂

∂z
G1(z,t)

+ rz
∂

∂z
G0(z,t) − ηG1(z,t). (25)

Summing up Eqs. (24) and (25) yields

1

z − 1

∂GT (z,t)

∂t
= −δ

GT (z,t)

∂z
+ εGT (z,t)

+ (η − ε)G1(z,t). (26)

Consequently, we can express G1(z,t) in terms of the to-

tal generating function GT (z,t) = G0(z,t) + G1(z,t), which,

after substitution in Eq. (25), transforms the latter into a

second-order partial differential equation for GT (z,t), i.e.,

∂2GT (z,t)

∂t2
= [δ(δ + r)(z − 1)2 + rδ(z − 1)]

∂2GT (z,t)

∂z2

+ [(2δ + r)(z − 1) + r]
∂2GT (z,t)

∂t∂z

+ [−ε(z − 1) −
r

z − 1
− r + η − δ]

∂GT (z,t)

∂t

+ [−(δε + ηr)(z − 1)2 + η(1 − r)δ(z − 1)]

×
∂GT (z,t)

∂z
− ηε(z − 1)GT (z,t). (27)

The substitution of the variables ν = [z(δ + r) − δ]/r and

µ = νe−(δ+r)t makes Eq. (27) separable in these variables.

This substitution brings the singularities at z = δ/(δ + r) and

z = 1 to ν = 0 and ν = 1, respectively. The new form of the

partial equation in terms of these variables is

[

∂2

∂ν2
+ µPa

∂2

∂ν∂µ
+ µQa

∂

∂µ
+ Ra

∂

∂ν
+ Sa

]

GT (µ,ν) = 0

(28)
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The coefficients Pa , Qa , Ra , and Sa are given by

Pa =
1

ν
−

δ + r

(ν − 1)δ
, (29)

Ra =
−r2η

(δ + r)2δ
+

−εr

(δ + r)2
+

εr + δη

ν(δ + r)2
, (30)

Qa =
δη + εr − r2 − δ2 − 2δr

ν2(δ + r)2

+
δ2η + 2δηr + r2ε

ν(δ + r)2δ
−

η

(ν − 1)δ
+

δ + r

(ν − 1)2δ
, (31)

Sa =
−rεη

(δ + r)2νδ
. (32)

Now we search for special solutions of the type µλHλ(ν), with

λ the separation constant. The equation for the function Hλ(ν)

corresponds to a confluent Heun equation in most general

form,

[

∂2

∂ν2
+ (Ra + λPa)

∂

∂ν
+ Sa + λQa

]

Hλ(ν) = 0. (33)

This differential equation is easily manipulated by using the

symbolic computational software package Maple. The general

solution for the time-dependent total generating function

G(z,t) is given by

(ν − 1)ecaν

[

∞
∑

j=0

C1
j e

−jδtHC

(

ca,θ
1
a ,1 − j,δ1

a,η
1
a,ν

)

+

∞
∑

j=0

C2
j ν

j+1e−(δ+r)(j+ba )tHC

(

ca,j + 1,σ 2
a ,δ2

a,η
2
a,ν

)

]

.

(34)

Here, HC is the confluent Heun function according to the

definition of Maple, ν = [z(δ + r) − δ]/r as already men-

tioned, and j is an integer running from zero to infinity. The

explanations of the symbols in terms of the model parameters

are shown in Appendix. The coefficients C1
j and C2

j depend on

the initial conditions. We use a similar notation as in Ref. [24],

in order to be able to compare the two results easily.

The j = 0 term of the first series of confluent Heun

functions is independent of the time t , reduces to the

confluent hypergeometric function 1F1, and corresponds to

the asymptotic solution in our paper. The remaining terms are

exponentially decaying functions of time, which reflect the

transient behavior of the system. It is interesting to note that for

the activated gene gate, the gene switching time 1/[ba(δ + r)]

is small with respect to the protein degradation time 1/δ, so that

a monomodal behavior would be expected. However, because

in the limit of vanishing basal production rate ε, n = 0 becomes

an absorbing state and hence a boundary bimodal is found. In

the repressed case, the gene switching time is large with respect

to the degradation time, and a “proper” boundary bimodal is

found. The gene switching and protein degradation rates for

our cases are shown in Table I.

Repressed case. The self-repressed gene coincides with the

analysis of Ref. [24] with no output in the repressed state

(χ = 0 in Ref. [24]). The time-dependent equations for the

TABLE I. The protein degradation rate and gene switching rate

for the five cases described in the legends of Figs. 2(a)–2(e). The

formula for ba is found in the Appendix; note that in the repressed

case, b applies instead of ba .

(1) (2) (3) (4) (5)

δ 0.1 0.04 0.5 1 0.008

ba(δ + r) 0.018 0.013 10 0.15 0.011

generating function G0(z,t) and G1(z,t) are

∂

∂t
G0(z,t) = ε(z − 1)G0(z,t) + δ(1 − z)

∂

∂z
G0(z,t)

− rz
∂

∂z
G0(z,t) + ηG1(z,t), (35)

∂

∂t
G1(z,t) = δ(1 − z)

∂

∂z
G1(z,t) + rz

∂

∂z
G0(z,t)

− ηG1(z,t). (36)

Summing up Eqs. (35) and (36) yields

1

z − 1

∂GT (z,t)

∂t
= εG0(z,t) − δ

∂GT (z,t)

∂z
. (37)

We are then able to express G0(z,t) in terms of the to-

tal generating function GT (z,t) = G0(z,t) + G1(z,t), which,

after substitution in Eq. (35), transforms the latter into a

second-order partial differential equation for GT (z,t); i.e.,

∂2GT (z,t)

∂t2
= [δ2(z − 1)2 + rδ(z − 1)2 + rδ(z − 1)]

∂2GT (z,t)

∂z2

+ [(2δ + r)(z − 1) + r]
∂2GT (z,t)

∂t∂z

+

[

− ε(z − 1) −
r

z − 1
− r + η − δ

]

∂GT (z,t)

∂t

+ [−δε(z − 1)2 + ηδ(z − 1)]
∂GT (z,t)

∂z

− ηε(z − 1)GT (z,t), (38)

P =
1

ν
−

ρ + r

(ν − 1)δ
, (39)

R =
−εr

(δ + r)2
+

δη + εr + rη

ν(r + δ)2
, (40)

Q =
(δ + r)

(ν − 1)2δ
+

δη + εr − r2 − δ2 − 2δr + rη

ν2(δ + r)2

−
η

(ν − 1)δ
+

δ2η + 2δηr + r2η + r2ε

ν(δ + r)2δ
, (41)

S =
−rεη

(δ + r)2νδ
. (42)

After similar computations, as in the activated case, we obtain

the general time-dependent solution for G(z,t), i.e., a product

of the term (ν − 1)eεr(ν−1)/(δ+r)2

with two families of confluent
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Heun functions:
[

∞
∑

j=0

C1
j e

−jδtHC(c,θ1,1 − j,δ1,η1,ν)

+

∞
∑

j=0

C2
j ν

j+1e−(δ+r)(j+b)tHC(c,j + 1,σ 2,δ2,η2,ν)

]

. (43)

This form is identical to the model of Ref. [24]. For the

definition of the symbols, we refer to Appendix.

V. DISCUSSION

It is worth putting our findings in the context of other, more

complex models; obviously, we cannot do so for all models

in the literature (e.g., those cited above), and therefore choose

three representatives: (a) the model discussed by Karmakar

[22]; (b) the models discussed by Hornos et al. [11], Schultz

et al. [17], and Grima et al. [27], the latter of which critisizes

Ref. [11]; (c) the model by Friedman et al. [13].

(a) The model by Karmakar [22] considers a gene switching

between three states (activated, basal, and repressed) without

interactions mediated by the gene product. Mathematically it

thus corresponds to an extension of the PYM [4], with four

variables (three gene states, the protein) and six reaction rates.

While the Peccoud-Ycart model generates only monomodal

protein distributions, the extra state introduces the necessary

variability to exclusively generate boundary bimodals. The

model is clearly more complex than the GGM, as it uses more

variables and parameters. An auto-regulated stochastic model,

however, displays always a bimodal protein distribution under

proper circumstances [19].

(b) The model by Hornos et al. [11] and Schultz et al. [17],

e.g., go beyond the GGM by considering additional transitions

between the model states and, in particular, allow for the

presence of bound proteins. As can been easily checked from

the Hornos et al. model [11], with five parameters in the

repressed case, two conditions are generally required in the

region where degradation does not dominate in order to obtain

two distinct maxima at finite protein numbers. First, the rate

from the repressed state to the normal state must be high

enough in relation to the reverse rate, so that a depopulation

from the low-state peak realizes a second maximum at a

higher protein number. A second requirement corresponds

to a nonzero production rate in the repressed state. A zero

production rate (a reduction of one model parameter) in the

repressed state leads to a boundary bimodal, as in our case.

Our model of the self-repressed gene gate, in fact, reduces

to the model of Ref. [11] when the repressed gene has no

output. The self-activated GGM produces at most boundary

bimodality when, at a sufficiently high production rate, the

basal rate is strongly reduced. In the limit of a zero basal

rate, the n = 0 state becomes an adsorbing state [23]. If more

interaction parameters are included, like in Refs. [11,17,27],

a bimodal with two distinct peaks can be generated. An

interesting remark is that the nature of boundary bimodality in

the self-activated case model originates from an absorbing state

and not from a slow gene switching time as in the repressed

case. Moreover, as explained above, in the self-activated case

we see a sudden jump from the n = 1 to the n = 0 state, while

in the self-repressed case a more gradual increase toward the

n = 0 state is found.

(c) The model of Friedman et al. goes beyond the master

equation approach in two ways, such that a simple counting

of variables and parameters is not useful anymore. Friedman

et al. introduce a continuous master equation in which the

autoregulation of the gene is modeled by a response function

c(x) and a burst size distribution ν(x) [13]. The response

function c(x) in the Friedman model replaces the protein-

dependent feedback in our activated gene gate model. But,

in our model and in most simple Markovian models (i.e.,

without added distributions), there is only one specific rate

from the n to the n + 1 protein state, while an exponential

burst size distribution includes transitions from n to n + 1, n +

2, . . . with all different weighting numbers. Consequently,

although the Friedman model seems a very simple model

too, the employed exponential burst size distribution includes

an infinite number of parameters in the continuous master

equation compared to the gene gate model for a self-regulating

gene. Further, if the response function is characterized by a Hill

coefficient H < 0, values smaller than −1 corresponding to

cooperative effects need to be chosen in order to obtain proper

bimodality rather than boundary bimodality in this model.

In conclusion, we believe that the issue of the physical

soundness of the class of “abstract” models for gene ex-

pression (notably those based on master equations) is, to

a considerable extent, interpretation-dependent. This whole

model class needs to be taken as a highly abstract description,

which on every level of detail included has “unphysical”

(or, maybe more specifically, nonbiological) features. In

the end, in order to describe the qualitative behavior of a

gene circuit, what counts more than the level of descriptive

detail that is included in the model are the characteristic

features of the probability distribution it can generate. One

might consider it in fact useful to classify all models into

five categories according to the distributions they generate:

“bimodal” (two distinct peaks), “boundary bimodal” (two

peaks with a peak at zero protein number), “monomodal” (one

peak), and finally “monotonically decaying” (monotonically

decaying distribution as function of increasing protein number

n). Our minimal transcriptional regulation model Ð has the

least number of variables (3) and parameters (4 rate constants)

and is the only auto-activating model that produces a boundary

bimodal with a discrete jump from the n = 1 to n = 0 state.

Adding one more parameter, like the Schultz and Hornos

model, generates a proper bimodal with two lobes. For the

time-independent problem, the stationary probability protein

distribution, as well as the mean and its fluctuations, can

be expressed in the confluent hypergeometric function. The

time-dependent problem is also completely integrable in terms

of the well-known confluent Heun functions. The gene gate

model, as a minimal transcriptional model for a regulating

gene, serves, therefore, as a basic theory to build more complex

systems and gives insight into what the additional interactions

modify.
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APPENDIX: THE PARAMETERS OF THE CONFLUENT

HEUN EQUATION

Activated case. In order to simplify notation, we use similar

auxiliary expressions as in Ref. [24]:

aa =
η

δ
, ba =

η

δ + r
+

εr − ηr

(δ + r)2
.

The Heun parameters are

ca =
r(ηr + δε)

(δ + r)2δ
, θ1

a = ba − 1 − j
δ

δ + r

δ1
a = −

ca

2

(

2aa − ba − j
r

δ + r

)

+
aar

2

(δ + r)2
(aa − j )

η1
a =

1

2

[

1 − ba(ca + j ) + 2aaca + j (ca + j )
δ

δ + r

]

−
aar

2

(δ + r)2

(

aa +
δ

r
j

)

σ 2
a = 1 − (ba + j )

δ + r

δ

δ2
a =

ca

2

[

ba − 2aa + (ba + j )
r

δ

]

+ aa

[

−
r

δ
ca + aa

r

δ

r2

(r + δ)2
+ ca

r

r + δ
−

r2

δ(δ + r)
j

]

η2
a =

1

2

[

1 + (2aa + j )ca + j (ba + j )
δ + r

δ

]

− caaa

r

δ + r
− a2

a

(r2δ + δ2r)

(δ + r)3

Repressed case. The model parameters for the negative gene

gate are shown below. The auxiliary expressions are

a =
η

δ
, b =

η

δ + r
+

εr

(δ + r)2
.

The Heun parameters are

c =
rε

(δ + r)2
, θ1 = b − 1 − j

δ

δ + r

δ1 = −
ca

2

(

2a − b − j
r

δ + r

)

η1 =
1

2

[

1 − b(c + j ) + 2ac + j (c + j )
δ

δ + r

]

σ 2 = 1 − (b + j )
δ + r

δ
, δ2 =

c

2

[

b − 2a + (b + j )
r

δ

]

η2 =
1

2

[

1 + (2a + j )c + j (b + j )
δ + r

δ

]

[1] M. Delbrück, J. Chem. Phys. 8, 120 (1940).

[2] M. Thattai and A. van Oudenaarden, Proc. Natl. Acad. Sci. USA

98, 8614 (2001).

[3] W. J. Blake, C. R. Cantor, and J. J. Collins, Nature (London)

422, 633 (2003).

[4] J. Peccoud and B. Ycart, Theor. Popul. Biol. 48, 222 (1995).

[5] R. Blossey, L. Cardelli, and A. Phillips, T. Comp. Sys. Biol. IV

3939, 99 (2006).

[6] R. Blossey, L. Cardelli, and A. Philips, HFSP J. 2, 17 (2008).

[7] R. Blossey and C. V. Giuraniuc, Phys. Rev. E 78, 031909

(2008).

[8] T. B. Kepler and T. C. Elston, Biophys. J. 81, 3116 (2001).

[9] R. Metzler and P. G. Wolynes, Chem. Phys. 284, 469 (2002).

[10] R. Bundschuh, F. Hayot, and C. Jayaprakash, Biophys. J. 84,

1606 (2003).

[11] J. E. M. Hornos, D. Schultz, G. C. P. Innocentini, J. Wang, A. M.

Walczak, J. N. Onuchic, and P. G. Wolynes, Phys. Rev. E 72,

051907 (2005).

[12] J. Paulsson, Phys. Life Rev. 2, 157 (2005).

[13] N. Friedman, L. Cai, and X. S. Xie, Phys. Rev. Lett. 97, 168302

(2006).

[14] G. C. P. Innocenti and J. E. M. Hornos, J. Math. Biol. 55, 413

(2007).

[15] T. Fournier, J. P. Gabriel, C. Mazza, J. Pasquier, J. L. Galbete,

and N. Mermod, Bioinformatics 23, 3185 (2007).

[16] R. Karmakar and I. Bose, Phys. Biol. 4, 29 (2007).

[17] D. Schultz, J. N. Onuchic, and P. G. Wolynes, J. Chem. Phys.

126, 245102 (2007).

[18] P. Paszek, Bull. Math. Biol. 69, 1567 (2007).

[19] V. Shahrezaei and P. S. Swain, Proc. Natl. Acad. Sci. USA 105,

17256 (2008).

[20] S. Iyer-Biswas, F. Hayot, and C. Jayaprakash, Phys. Rev. E 79,

031911 (2009).

[21] T. L. To and N. Maheshri, Science 327, 1142 (2010).

[22] R. Karmakar, Phys. Rev. E 81, 021905 (2010).

[23] R. Hermsen, D. W. Erickson, and T. Hwa, PLoS Comp. Biol. 7,

e1002265 (2011).

[24] A. F. Ramos, G. C. P. lnnocentini, and J. E. M. Hornos, Phys.

Rev. E 83, 062902 (2011).

[25] J. Ohkubo, Phys. Rev. E 83, 041915 (2011).

[26] P. Bokes, J. R. King, A. T. A. Wood, and M. Loose, J. Math.

Biol. 64, 829 (2012).

[27] R. Grima, D. R. Schmidt, and T. J. Newman, J. Chem. Phys.

137, 035104 (2012).

[28] G. Tkacik, A. M. Walczak, and W. Bialek, Phys. Rev. E 85,

041903 (2012).

042705-7

http://dx.doi.org/10.1063/1.1750549
http://dx.doi.org/10.1073/pnas.151588598
http://dx.doi.org/10.1073/pnas.151588598
http://dx.doi.org/10.1038/nature01546
http://dx.doi.org/10.1038/nature01546
http://dx.doi.org/10.1006/tpbi.1995.1027
http://dx.doi.org/10.1007/11732488_10
http://dx.doi.org/10.1007/11732488_10
http://dx.doi.org/10.2976/1.2804749
http://dx.doi.org/10.1103/PhysRevE.78.031909
http://dx.doi.org/10.1103/PhysRevE.78.031909
http://dx.doi.org/10.1016/S0006-3495(01)75949-8
http://dx.doi.org/10.1016/S0301-0104(02)00674-2
http://dx.doi.org/10.1016/S0006-3495(03)74970-4
http://dx.doi.org/10.1016/S0006-3495(03)74970-4
http://dx.doi.org/10.1103/PhysRevE.72.051907
http://dx.doi.org/10.1103/PhysRevE.72.051907
http://dx.doi.org/10.1016/j.plrev.2005.03.003
http://dx.doi.org/10.1103/PhysRevLett.97.168302
http://dx.doi.org/10.1103/PhysRevLett.97.168302
http://dx.doi.org/10.1007/s00285-007-0090-x
http://dx.doi.org/10.1007/s00285-007-0090-x
http://dx.doi.org/10.1093/bioinformatics/btm490
http://dx.doi.org/10.1088/1478-3975/4/1/004
http://dx.doi.org/10.1063/1.2741544
http://dx.doi.org/10.1063/1.2741544
http://dx.doi.org/10.1007/s11538-006-9176-7
http://dx.doi.org/10.1073/pnas.0803850105
http://dx.doi.org/10.1073/pnas.0803850105
http://dx.doi.org/10.1103/PhysRevE.79.031911
http://dx.doi.org/10.1103/PhysRevE.79.031911
http://dx.doi.org/10.1126/science.1178962
http://dx.doi.org/10.1103/PhysRevE.81.021905
http://dx.doi.org/10.1371/journal.pcbi.1002265
http://dx.doi.org/10.1371/journal.pcbi.1002265
http://dx.doi.org/10.1103/PhysRevE.83.062902
http://dx.doi.org/10.1103/PhysRevE.83.062902
http://dx.doi.org/10.1103/PhysRevE.83.041915
http://dx.doi.org/10.1007/s00285-011-0433-5
http://dx.doi.org/10.1007/s00285-011-0433-5
http://dx.doi.org/10.1063/1.4736721
http://dx.doi.org/10.1063/1.4736721
http://dx.doi.org/10.1103/PhysRevE.85.041903
http://dx.doi.org/10.1103/PhysRevE.85.041903

