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Abstract

Correctly scoring protein-protein docking models to single out native-like ones is an open

challenge. It is also an object of assessment in CAPRI (Critical Assessment of PRedicted

Interactions), the community-wide blind docking experiment. We introduced in the field the

first pure consensus method, CONSRANK, which ranks models based on their ability to

match the most conserved contacts in the ensemble they belong to. In CAPRI, scorers are

asked to evaluate a set of available models and select the top ten ones, based on their own

scoring approach. Scorers’ performance is ranked based on the number of targets/inter-

faces for which they could provide at least one correct solution. In such terms, blind testing

in CAPRI Round 30 (a joint prediction round with CASP11) has shown that critical cases

for CONSRANK are represented by targets showing multiple interfaces or for which only a

very small number of correct solutions are available. To address these challenging cases,

CONSRANK has now been modified to include a contact-based clustering of the models

as a preliminary step of the scoring process. We used an agglomerative hierarchical clus-

tering based on the number of common inter-residue contacts within the models. Two crite-

ria, with different thresholds, were explored in the cluster generation, setting either the

number of common contacts or of total clusters. For each clustering approach, after select-

ing the top (most populated) ten clusters, CONSRANK was run on these clusters and the

top-ranked model for each cluster was selected, in the limit of 10 models per target. We

have applied our modified scoring approach, Clust-CONSRANK, to SCORE_SET, a set of

CAPRI scoring models made recently available by CAPRI assessors, and to the subset of

homodimeric targets in CAPRI Round 30 for which CONSRANK failed to include a correct

solution within the ten selected models. Results show that, for the challenging cases, the

clustering step typically enriches the ten top ranked models in native-like solutions. The

best performing clustering approaches we tested indeed lead to more than double the
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number of cases for which at least one correct solution can be included within the top ten

ranked models.

Introduction

The thousands of proteins expressed in cells perform most of their functions through interac-

tions with other proteins [1,2]. Understanding protein-protein interactions and characterizing

them on a structural basis is thus a crucial step in the investigation of many biological pro-

cesses [3,4]. However, experimental structures of protein-protein complexes are still under-

represented [5]. Many more protein complex structures could in principle be predicted by

computational approaches, specifically by macromolecular docking, However, reliably predict-

ing the three-dimensional structure of protein-protein complexes is still challenging, with one

of the critical steps being the scoring, i.e. the ability to discriminate between correct and incor-

rect solutions within a pool of models [6–8].

The CAPRI (Critical Assessment of PRedicted Interactions) experiment [9,10] organizes

blind docking challenges and has been catalyzing the development of computational protein

docking for over a decade [11,12]. Since 2006, a scoring session has been included in the exper-

iment [10,13], allowing the assessment of scoring functions irrespective of the used docking

protocols. Briefly, Dockers may submit a set of 100 models each; the ensemble of models is

then anonymized and made available to Scorers. Scorers are invited to re-rank the models

using their preferred scoring function and to resubmit their own top 10 models. Success is

measured on the number of targets or interfaces for which at least one native-like model—a

model of at least acceptable quality—was submitted.

Traditionally, scoring functions for protein-protein docking poses are energy and/or

knowledge based, therefore they calculate a score for each model per se [14–16]. We intro-

duced in the field CONSRANK, the first pure consensus method [17]. CONSRANK, also avail-

able as a web server [18], ranks models based on their ability to match the most conserved (or

frequent) inter-residue contacts in the ensemble they belong to, thus being the first scoring

algorithm relying on the contacts in the docking decoys ensemble. However, inter-residue

contacts observed in docking poses of protein-protein complexes have been previously used

for different scopes. CAPRI assessors have been using contacts (specifically the fraction of

them which are native, i.e. common to the corresponding experimental structure) as one of

the criteria for assessing the docking predictions correctness, since the first experiment edition

[11]. We have proposed to use contacts as a tool to analyse and compare docking model

ensembles [19] (more recently, we extended the approach to other conformational ensembles

of protein-protein complexes [20–22]); while Bonvin and co-workers introduced them for the

models clustering [23]. In particular, they proposed the use of the fraction of common contacts

within models as a similarity description to base their clustering on. As the native structure of

a complex is not expected to be an isolated event in the energy landscape, docking experiments

indeed often incorporate a clustering step. In this context, Bonvin et al. inspiringly showed

that a contact-based clustering can greatly reduce the computation time while generating clus-

ters of similar quality with the state-of-the art RMSD-based methods [23].

CONSRANK was recently blindly tested in the CASP11/CAPRI30 joint prediction round,

where the prediction of protein complexes was assessed for 25 targets (T68 to T94), consisting

of mostly homodimers, a few homotetramers and two heterodimers. CONSRANK, together

with the Bates’ group, featured the highest number of correct models submitted (136 and 131,
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respectively), having on average 9 over 10 correct models for the successful targets; it also

achieved the overall best result for 6 targets (T75, T84, T87, T89, T90 and T91) and could iden-

tify native-like solutions for 14 targets, for 11 of them of high or medium quality [12]. How-

ever, in spite of the high success rate for selected targets, CONSRANK was ranked 9th overall,

due to failure for the more complicated cases. In comparison, the Bonvin’s group—the first-

ranked scorer group—listed 18 successful targets, 14 of which with high or medium quality

solutions. Apart from the three targets (T68, T77, T88) for which no correct solution was iden-

tified in the ensemble of the experiment, CONSRANK also failed on five other targets, for

which other Scorers could identify few correct solutions. Of these targets, two (T70 and T71)

were predicted homotetramers, which our contact-based approach at present cannot handle.

Three (T72, T79 and T86) were predicted dimers. We would like to stress that the oligomeric

state assignment for some of these targets is ambiguous and mostly unconfirmed; for instance,

T70, assumed tetrameric at the time of the experiment, was finally listed as a dimer in the cor-

responding PDB entry (PDB ID: 4PWU).

In short, critical cases for CONSRANK feature a small or very small number of correct solu-

tions. They typically have multiple putative interfaces, with uncertainties as to their physiologi-

cal relevance. A small fraction of correct solutions in the models ensemble and the presence of

multiple interfaces have in fact already been associated to a decreased CONSRANK perfor-

mance, when applied to other scoring benchmarks, as they represent intrinsic limitations of a

consensus approach [17,24].

To address these challenging cases, CONSRANK has now been modified to include a con-

tact-based clustering of the models as a preliminary step of the scoring process. The clustering

method we used substantially differs from the contact-based one proposed by Bonvin and col-

leagues [23] as it: i) uses the absolute number of different contacts as a distance measure

between pairs of models (resulting in a symmetric rather than an asymmetric similarity

matrix), and ii) relies on a hierarchical clustering algorithm. This novel approach, Clust-CON-

SRANK, has been tested on the above-mentioned three “critical targets” of CAPRI Round 30,

all corresponding to putative homodimers, but also on the set of CAPRI scoring models,

SCORE_SET, made recently available by the CAPRI assessors [25]. The SCORE_SET targets

span a wide time period, going from T29, included in ROUND 13, to T54, in ROUND 26, and

are involved in a variety of biological functions [13,26]. The difficulty of the various targets is

also very variable, and ranges from relatively easy, where the coordinates of at least one com-

ponent were given to predictors in the bound state (such as T29), or high-quality templates

existed (T47), to intermediate, where coordinates of both components were given in their

unbound state (such as T30, T32, T35, T37, T39, T41, T50, T53, T54), and to difficult, where

one or both components were to be modeled by homology (for example T37 and T46). Besides

these, T40 has one component simultaneously bound to two copies of the second protein,

forming two distinct association modes, and designed proteins are also represented (T50).

To score these models, different clustering approaches have been explored and relative

results are discussed comparatively. Scoring results have also been compared to those obtained

by the original CONSRANK algorithm. Obtained results clearly show that the clustering step

allows enhancing the number of targets/interfaces with at least one correct solution identified.

Materials and Methods

Dataset

Thirteen decoy sets for old CAPRI scoring models corresponding to fourteen interfaces and

relative CAPRI classification in incorrect, acceptable, medium and high-quality models, were

downloaded from the SCORE_SET site: http://cb.iri.univ-lille1.fr/Users/lensink/Score_set
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[25]. 3D models for the three CAPRI Round 30 targets (T72, T79 and T86) were also analysed.

A classification in incorrect, acceptable, medium and high-quality models according to the

CAPRI criteria [13] was obtained for all their six interfaces. A total of 20721 3D models were

analysed.

Models renumbering

All the models for a given target/interface were modified to be consistently renumbered, i.e. to

have corresponding amino acids featuring the same number and chain identifier, which is a

fundamental prerequisite for subsequent analyses. To this aim, we used our in-house renum-

bering tool, also available online at https://www.molnac.unisa.it/BioTools/consrank/

renumbering/renumbering.html [18], which first extracts the FASTA sequences from the PDB

files, then uses BLASTclust (ftp://ftp.ncbi.nih.gov/blast/documents/blastclust.html) to cluster-

ize them and aligns sequences within each cluster with ClustalW (http://www.ebi.ac.uk/Tools/

msa/clustalw2/), finally rewrites the PDB files to make the numbering consistent. The

sequence identity and coverage used in BLASTclust were 70% and 0.9, respectively.

Models scoring and selection

For the original CONSRANK function, the whole set of models per each target was submitted

to the CONSRANK code [17] and the 10 top ranked models were selected as predicted posi-

tive. In the clustering approaches (see below), after selecting the 10 top (most populated) clus-

ters, the CONSRANK code was run on models belonging to each cluster and the model top

ranked by CONSRANK for each cluster, for a total of 10 models, was selected. All the complex

3D representations were prepared with PyMol [27]. Contact maps of the X-ray interfaces were

obtained by COCOMAPS [28]. Consensus maps for the model ensembles were obtained by

the CONSRANK server [18].

Clustering

Two residues are considered in contact if they have any pair of heavy atoms within a distance

of 5 Å. Then, a Hamming distance between the models is calculated based on the above

defined contacts. For instance, a Hamming distance of 20 between two models means that

they differ by 20 inter-residue contacts. Therefore, the absolute number of different contacts is

used here as a distance measure between pairs of models, instead of the fraction of common

contacts normalized over the number of contacts of either model, used as a similarity measure

by Bonvin and colleagues [23]. Python libraries ScyPy [29] and fastcluster [30] have been used

in the following steps. Based on the above calculated metric, a distance n(n-1)/2 sized vector,

where n is the number of models, has been obtained by the cluster.pdist function (SciPy

library). Elements of this vector represent the Hamming distances between all pairs of models.

At this point, starting from the above distance vector, we generated linkage matrixes by the

linkage function (fastcluster library), based on two methods: single and complete, both having

a O(n2) time complexity. The ‘single’ method assigns:

dðu; vÞ ¼ minðdistðu½i�; v½j�ÞÞ

for all points i in cluster u and j in cluster v. It is also known as the Nearest Point Algorithm.

The ‘complete’ method instead assigns:

dðu; vÞ ¼ maxðdistðu½i�; v½j�ÞÞ

for all points i in cluster u and j in cluster v. It is also known as the Farthest Point Algorithm.

A Clustering Step in a Consensus Approach for Scoring
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Finally, we performed an agglomerative (bottom-up) hierarchical clustering, by the cluster.

hierarchy.fcluster function (SciPy library), differently from Bonvin and colleagues, who used a

version of the disjoint non-hierarchical Taylor-Butina algorithm adapted to handle asymmet-

ric matrices [23]. Two criterions were used in the clusters generation: Distance and Maxclust.

When the Maxclust criterion is used, the maximum number of flat clusters, t, is set. Maxclust

finds automatically a distance value so that no more than t flat clusters are formed.

For the Distance criterion, different thresholds were tested both with the single and com-

plete methods. Results are reported only for the thresholds shown to increase the number of

targets/interfaces with at least one correct solution within the top 10 selected. These thresholds

were 25 and 30 for the single method (meaning that the closest pair of elements belonging to

different clusters must be farther than a distance of 25 and 30 respectively), and 40, 50, 60 and

80 for the complete method (meaning that the farthest pair of elements belonging to different

clusters must be farther than 40, 50, 60 and 80, respectively).

The Maxclust approach was based on the complete method. Also in this case, different

thresholds were tested. As we got promising results with a fixed number of 200 clusters per tar-

get/interface, that corresponds roughly to 1/5 to 1/10 of the total models available per target/

interface, to make the approach independent of the ensemble size, we also explored the follow-

ing t thresholds: i) 1/5 and ii) 1/10 of the total number of models per target.

We also tested the Maxclust approach, with the same thresholds set above, on the

SCORE_SET targets, using the ligand RMSD values as distance measures. The ligand RMSD

for each pair of models is the root mean square deviation calculated on the backbone atoms

of the ligand (i.e. the smaller interactor) in the two models, after the receptor (i.e. the larger

interactor) backbones have been best superimposed (Tables A-B in S1 File).

The output of the clustering procedure is a list, where every row represents a cluster and

contains indices corresponding to all the 3D models included in it. Clusters are ranked based

on their population. The top (most populated) 10 clusters were selected for further analyses.

Our clustering algorithm was implemented in the Python programming language and is freely

available upon request.

Redundancy removal

A redundancy removal approach was also tested. In particular, after selecting the model top

ranked by CONSRANK, all the models too similar to it (redundant), i.e. within a given dis-

tance threshold, were discarded and the top remaining prediction was selected. The process

was carried on until ten models were selected. As a distance measure between models, we used

again the number of different inter-residue contacts. All the distance thresholds explored in

the clustering step, spanning the range 25 to 80, were tested (Tables C-D in S1 File).

Results and Discussion

To test the performance of Clust-CONSRANK, we applied it to two sets of models used in pre-

vious CAPRI scoring experiments, containing at least one correct solution to be possibly sin-

gled out. The first set is made of 13 targets (and 14 interfaces) from SCORE_SET, a CAPRI

scoring benchmark publicly available at http://cb.iri.univ-lille1.fr/Users/lensink/Score_set

[25]; targets T36 and T39 were discarded because they had no acceptable solution. The second

set consists of the 3 dimeric targets (and 6 interfaces) in the recent CAPRI round 30, for which

our pure consensus scoring function, CONSRANK, failed to identify any correct solution.

Therefore, we considered here a total of 16 targets and 20 interfaces. The average number of

models for target/interface is� 1300, while the percentage of native-like solutions ranges

between 0.15%, for T30, and 57%, for T47 (see Table 1).
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A scheme of the workflow for the CONSRANK and Clust-CONSRANK approaches is

given in Fig 1. For each ensemble of models, we first edited the PDB files to have them consis-

tently renumbered, i.e. with corresponding residues having the same number and chain iden-

tifier. As a second step, we simply ran CONSRANK on them and selected as predicted

positive the top ten ranked solutions. For the Clust-CONSRANK approach, we first applied

to the renumbered models different clustering procedures with various thresholds. The top

ten (most populated) clusters from each approach were selected and CONSRANK was run

on models belonging to these clusters. The CONSRANK top ranked model for each cluster

(for a total of 10 models) was selected as predicted positive. All the clustering approaches

were hierarchical and we used as a measure of the distance between different models the

number of different inter-residue contacts between them. In two clustering approaches, “Sin-

gle” (abbreviated in the following as SN, where N is the threshold) and “Complete” (abbrevi-

ated as CN, where N is the threshold), a threshold was set on the distance between the

models, respectively the minimum distance between the closest points and the maximum dis-

tance between the farthest points in two different clusters. In a third clustering approach,

MaxClust (abbreviated as MCN, where N is the threshold or MC/M, when the threshold is

given by the total number of models divided by M), a threshold was instead set on the maxi-

mum number of allowed clusters.

Table 1. Scoring results for the analysed targets/interfaces.

Target.Interface # models NL %NL H M A I R CONSRANK Clust-CONSRANK

S25 S30 C40 C50 C60 C80 MC200 MC/5 MC/10

T29 2083 144 6.9 2 72 70 1629 310 10/9* 2/2* 2/2* 4/3* 4/2* 4/2* 3/2* 2/1* 2/1* 2/1*

T30 1343 2 0.15 0 0 2 1104 237 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0*

T32 599 15 2.5 0 3 12 557 27 0/0* 0/0* 2/0* 0/0* 0/0* 1/0* 1/0* 2/0* 2/0* 1/0

T35 499 2 0.40 0 0 2 465 32 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0*

T37 1500 78 5.2 8 35 35 1060 362 9/9* 0/0* 0/0* 3/2* 1/1* 0/0* 0/0* 1/1* 1/1* 2/1*

T39 1400 4 0.29 0 3 1 1257 139 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 1/1*

T40.CA 2180 354 16 90 141 123 1531 295 10/10* 2/2* 1/1* 5/4* 6/4* 7/5* 6/4* 1/1* 4/4* 2/2*

T40.CB 2180 134 6.2 86 22 26 1751 295 0/0* 1/1* 1/1* 2/2* 1/1* 1/1* 1/1* 1/1* 1/1* 1/1*

T41 1200 299 25 2 99 198 730 171 10/5* 1/0* 1/0* 3/1* 5/2* 5/2* 4/2* 4/1* 5/2* 3/1*

T46 1699 24 1.4 0 0 24 1297 378 0/0* 0/0* 1/0* 0/0* 0/0* 1/0* 0/0* 1/0* 0/0* 0/0*

T47 1051 600 57 278 301 21 388 63 10/10* 1/1* 1/1* 8/8* 6/6* 4/4* 1/1* 6/6* 8/8* 2/2*

T50 1451 124 8.6 0 35 89 1141 184 0/0* 2/0* 2/1* 0/0* 1/0* 1/1* 2/0* 3/1* 2/0* 2/2*

T53 1400 101 7.2 0 9 92 1090 209 3/0* 1/0* 1/0* 0/0* 1/0* 2/0* 1/0* 1/0* 1/0* 1/0*

T54 1400 19 1.4 0 1 18 1195 185 0/0* 0/0* 0/0* 1/0* 0/0* 0/0* 0/0* 1/0* 0/0* 1/0*

T72.1 914 6 0.66 0 0 6 659 249 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0*

T79.1 999 20 2.0 0 7 13 701 278 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0*

T79.2 999 63 6.3 0 7 56 658 278 0/0* 2/0* 2/0* 3/0* 3/0* 1/0* 2/0* 2/0* 2/0* 1/0*

T79.3 999 2 0.20 0 0 2 719 278 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0* 0/0*

T86.1 1010 30 3.0 0 5 25 942 38 0/0* 1/0* 1/0* 1/0* 1/0* 1/0* 0/0* 0/0* 0/0* 1/0*

T86.2 1010 25 2.5 0 8 17 947 38 0/0* 1/0* 1/0* 2/1* 1/0* 2/1* 1/0* 1/0* 1/0* 1/0*

Columns 1–9: features of analysed targets: H, M, A, I and R indicate the high, medium-quality, acceptable, incorrect and removed models. NL stays for

native-like, that is the sum of H, M and A models. Columns 10–19: results of the scoring with original CONSRANK scoring algorithm and with different

combined Consrank-clustering approaches. In each column the total number of NL/H+M* models per target/interface is reported. “S” stays for Single, “C”

for Complete, with numbers indicating the corresponding thresholds used in the clustering; MC200, MC/5 and MC/10” indicate results of a clustering approach

with a maximum number of clusters fixed to 200 and to 1/5 and 1/10 of the total number of models per target, respectively (see Methods) Positive results are

highlighted in cyan.

doi:10.1371/journal.pone.0166460.t001
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Scoring results with and without the clustering step

Results of original CONSRANK and modified clust-CONSRANK scoring functions are

reported in Tables 1 and 2. We are particularly interested in testing the ability of the clustering

step to enhance the number of targets/interfaces for which at least one correct solution is

included in the top 10 ranked models, as compared to CONSRANK.

Not surprisingly, with the only exception of T50, CONSRANK could identify correct solu-

tions for all the targets featuring more than 5% correct solutions and a single interface. For

these 6 targets, the average number of correct solutions identified was as high as 8.7. It failed,

however, on targets with less than 2.5% correct solutions in the set or on those featuring more

than one interface. In terms of CAPRI assessment, this means having six over 20 interfaces

with at least one correct solution identified, 5 of them with models of medium quality.

An inspection of Tables 1 and 2 clearly shows that all the explored clustering approaches,

with the appropriate thresholds, lead to an increase in the number of targets or interfaces for

which we could identify at least one correct solution, as compared to the original CONSRANK

Fig 1. Schematic representation of the CONSRANK and Clust-CONSRANK workflow.

doi:10.1371/journal.pone.0166460.g001
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approach. The best results for the “Single” approach were achieved with a distance threshold

of 30. The S30 approach indeed allowed doubling the number of interfaces (from 6 to 12) for

which at least one correct solution was identified, as compared to CONSRANK. For the “Com-

plete” approach, the best results were achieved with a threshold of 80. With the C80 approach it

was possible to both double the number of interfaces with at least one correct solution, and to

identify at least one medium or high quality solution for two additional interfaces, as com-

pared to CONSRANK.

The overall best results were however achieved with the third approach, MaxClust, i.e. by

setting the number of clusters themselves instead of the different contacts. We explored dif-

ferent cluster numbers, finding positive results with the number set to 200. The MC200

approach indeed allowed identifying correct solutions for a total of 13 interfaces and high/

medium quality solutions for 7 of them. As 200 clusters corresponds roughly to 10 to 20% of

the total models available per target/interface, to make the approach independent of the

ensemble size we also explored the following thresholds: 1/5 (20%; MC/5) and 1/10 (10%;

MC/10) of the total number of models per target. In particular, the MC/10 approach further

improved the MC200 performance and allowed identifying correct solutions for a total of 14

interfaces and high/medium quality solutions for 8 of them. With this approach, it was possi-

ble to identify correct solutions for all the targets with a percentage of correct solutions

above 2.0% and even for two targets, T39 and T54, featuring only 0.29 and 1.4% correct solu-

tions, respectively. It is worth mentioning that for these two targets no scorer in CAPRI

could single out any correct solution from the same model ensembles at the time [13,26]. It

is also worth pointing out that all the six cases where the MC/10 approach failed are quite

challenging ones. In the corresponding CAPRI scoring experiments, for three of them—T30,

T35 and T79.3–0, 1 and 2 correct solutions overall were identified by the scorer groups. For

the three remaining cases, T46, T72.1 and T79.1 only a handful of scorers could identify in

total a dozen correct models (in the most successful case, T46, 8 scorers identified collectively

15 correct models).

For the sake of comparison, we also tested the most successful clustering approaches,

MC200, MC/5 and MC/10, on the SCORE_SET targets, by using as a distance measure the ligand

RMSD instead of the inter-residue contacts. Results, reported in Tables A-B in S1 File, show

that the number of targets/interfaces for which at least one correct solution could be identified

is the same for the RMSD and the contact-based clustering approaches (with only the RMSD-

based MC200 having one successful target less compared to the contact-based one).

Table 2. Number of interfaces for which at least one acceptable/high-medium quality (*) solution has

been selected by each scoring approach.

Method Total Interfaces with� 1 NL/HM

CONSRANK 6/5*

Clust-CONSRANK

S25 10/4*

S30 12/5*

C40 10/7*

C50 11/6*

C60 12/7*

C80 10/5*

MC200 13/7*

MC/5 11/6*

MC/10 14/8*

doi:10.1371/journal.pone.0166460.t002
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Redundancy removal

We also investigated whether, analogously to the clustering step, a simple redundancy removal

strategy could improve the CONSRANK performance. Starting from the CONSRANK scor-

ing, we thus considered redundant and removed all predictions too similar to the models

already selected, i.e. within a given distance threshold. The distance between a pair of models

was defined as the number of different inter-residue contacts they feature (see Methods). The

whole range of distance thresholds explored in the clustering step, from 25 to 80, was tested.

Results of this analysis are reported in Tables C-D in S1 File and show that the redundancy

removal only slightly increases (from 6 to 8) the number of interfaces for which at least one

correct solution is identified, as compared to CONSRANK, while leaving unaffected the num-

ber of interfaces with at least one medium/high solution identified (depending on the distance

threshold for redundancy it ranges from 4 to 6, versus the 5 identified by CONSRANK).

Details on two scoring cases

In the following, details are given on two scoring cases, T50 and T86, where the clustering, and

in particular the MC/10 approach, significantly improved the scoring results as compared to

CONSRANK. While discussing these cases, we will make use of contact maps and “consensus

maps”. Therefore, it is worth reminding here that an intermolecular contact map is a contact

map where a black dot is present at the cross-over of two residues on two different molecules,

having any pair of heavy atoms closer than a cut-off distance. Consensus maps, that we intro-

duced and used for analyzing and visualizing the interface conservation in structure ensembles

of protein complexes [19–22,31–33], are intermolecular contact maps where inter-residue

contacts are reported on a grey scale. The darker the dot, the more conserved the contact in

the ensemble of analysed models/structures.

T50. The T50 target is a SCORE_SET target corresponding to the de novo designed bind-

ing protein HB36.3 in complex with influenza virus hemagglutinin (HA), cleaved into its two

subunits, HA1, a large globular domain, and HA2, a long, helical domain anchoring the pro-

tein to the membrane (PDB ID: 3R2X, [34]). The HM36.3 protein was successfully designed to

bind a conserved surface patch on the stem of HA (HA2 subunit).

As we have previously discussed [17], having many models pointing to the same false con-

sensus is not the most probable event, as incorrect contacts are usually wrong in a different

way, thus giving destructive interference and indeed we rarely observed this to happen [17,24].

However, this is the case for this target, where hundreds of models point to a false interface,

with HB36.3 binding the HA1 subunit of influenza hamagglutinin (particularly regions around

residues 20, 89 and 120–160). This is quite clear by an inspection of the crystal structure con-

tact map compared to the consensus map obtained from the 1451 scoring models, shown in

Fig 2. This is of course a worst case scenario for a consensus approach and helps to explain

why this was the only target where CONSRANK failed to include any correct solution within

the top 10 ranked models, even though the scoring set included a significant fraction of correct

solutions (8.6%). Models selected by CONSRANK, shown in Fig 2a, indeed point to the wrong

interface, as do also the selected models from the 1st, 2nd, and 9th clusters from the MC/10 clus-

tering approach, containing respectively 523, 168 and 25 models (collectively 716). However,

models selected from other MC/10 clusters do explore other interfaces, with four of them cor-

rectly pointing to the stem region on the HA2 subunit, where the binding of the HB36.3

designed protein is directed, and including two medium quality models, from the 3rd and 6th

clusters (containing 75 and 43 models, respectively).

T86. T86, the polyketide Cyclase from Sinorhizobium meliloti, was predicted to be homo-

dimeric by both PISA and the structure authors (PDB ID: 4UI3). However, it features very
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small subunit interface areas, with the largest one being around 470 Å2. The two largest inter-

faces according to PISA [35] were assessed in CAPRI, named interface 1 and 2. This is one of

the three dimeric CAPRI Round 30 targets for which we were unable to submit any correct

solution for either interface by the classical CONSRANK approach [12].

The MC/10 clustering approach allows instead including within the top 10 ranked models

one acceptable solution for both interfaces. More in detail, near-native solutions for interfaces

2 and 1 were selected from the 3rd and 7th most populated MC/10 clusters, respectively, while

the top ranked solution of the 2nd MC/10 cluster (containing 98 models) was the same top

selected by CONSRANK over the whole ensemble of 1010 models (see Fig 3). Remarkably,

only half of the models in the 3rd MC/10 cluster (25 over 49), and only one third of the models

in the 7th MC/10 cluster (8 over 22) are correct according to the CAPRI criteria (corresponding

to interface 2 and 1, respectively), and they were top ranked by CONSRANK.

We conclude that the success in identifying correct solutions is here clearly the result of a

combination between i) the ability of the MC/10 clustering approach to create enough popu-

lated clusters that are enriched in correct solutions, and ii) the ability of CONSRANK to top

Fig 2. T50 scoring. (a) X-ray structure contact map obtained by COCOMAPS [28] (left) and consensus map from the 1451 available models (right). (b, c)

3D representation of the T50 target experimental structure and of selected models by CONSRANK (b) and by Clust-CONSRANK—MC/10 (c). X-ray

receptor and ligand are colored silver and gold, respectively. Ligands of models selected by CONSRANK are colored deep blue, while incorrect and

correct solutions selected by MC/10 are colored light blue and hot pink, respectively.

doi:10.1371/journal.pone.0166460.g002
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Fig 3. T86 scoring. (a) Consensus map (from the 1010 models) and contact map of the two target assessed interfaces (above) and consensus maps from

the models in the 2nd, 3rd and 7th MC/10 clusters (below). Regions highlighted in the maps correspond to specific models/interfaces. For the color code, see

below. (b, c) 3D representation of the T86 target experimental structure and of selected models by CONSRANK (b) and by Clust-CONSRANK—MC/10 (c).

X-ray receptor is colored in silver, while the ligand at the interface 1 and 2 is colored in gold and copper, respectively. Ligands of models selected by

CONSRANK are colored deep blue, incorrect solutions selected by MC/10 are colored light blue, while correct solutions according to interface 1 and 2 are

colored hot pink and green, respectively.

doi:10.1371/journal.pone.0166460.g003
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rank the correct models even from ensembles of reduced size, provided that they contain a

reasonable fraction of correct solutions [24]. In Fig 3, the contact maps corresponding to the

target interfaces 1 and 2 are shown, in comparison with the consensus maps obtained from

the ensemble of 1010 T86 models and from the models in the 2nd, 3rd and 7th MC/10 clusters.

Corresponding regions in the maps are highlighted in the same color (also common to the

shown related 3D structures). From these maps, it is clear that also incorrect models con-

tained in clusters 3 and 7 point to the correct interface (1 and 2, respectively). This is not sur-

prising, as it has been shown by the CAPRI assessors that about one quarter of the interfaces

in models ranked as incorrect in CAPRI are actually correctly predicted (with these models

contributing 70% of the correct interface predictions overall [36]). The presence in the

ensembles of docking predictions of “incorrect” models featuring correct contacts is in fact

most probably key to the success of the CONSRANK scoring approach, which clearly outper-

forms pure consensus approaches based on RMSD measures, as we have already extensively

discussed [24].

Conclusions

In an attempt to overcome the intrinsic limitations of a pure consensus approach, such as the

classical CONSRANK algorithm, and to increase the number of targets for which at least one

correct solution is included in the top 10 selected models, we have implemented a modified

scoring algorithm, Clust-CONSRANK. In Clust-CONSRANK, CONSRANK is preceded by a

contact-based clustering step. Different clustering procedures and thresholds were explored,

all using a hierarchical approach. The clustering step implemented in Clust_CONSRANK uses

the number of different inter-residue contacts as a measure of the distance between models.

However, as we also show, similar results may be achieved by using the ligand RMSD as a mea-

sure of the models distance, with the same clustering approach.

We applied Clust-CONSRANK to an extended and diverse set of CAPRI scoring model

ensembles, and found the most successful clustering method to be MC/10, i.e. the MaxClust

approach with the number of clusters defined as 1/10 of the total number of models per target.

While all the presented clustering procedures allowed increasing the number of successful

cases, MC/10 more than doubled the number of interfaces with at least one correct solution

identified (from 6 to 14), as compared to the pure CONSRANK approach, and significantly

increased the number of interfaces (from 5 to 8) with at least one medium/high quality solu-

tion singled out. Remarkably, a simple redundancy removal approach cannot instead signifi-

cantly improve the CONSRANK performance in such terms.

The reason for the success of the Clust-CONSRANK approach thus seems to be two-fold.

First, the clustering step enhances the sampling of the conformational space and includes in

the generated clusters few ones enriched in correct contacts. Then, the consensus approach of

CONSRANK, when applied on clusters enriched in correct contacts, is able to top rank correct

solutions as opposed to incorrect ones.

We have shown on different scoring benchmarks [17,24], in the recent CAPRI Round 30

collaboration with CASP11 [12], and in the latest CAPRI Rounds 31–35 (http://www.ebi.ac.

uk/msd-srv/capri/), that our consensus scoring function, CONSRANK, is on par with the per-

formance of state-of-the-art energy- and knowledge-based scoring functions for targets with

well-defined interaction interfaces and sufficiently enriched docking ensembles. We show here

that for the remaining and challenging targets, the introduction of a clustering step prior to the

scoring significantly enhances the likelihood of including native-like solutions in the top 10

ranked complexes.
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