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Liquid-liquid phase separation has emerged as one of the important paradigms in the chemical physics as well
as biophysics of charged macromolecular systems. We elucidate an equilibrium phase separation mechanism
based on charge regulation, i.e., protonation-deprotonation equilibria controlled by pH, in an idealized macroion
system which can serve as a proxy for simple coacervation. First, a low-density density functional calculation
reveals the dominance of two-particle configurations coupled by ion adsorption on neighboring macroions. Then
a binary cell model, solved on the Debye-Hückel as well as the full nonlinear Poisson-Boltzmann level, unveils
the charge symmetry breaking as inducing the phase separation between low- and high-density phases as a
function of pH. These results can be identified as a charge symmetry broken complex coacervation between
chemically identical macroions.

DOI: 10.1103/PhysRevResearch.2.043417

I. INTRODUCTION

The importance of complex coacervation in polymers,
colloids, and particularly proteins that exhibit an associative
liquid-liquid phase separation (LLPS), driven by electro-
static interactions between oppositely charged macroions, has
been recognized for about a century [1,2], though its funda-
mental role in compartmentalization and intracellular phase
transitions in biological systems has been identified only
recently [3]. The electrostatically driven attractions, as al-
ready hypothesized in the early Overbeek-Voorn theory [4],
and later developed within more sophisticated theoretical
frameworks [5], have been shown to result in LLPS, thus
being recognized as the defining feature of complex coacerva-
tion [6]. On the other hand, for like-charged macroions with
monovalent counterions, it is the variation of the solvent con-
ditions, such as temperature, pH, and ionic strength [7], that
modifies the electrostatic repulsion which would otherwise
prevent coacervation, except when countered by the like-
charge attraction mediated by multivalent counterions [8].
Studies of adhesive proteins [9] as well as several pro-
teins involved in some protein aggregation diseases (e.g.,
Alzheimer’s disease and amyotrophic lateral sclerosis) made
it clear, however, that simple coacervation involving only sim-
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ilarly charged macroions can also lead to LLPS, presumably
because of short-range specific interactions of nonelectrostatic
nature [10].

The proper understanding of the mechanisms of oppositely
charged (complex) and similarly charged (simple) coacer-
vations, interesting in the context of functional biomimetic
and adhesive materials of the chemical, pharmaceutical, tex-
tile, and food industries [11], and particularly relevant in the
biophysical milieu, where different facets of protein chem-
istry [12] can lead to coexisting liquidlike states, has been
claimed to be one of the most important problems in the
physical chemistry of the cytoplasm [13].

While experimentally well documented, the dependence of
the associative LLPS on the bathing environment conditions,
such as the solution pH [14], has lacked a comprehensive
theoretical elucidation based on relevant microscopic models.
That these effects are particularly important in protein solu-
tions [12] is clear from the fact that the protein charge is not
fixed, but is a result of the proton-mediated dissociation of
amino-acid (AA) groups at the solvent accessible surface [15],
whose chemical equilibrium then depends on the bathing envi-
ronment parameters such as the solution pH [16]. The physical
basis of the protein charging is consequently understood as
the charge-regulation (CR) mechanism, i.e., an association
and dissociation process that couples the local electrostatic
potential with the local charge, leading to a self-consistent
partitioning of the protein charge states with pronounced ef-
fects also on the properties of other macroions such as weak
polyelectrolyte solution and gel conformational as well as
charge properties (see Ref. [17] for details).

Theoretical analyses of the CR effects in the formation of
macroion condensates, that depend explicitly on the solution
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pH, have been scant. A simple cell model approach was used
to analyze the CR macroions in solution [18], together with
their effective charge [19], and the corresponding phase be-
havior [20]. A thermodynamic minimal model analysis was
proposed to study LLPS in a fixed pH ensemble based on a
set of reactions describing the protonation-deprotonation reac-
tions of the solution macroions, conducive to multiple charge
states [21]. The equilibrium charge state and critical behavior
of CR macroions was studied based on a collective description
of a solution composed of CR macroions and simple salt ions
in the bulk [22]. Within the mean-field approximation it was
found that above a critical concentration of salt, a nontrivial
distribution of coexisting charge states leads to a liquid-liquid
phase separation, similar to the behavior of micellar solutions
close to the critical micelle concentration [23]. Extreme CR,
implying a constant surface potential, was also invoked in
binary suspensions of charged colloids [24], possibly leading
to charge-alternating linear strings.

In what follows, we will present a detailed analysis not
only of the liquid-liquid transition in CR macroion systems,
but also the corresponding spatial charge distribution that is
at its origin. The central idea, as depicted in Fig. 1, stems
from the striking observation [25] that a pair of chemically
identical interacting charge-regulated planar macroions are
not necessarily equally charged and that the electric field at
the midplane of the setup does not necessarily vanish. In
order to provide a firm basis to the intuitive expectations
on the charge symmetry breaking transition for a spherical
macroion system, we present arguments based on a density
functional theory (DFT) as well as on a binary cell model
(BCM). Moreover, we show that the LLPS is based on a sym-
metry breaking transition of the macroion charge distribution,
characterized by a spatially alternating sign of the macroion
charge. In that respect this CR system driving a complex
coacervation behaves not unlike the alternating multilayer
structure of the electrical double layer in ionic liquids [26],
except that here the charge alternation is driven by CR and
not by the presence of different ion species. We identify this
spatial charge layering, stemming from a symmetry broken
charge distribution and leading to phase behavior that exhibits
features of complex coacervation phenomenology, as charge
symmetry broken complex coacervation between chemically
identical macroions.

II. CHARGE-REGULATION MODEL

As shown in Fig. 1(a), consider spherical macroions (e.g.,
proteins, polyelectrolytes, colloids, etc.) of radius R0, whose
surface charge is regulated following a mechanism identical to
the charge-regulation model introduced in [25,27,28], that are
suspended in a univalent salt solution. In short, each macroion
surface contains a fixed number of negative charges and twice
as many neutral sites where adsorption or desorption of pro-
tons can take place.

The surfaces are charge regulated through this adsorption
and desorption, and the fraction η of filled sites on a surface
is a degree of freedom within our model. By construction, η ∈
[0, 1]. If the area per site is a2, then the charge density is given
by σ = e

a2 (η − 1
2 ) with e > 0 being the elementary charge,

so that − 1
2

e
a2 � σ � 1

2
e
a2 . The surface number density 1/a2

FIG. 1. Macromolecular solution (a) and the magnified view
(b) of a small portion of it. Within a binary cell model, each macroion
(indicated by red circles) of radius R0 is surrounded by a cell of radius
R and the interaction between a pair such cell-surrounded spheres is
considered. The electric field ER at the cell boundary is assumed to be
uniform and as it is the case for interacting planar surfaces, the value
of ER depends on the charge states of the neighboring macroions
forming the pair. The two cells of the binary cell model allow
for asymmetric charge configurations (ER �= 0), which are excluded
from the standard symmetric charge (single-cell) cell mode (ER = 0).
In the latter case the binary cell model then reduces to the standard
cell model.

of adsorption sites is related to the number K = 4πR2
0/a2 of

adsorption sites on a single colloidal macroion.
As in Refs. [25,27,28] we base our macroion CR model

on the Frumkin-Fowler-Guggenheim isotherm [29] of the
macroion surface defined with the phenomenological free en-
ergy of a single adsorption site in the units of thermal energy
β = 1/kBT as

β�̂s(η) = −αη − χ

2
η2 + η ln(η) + (1 − η) ln(1 − η).

(1)

The parameters α and χ are phenomenological and de-
scribe the nonelectrostatic part of the proton-macroion and
the proton-proton interactions at the macroion surface. In the
case of (de)protonation reaction, the dependence of α on
the bulk pH is model specific [22], but one can explicitly
identify α = (pK-pH) ln 10, where pH = − log10[H+], with
[H+] being the proton concentration in the bulk and pK is
the dissociation constant of the deprotonation reaction, in the
case of the Langmuir adsorption model [30]. Furthermore, χ ,
as in the related lattice regular solutions theories (e.g., the
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Flory-Huggins theory [31]), describes the short-range in-
teractions between nearest-neighbor adsorption sites on the
macroion surface [23]. An increase in the parameter value α

encodes a favorable adsorption free energy between protons
and the macroion surface, while χ � 0 represents the ten-
dency of protons on the macroion surface adsorption sites to
phase separate into domains.

In what follows, we will use both α as well as χ as purely
phenomenological interaction parameters, quantifying the ad-
sorption energy in the surface (de)protonation reactions and
the nearest-neighbor surface energy of filled surface adsorp-
tion sites.

The model (1) was applied to lamellar-lamellar phase
transition in a charged surfactant system [28] and a good
correspondence with experiments was obtained for the di-
dodecyldimethylammonium chloride (DDACl) data with α =
−3.4, χ = 14.75, and for the didodecyldimethylammonium
bromide (DDABr) data with α = −7.4 and χ = 14.75 (see
Ref. [28] for details). The same model was successfully ap-
plied also to other systems (see, e.g., [32,33]).

III. DENSITY FUNCTIONAL THEORY IN THE
LOW-DENSITY LIMIT

A. Formalism

As the configuration of a single colloidal macroion is de-
scribed by the position r ∈ V of the center of mass and the
average degree of protonation η ∈ [0, 1] on its surface, the
whole suspension can be described by the number density
n(r, η). The equilibrium number density minimizes a grand
canonical density functional �[n] (see Ref. [34]), which is
approximated in the low-density limit by

β�[n] =
∫
V

d3r
∫ 1

0
dη n(r, η)

×
[

ln

(
n(r, η)

ζ

)
− 1+ Kβ�̂s(η)

]
+ βF ex

hc [n] + βF ex
el [n]. (2)

Here, ζ is the fugacity, F ex
hc represents the excess free en-

ergy due to the hard-core interaction between two colloidal
macroions, and F ex

el describes the excess free-energy contri-
bution of the electrostatic interaction. In the following, the
hard-core excess free energy F ex

hc is based on the Percus-
Yevick (PY) closure and the corresponding equation of state
via the compressibility route is used [35,36].

The colloidal macroions are assumed to be suspended in
an electrolyte solution with relative permittivity εr and De-
bye length 1/κ . For not too highly charged macroions in a
sufficiently dilute suspension one can use the Debye-Hückel
(DH) approximation [36,37] for the electrostatic two-particle
interaction potential

βUel(r, η, η′) = σ ∗(η)σ ∗(η′)K2 �B exp[−κ (r − R0)]

(1 + κR0)r
, (3)

where here and below r = |r − r′|, while the dimensionless
surface-charge density

σ ∗(η) = σ (η)a2

e
= η − 1

2
(4)

of a colloidal macroion with average degree of protonation
η and the Bjerrum length �B = βe2/(4πε0εr ) of the solvent
with the vacuum permittivity ε0 are introduced. Considering
the electrostatic interaction Uel as a perturbation of the hard-
core interaction Uhc with

βUhc(r) =
{

0 for r � 2R0,

∞ for r < 2R0,

one obtains in the low-density limit [34]

βF ex
el [n] = 1

2

∫
V

d3r
∫
V

d3r′
∫ 1

0
dη

∫ 1

0
dη′n(r, η) n(r′, η′)

× exp[−βUhc(r − r′)]

× {1 − exp[−βUel(r − r′, η, η′)]}. (5)

The considered model is then specified by the following five
parameters: α, χ, κR0, κ�B, K , among which α and χ de-
scribe the charge regulation (according to Sec. II). The values
for the parameters α and χ are chosen keeping in mind that for
χ = −2α the surfaces remain charge neutral for χ < χc be-
low a certain critical value χc > 0, whereas they can be oppo-
sitely charged for χ > χc [25]. Assuming spherical colloidal
macroions of radius R0 = 10 nm in an aqueous electrolyte
solution with ionic strength 1 mM, i.e., with Bjerrum length
�B ≈ 0.7 nm and Debye length 1/κ ≈ 10 nm, leads to the val-
ues κR0 ≈ 1 and κ�B ≈ 0.07. Finally, within the present DFT
approach, K ∈ {20, 40, 45, 50} adsorption sites per colloidal
macroion are considered. This corresponds to surface areas
per adsorption site a2 = 4πR2

0/K ∈ {63, 31, 28, 25} nm2, i.e.,
average distances between neighboring adsorption sites of
a ∈ {7.9, 5.6, 5.3, 5} nm, respectively.

B. Charge-regulation-induced phase separation

In the bulk of the colloidal suspension, no position depen-
dence occurs for the equilibrium density profile as well as
for the total bulk packing fraction, i.e., n(r, η) = nb(η) and
(r) = b. Note that uniformity of the bulk profiles of a
fluid is not an assumption or an approximation but the nec-
essary consequence of translational invariance. Upon solving
the Euler-Lagrange equation (A4) given in Appendix A one
obtains the bulk packing fraction profile

b(η) = 4π

3
R3

0nb(η), (6)

which provides the distribution of the average degree of pro-
tonation η or, equivalently, of the surface-charge densities
σ ∗(η) [see Eq. (4)]. Figure 2 displays this distribution for a
suspension with bulk packing fraction b = 0.1 of colloidal
macroions with K = 20 adsorption sites per macroion. For
small values of χ > 0, e.g., χ = 2 (see the blue and the green
curves in Fig. 2), the surface-charge distribution is unimodal,
i.e., the colloidal macroions are essentially equally charged.
If the charge-regulation parameters α and χ [see Eq. (1)]
fulfill the relation χ = −2α the peak is at σ ∗ = 0 (see the
blue curve in Fig. 2), whereas for α ≷ −χ/2 the majority
of colloidal macroions carry a surface charge σ ∗ ≷ 0 (see
the green curve in Fig. 2). Upon increasing the value of the
charge-regulation parameter χ the surface-charge distribution
becomes bimodal with the peaks being located at increasingly
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σ∗

η

Φ
b(

η
)

Φb = 0.1
K = 20

(−1, 2)
(−3, 6)

(−2, 2)

(α, χ) = (−5, 10)

0.50−0.5

10.50

1

0.8

0.6

0.4

0.2

0

FIG. 2. Distribution of surface charges σ ∗ and degrees of pro-
tonation η as well as the associated bulk packing fraction profile
b(η) [as defined in Eq. (6)] in a suspension with packing fraction
b = 0.1 of colloidal macroions with K = 20 adsorption sites per
macroion. For small values of χ > 0 a unimodal distribution is ob-
served, whereas for sufficiently large values of χ the surface-charge
distribution becomes bimodal with increasingly large magnitudes of
the peak surface charges.

large magnitudes of the surface charges (see the yellow and
the purple curves with the lightest and the darkest shades,
respectively, in Fig. 2). For α = −χ/2 both peaks represent
the same number of macroions, but of opposite charge. The
presence of equal amounts of oppositely charged colloidal
macroions is expected to lead to compact structures, i.e., to
a high-density phase.

Recently, Avni et al. [23] described a two-phase (or even
multiple-phase) coexistence region(s), where macroions with
low-adsorption site occupation coexist with macroions with
high site occupation, akin to the case presented in Fig. 2.
However, the model in Ref. [23] differs from the present one
in that there are two types of adsorption sites, one charging
positively and one charging negatively, on the macroions,
whereas here the negative surface charges are fixed and only
the positively charging sites are charge regulated.

In order to illustrate the occurrence of a phase separation
into a high- and a low-density phase for α ≈ −χ/2, the case
χ = 20 for various numbers K of adsorption sites per col-
loidal macroion is considered. Figure 3 displays the binodals
of the charge-regulation-induced phase separation transition
for K = 40 (blue curve, light shade), 45 (green curve, interme-
diate shade), and 50 (purple curve, dark shade). The interior of
the loops corresponds to the two-phase regions, where phase
separation into a low- and a high-density phase at the given
value α occurs. The two-phase region widens upon increasing
the number K of adsorption sites per macroion as a result of
an increasing magnitude of the electrostatic interaction.

It is well known that there are no fluid phases with packing
fractions above b ≈ 0.5 as then crystallization sets in. This
phenomenon is not covered within the present framework
so that values of b � 0.5 here are indicative of colloidal
aggregation.

The binodals of the charge-regulation-induced phase sepa-
ration presented in Fig. 3 are quite similar to those calculated
by Adame-Arana et al. [21], even if the calculational details

α

Φ
b

40

45

K = 50

χ = 20

−7−8−9−10−11−12−13

0.6

0.5

0.4

0.3

0.2

0.1

0

FIG. 3. Binodals of the charge-regulation-induced phase sepa-
ration of colloidal macroions with K = 40 (blue, light shade), 45
(green, intermediate shade), and 50 (purple, dark shade) adsorp-
tion sites per macroion. The charge-regulation parameter χ = 20
is chosen arbitrarily and the pH-sensitive parameter α ∈ [−13, −7]
is tuned around the value −χ/2 = −10, where oppositely charged
colloidal macroions are expected to occur. The interior of the loops
corresponds to the two-phase regions, where phase separation into a
low- and a high-density phase occurs at the given value of α. The
two-phase region widens upon increasing the number K of adsorp-
tion sites per macroion as a result of an increasing magnitude of the
electrostatic interaction.

differ, the main difference being that we include the electro-
static interactions explicitly via the two-body DH interaction,
Eq. (3), while in Ref. [21] the charge-charge interaction is
characterized by a phenomenological Flory-type parameter.

C. Fluid structure

The bulk structure of the considered suspensions of
charge-regulated colloidal macroions described by the den-
sity functional in Eq. (2) can be inferred from the partial
structure factor S(q, η, η′) (see Appendix A for details). It
can be conveniently analyzed in terms of the number-number
structure factor

SNN(q) =
∫ 1

0
dη

∫ 1

0
dη′S(q, η, η′), (7)

which describes the relative distribution of colloidal
macroions irrespective of their charge, and the charge-charge
structure factor

SZZ (q) =
∫ 1

0
dη

∫ 1

0
dη′σ ∗(η)σ ∗(η′)S(q, η, η′), (8)

which describes the relative distribution of charge within
the fluid.

Figure 4 displays the structure factors SNN(q) and SZZ (q)
for suspensions with packing fractions b ∈ {0.1, 0.2, 0.3}
of colloidal macroions with K = 20 adsorption sites per
macroion and charge-regulation parameters α = −5, χ = 10.
The functional form of SNN(q) in Fig. 4(a) indicates a fluid
structure of the colloidal suspension with an increasingly pro-
nounced neighbor shell structure upon increasing the packing
fraction b. In parallel, the form of SZZ (q) in Fig. 4(b) indi-
cates a spatially alternating arrangement of oppositely charged
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0.3

0.2

Φb = 0.1

K = 20

χ = 10
α = −5

.

(a)

1.5

1

0.5

0

FIG. 4. Structure factors SNN(q) (a) and SZZ (q) (b) of suspen-
sions with packing fractions b = 0.1 (blue, light shade), 0.2 (green,
intermediate shade), and 0.3 (purple, dark shade) of charge-regulated
colloidal macroions of radius R0 with K = 20 adsorption sites per
macroion and charge-regulation parameters α = −5, χ = 10. As
defined in Eqs. (7) and (8), the structure factor SNN(q) in (a) describes
the relative distribution of colloidal macroions irrespective of their
charge, whereas SZZ (q) in (b) describes the relative distribution of
charge within the fluid (see Table I for details). The location of the
main peak of SZZ (q) relative to that of SNN(q) indicates an alternating
charge structure.

colloidal macroions with a periodicity of approximately twice
the nearest-neighbor distance.

A hypothetical macrophase separation of charges would
lead to a peak of SZZ (q) at q = 0, which does obviously

TABLE I. Characteristics (see main text) of suspensions of
packing fractions b = {0.1, 0.2, 0.3} of charge-regulated spheri-
cal colloidal macroions of radius R0 with K = 20 adsorption sites
per macroion and charge-regulation parameters α = −5, χ = 10
inferred from the structure factors SNN(q) [see Fig. 4(a)] and SZZ (q)
[see Fig. 4(b)]. Upon increasing the packing fraction b the mean
nearest-neighbor distance λNN decreases to almost the close-contact
distance 2R0 of two hard spheres of radius R0, whereas the peri-
odicity λZZ of the charge distribution is slightly larger than twice
that distance, λZZ � 2λNN. In parallel, the coordination number N1

of colloidal macroions in the nearest-neighbor shell increases.

b λNN/R0 ξNN/R0 λZZ/R0 ξZZ/R0 N1

0.1 2.40 0.66 5.80 0.87 3.4
0.2 2.21 0.98 4.82 1.11 6.1
0.3 2.06 1.44 4.39 1.34 8.3

not occur here. From the position of the major peaks in
Figs. 4(a) and 4(b) one obtains the mean nearest-neighbor
distance λNN between two colloidal macroions and the peri-
odicity λZZ of the charge distribution, respectively; the values
are displayed in Table I. As is expected from the nature
of the hard-core repulsion between two colloidal macroions,
the nearest-neighbor distance λNN is never smaller than the
close-contact distance 2R0. Upon increasing the packing frac-
tion b both λNN and λZZ decrease, but the relation λZZ �
2λNN holds for all cases. Hence, the charge distribution os-
cillates on a length scale λZZ which is approximately twice
the nearest-neighbor distance λNN. This is again showing the
alternating charge structure within the suspension of charge-
regulated spherical macroions. The widths of the major peaks
in Figs. 4(a) and 4(b) yield, respectively, the decay lengths
(correlation lengths) ξNN and ξZZ of the structural features,
which are of the order of the radius R0 of the colloidal
macroions, as can be observed in Table I. Finally, the coor-
dination number N1, i.e., the number of colloidal macroions
in the nearest-neighbor shell, can be calculated from SNN(q);
the corresponding values are displayed in Table I.

IV. BINARY CELL MODEL

The DFT calculations presented so far work the best for
dilute suspension of charged colloidal macroions. While it
can also be expected to work well for an aggregating sys-
tem of weakly charged macroions, a dense suspension of
strongly charged macroions surely needs to be treated differ-
ently. Accordingly, in this section we present a variation on
the standard cell model that we refer to as the binary cell
model (BCM) that can be invoked to describe a dense sus-
pension of identical charge-regulated macroions irrespective
of their surface-charge densities and is consequently valid for
symmetric as well as asymmetric charge configurations (see
Fig. 1). Contrary to the standard cell model as well as the cell
model in binary colloidal mixtures [38], the building blocks of
our variety of the cell model are two adjacent cells of radius
R each of which encloses a charged particle of radius R0 [see
Fig. 1(b)]. The macroions as well as the wrapping cells are
considered to be fixed in space. Such a model inherently as-
sumes a certain infinite-range crystalline order and the validity
of such assumption clearly improves the closer the system is
to a high-density crystalline state.

The model medium built from this elementary cell con-
struct thus has a particle-cell volume ratio v = (R0/R)3

which is related to the bulk packing fraction b defined
earlier via the relation v = b/cp where cp ≈ 0.74 is
the packing fraction corresponding to the face-centered-cubic
or hexagonal-close-packed arrangement of the cells. Clearly,
v is inversely proportional to the cube of the intermacroion
separation. The charges on the macroion surfaces are again
regulated according to the mechanism introduced in Sec. II
[see Eq. (1)].

The following considerations are based on a Poisson-
Boltzmann (PB) theory of the binary cell system. The grand
potential corresponding to a single cell, in units of the thermal
energy β = 1/kBT , can be written as

β�̂(η, ER) = β�̂el(η, ER) + Kβ�̂s(η), (9)
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where β�̂s(η) is the energy contribution stemming from the
chemical processes driving the (de)protonation reaction [as
defined in Eq. (1)] at the macroion surface and

β�̂el(η, ER)

4πR2
0

= −ε

βe2

∫ R

R0

dr
r2

R2
0

[
κ2 cosh[φ(r)] + 1

2
[φ′(r)]2

]
+ φ(R0)

a2

(
η − 1

2

)
− ε

e

R2

R2
0

ERφ(R) (10)

with the permittivity ε = εrε0 of the embedding medium is
the electrostatic part of the grand potential expressed per
unit surface area of the macroion [39]. Herein, φ(r) is the
dimensionless electrostatic potential expressed in the units of
βe which fulfills the PB equation in spherical symmetry,

1

r2
(r2φ′(r))′ = κ2 sinh (φ(r)),

subject to the boundary condition of a charge density σ at the
macroion surface, i.e., at r = R0,

φ′(R0) = −βe2

εa2

(
η − 1

2

)
= −βeσ

ε
, (11)

and of a given radial component ER of the electric field at the
cell boundary, i.e., at r = R,

φ′(R) = −βeER. (12)

For two coupled cells the grand potential of the binary cell
system can then be written as

β�(η1, η2, ER) = β�̂(η1, ER) + β�̂(η2,−ER), (13)

where the subscripts “1” and “2” are used to indicate the two
adjacent cells in the binary cell model. The energy contribu-
tion β�̂ for the second cell is identical to the first one and is
given by Eq. (9), albeit with the electric field ER replaced by
−ER as the centers of the two adjacent cells imply a different
unit normal at the boundary (see Fig. 1).

A. Debye-Hückel case

First, we consider the Debye-Hückel case, i.e., the lin-
earized PB equation, which renders the problem analytically
tractable in part and also straightforwardly allows to scan the
phase space spanning over the whole ranges of (η1, η2) or
equivalently (σ ∗

1 , σ ∗
2 ).

The exact solution of the linear electrostatic problem im-
plies a nonlinear function

β�(η1, η2) = min
ER

β�(η1, η2, ER)

of the degrees of protonation η1, η2, of the binary cell model,
which subsequently needs to be minimized numerically. In
order to achieve this, one can proceed as described in the
Supplemental Material of [25], where the linearized PB
equation is discussed in a planar geometry. In the present
case we can make use of the known solution of the linearized
PB equation in spherical geometry [40]; details are described
in Appendix B. After inserting the equilibrium ER that min-
imizes the β�(η1, η2, ER) obtained by expanding Eq. (10)
up to second order in φ and replacing φ(r) by the known
solutions, one finally arrives at the following expression for

the grand potential defined in Eq. (13) as a function of η1

and η2 only:

β�(η1, η2) = K

2

�B

a2|det M|
[
γ

(
η1 − 1

2

)2

+ γ

(
η2 − 1

2

)2

− τ 2

2|ν| (η1 − η2)2

]
+ Kβ[�̂s(η1) + �̂s(η2)].

(14)

As before, K = 4πR2
0/a2, and �B is the Bjerrum length. The

factors |det M|, γ , τ , and ν involve the three length scales of
the problem: the radius of the macroion, the Debye length, and
the cell size; the analytic expressions are given in Appendix B.

In line with the DFT calculation and the inherent approxi-
mations of DH theory, we consider the limit of small K only.
In this regime the binary cell model allows for asymmetric
charge configurations already at smaller values of (α, χ ) pa-
rameters than within the DFT approach in Sec. III. The reason
for this is a weaker electrostatic coupling between two col-
loidal macroions in Sec. III, which is based on a superposition
approximation of the electrostatic interaction, as compared to
the stronger coupling via the electric field ER at the com-
mon boundary between two adjacent cells within the binary
cell model [41,42].

The phase coexistence around the symmetry axis −2α = χ

is brought about by an exchange of stability of the minima
of the grand potential, as illustrated in Fig. 5. For a given
particle-cell volume ratio v, the charge state with minimum
energy shifts from a symmetric to an asymmetric one as
one moves away from the symmetry axis −2α = χ [com-
pare Figs. 5(a) and 5(b)]. Moreover, a comparison Figs. 5(a)
and 5(c) suggests that for given (α, χ ), as the particle-cell
volume ratio v diminishes, the difference in the grand po-
tential between the symmetric and asymmetric configurations
gradually diminishes too, leading ultimately to a symmetric
equilibrium state.

It is worth noting that the linear theory ceases to be valid
not only for high-K values, but also for higher values of the
packing fraction b (or, equivalently, the particle-cell volume
ratio v) where the following nonlinear PB theory needs to be
applied.

B. Full Poisson-Boltzmann case

Within the nonlinear PB theory, the equilibrium η values
[or equivalently σ ∗ values; see Eq. (4)] at the two surfaces
along with the electric field at the cell boundary ER are ob-
tained via a numerical minimization of the grand potential
following the scheme described in the beginning of Sec. IV.
We consider a system of macroions dispersed in an aqueous
electrolyte solution with ionic concentration I = 1 mM, rela-
tive permittivity εr ≈ 80 at temperature T = 300 K.

The resulting variations of the degrees of protonations η1

and η2 leading to charge densities σ ∗
1 and σ ∗

2 at the two
macroion surfaces are shown in Fig. 6 as functions of the
interaction parameter α and the particle-cell volume ratio
v for two different values of the parameter K ∈ {50, 1257}
corresponding to a ∈ {5, 1} nm and χ = 30. Note that unlike
in the case of the linear DH theory, we are not constrained by
any upper limit for K here. Nevertheless, as one can infer from
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FIG. 5. Top panel shows the variation of the grand potential β�(σ ∗
1 , σ ∗

2 )/K given by Eq. (14) as functions of the surface-charge density
variables σ ∗

1 and σ ∗
2 for different values of the parameters α and v. Bottom panel shows cuts through the potential surface at σ ∗

1 = σ ∗
2 (in

yellow, light shade) and σ ∗
1 = −σ ∗

2 (in blue, dark shade). (a) Shows the results for α = −3, χ = 6, and v = 0.6 which fall inside the phase
separation region. Consequently, the asymmetric configuration is the minimum-energy configuration. (b) At the same value of v, but with
α changing from −3 to −2.8. As it is evident from the curves, the stability has changed toward a configuration with uncoupled cells, thus
leaving the phase coexistence region. (c) Again, at α = −3 and χ = 6 but going down in the particle-cell volume ratio to v = 0.05. As one
can see, the grand potential of the symmetric configuration approaches that of the asymmetric configuration. For all the plots, R0 = 10 nm,
κ = 0.1 nm−1, �B = 0.7 nm, and K = 20 are used.

Fig. 6, the results are qualitatively similar to those obtained
within the linearized PB theory in the previous section and are

= 1257
K = 50

α

Φ
v

SymmetricSymmetric

Asymmetric

·

−9−12−15−18−21

1

0.8

0.6

0.4

0.2

0

FIG. 6. Map showing the charge states of the two macroions
as functions of the interaction parameter α and the particle-cell
volume fraction v for χ = 30 and two different K values. The
solid line corresponds to K = 1257 whereas the dashed line refers
to K = 50. In each case, one observes a conical-shaped region cen-
tered around α = −χ/2 = −15 with stretched opening at the top.
Inside this region and on the boundary, the two macroion surfaces
are oppositely charged (|η1 − η2| = 1 or, equivalently, σ ∗

1 = −σ ∗
2 )

whereas outside this region they are identically charged (η1 = η2 or,
equivalently, σ1 = σ2). With increasing K value, this region featuring
charge asymmetry widens.

consistent with the findings reported in Fig. 5. For any given
K value, one obtains a triangularly shaped region centered
around α = −χ/2 with stretched opening at the top. Inside
this region and on the boundary, the two macroion surfaces
are oppositely charged (σ ∗

1 ≈ −σ ∗
2 �= 0) whereas outside this

region they are identically charged (σ ∗
1 = σ ∗

2 ). In accordance
with the outcomes of the linear theory in Sec. III, within these
identically charged regions, both the surfaces are negatively
charged for α <

χ

2 = −15, whereas for α >
χ

2 = −15 they
are positively charged.

With increasing K value, the region with asymmetric
charge configurations broadens as an increase in K implies
a higher surface-charge density, which in turn enhances the
electrostatic attraction between the surfaces at the origin of
the observed symmetry breaking. Although, in general, for a
given α value the asymmetric configuration changes to the
symmetric one with decreasing volume fraction (or, equiv-
alently, increasing separation between the macroions), the
asymmetric configurations observed on the line α = −χ/2 =
−15 are very stable and persist down to v ≈ 10−3 or lower.
The specific choice of the parameter χ = 30 is motivated
by the observation that complete symmetry breaking, i.e.,
σ ∗

1 ≈ −σ ∗
2 �= 0, occurs above a critical value χ = χc ≈ 25 for

K = 1257. It is important to note that this χc value depends
not only on K , but can be different within the linear and
nonlinear PB theories. However, for any χ > χc, one observes
the same qualitative features, i.e., transitions from symmetric
to symmetry broken states as functions of α and v within
both the theories.
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V. CONCLUSIONS

In summary, we have described a charge-regulation-based
mechanism that allows for pH-dependent phase separation
in macroion solutions. A complex interplay of the differ-
ent chemical interactions driving the charge regulation of
individual macroion, as well as electrostatic interaction be-
tween them, leads to symmetry broken charge states of the
macroions, thereby leading to aggregation. A density func-
tional theory based approach, applicable for dilute suspension
of macroions, fully accounting for the translational entropy
of the macroions, indeed provides evidence of electrostati-
cally driven macroion phase separation. A binary cell model
Poisson-Boltzmann approach, applicable in the high-density
limit, confirms the presence of electrostatic attraction, es-
sential for the observed phase separation, stemming from
a transition to asymmetrically charged states of nearest-
neighbor macroion pairs.

An interesting aside to our calculation is the way it nat-
urally ties together the well-studied complex coacervation
between chemically oppositely charged macroions and the
much less studied simple coacervation of chemically identical
macroions in bathing electrolyte solutions, by introducing the
actual chemical model of charging, as opposed to a priori
chosen values of the surface charge (potential). We propose
this charge symmetry broken complex coacervation between
chemically identical macroions as a bridge between the two
different types of coacervations or indeed liquid-liquid phase
separations.

A systematic study based on the two contrasting ap-
proaches, the DFT and the BCM within the same charge-
regulation model, therefore ensures the robustness of our
results and allows us to conclude that the pH-dependent
liquid-liquid phase separation in macroion solutions is a
rule rather than exception, even in the case of chemically
identical macroions. Further indications for the robustness

and generality of the described results are qualitative simi-
larities with approaches based on alternative computational
methodologies, such as the phenomenological Flory-type
electrostatics [21] and the collective mean-field descrip-
tion [23]. It still remains to be seen which are the absolutely
essential ingredients of the macroion surface-charge regula-
tion promoting this liquid-liquid phase separation.

Finally, recent advances in the simulations of acid-base
equilibria in systems coupled to a reservoir with a fixed
pH, based either on a hybrid Monte Carlo method to re-
solve the charges of individual surface groups [43], on
the grand-reaction method for coarse-grained simulations of
acid-base equilibria with a fixed pH reservoir and salt con-
centration [44], or simulating the pH effects with classical
coarse-grained molecular dynamics simulations [45], could in
principle provide a proper background to different analytical
approaches and hopefully elucidate the reality of the predicted
phenomena. The comparison with experiments, in which other
types of interactions and the notoriously difficult solvent ef-
fects come into play, poses another challenge that will have to
be faced in the future.
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APPENDIX A: DENSITY FUNCTIONAL THEORY

1. Bulk packing fraction

Upon expanding the term 1 − exp(−βUel ) in Eq. (5) of the
main text in powers of βUel and using Eq. (3) of the main text
one can perform both integrations over V in Eq. (5) to obtain

βF ex
el [nb] = 3V

4πR3
0

∞∑
k=1

Bk

(∫ 1

0
dη σ ∗(η)kb(η)

)2

(A1)

with the system volume V = |V|, the constants

Bk := 3

2

(−1)k−1kk−3

k!(κR0)3
�(3 − k, 2kκR0)

(
K2 κ�B

1 + κR0
exp(κR0)

)k

,

where �(ν, z) denotes the incomplete � function [46], and the bulk packing fraction profile

b(η) = 4π

3
R3

0nb(η) (A2)

with b = ∫ 1
0 dη b(η). Using Eqs. (A1) and (A2) in Eq. (2) of the main text one obtains a scaled density functional in terms of

the bulk packing fraction profiles b:

�∗
b[b] := β�[nb]

4πR3
0

3V
=

∫ 1

0
dη b(η)

(
ln[b(η)] + Kβ�̂s(η)

) + b[−1 − μ∗ + hPY(b)]

+
∞∑

k=1

Bk

(∫ 1

0
dη σ ∗(η)kb(η)

)2

(A3)

043417-8



CHARGE SYMMETRY BROKEN COMPLEX COACERVATION PHYSICAL REVIEW RESEARCH 2, 043417 (2020)

with the scaled chemical potential

μ∗ := ln

(
4π

3
R3

0 ζ

)
and

hPY(b) = − ln(1 − b) + 6b − 2
2
b

2(1 − b)2
.

The equilibrium bulk packing fraction profile 
eq
b minimizes

the scaled density functional �∗
b in Eq. (A3). Hence, it solves

the Euler-Lagrange equation [34]

0 = δ�∗
b

δb(η)

∣∣∣∣


eq
b

= ln
[


eq
b (η)

]+Kβ�̂s(η) − μ∗+hPY
(


eq
b

)+
eq
b h′

PY

(


eq
b

)
+ 2

∞∑
k=1

Bk

∫ 1

0
dη′ σ ∗(η′)k

eq
b (η′) σ ∗(η)k. (A4)

This expression can be rewritten in the form


eq
b (η) = exp

(
μ∗ − Kβ�̂s(η) − hPY

(


eq
b

) − 
eq
b h′

PY

(


eq
b

)
− 2

∞∑
k=1

Bk
eq
b 〈σ ∗k〉 σ ∗(η)k

)

with the kth moment of the surface-charge distribution

〈σ ∗k〉 := 1


eq
b

∫ 1

0
dη σ ∗(η)k

eq
b (η).

2. Partial structure factor

The partial structure factor of the system under considera-
tion can be written in the form

S(q, η, η′) = 1

nb
G̃(q, η, η′) =:

√
b(η)b(η′)

b
G(q, η, η′),

where G̃(q, η, η′) is the three-dimensional Fourier transform
of the bulk correlation function G(r, η, η′) of the number
densities of colloidal spheres with degrees of protonation η

and η′ at a distance r. The auxiliary function G(q, η, η′) fulfills
the Ornstein-Zernike equation

G(q, η, η′) =
∫ 1

0
dη′′ C(q, η, η′′)G(q, η′′, η′) + δ(η − η′)

with C(q, η, η′) =√
nb(η)nb(η′) c̃(q, η, η′), where c̃(q, η, η′),

q = |q|, is the Fourier transform of the bulk direct correlation
function

c(r, η, η′) = cPY(r,b) − δ2βF ex
el

δn(r, η)δn(0, η′)

∣∣∣∣
nb

composed of the Percus-Yevick hard-core contribution cPY

(see Ref. [35]) and the electrostatic contribution obtained from
Eq. (5) of the main text (see Ref. [34]).

APPENDIX B: DEBYE-HÜCKEL THEORY FOR BINARY
CELL MODEL

In this Appendix we show how Eq. (14) of the main text
can be derived. First, the linearized PB-term integral∫ R

R0

dr r2[(φ′(r))2 + κ2(φ(r))2],

can be simplified by partial integration since one has∫ R

R0

dr(r2φ′(r))φ′(r)

= r2φ′(r)φ(r)|RR0
−

∫ R

R0

dr ∂r (r2∂rφ(r))φ(r),

whereby the latter term can be transformed via the linearized
PB equation and hence cancels out against the term in the orig-
inal integral. Putting all constants and the boundary conditions
in, one is left with the expression

β�̂el

4πR2
0

≡ − ε

2βe2

( R

R0

)2

ERφ(R) + σ ∗

2a2
φ(R0).

Coupling two cells, respecting electroneutrality,

�el = �̂el
1 ([φ1], ER, σ ∗

1 ) + �̂el
2 ([φ2],−ER, σ ∗

2 )

one has the expression

β�el

4πR2
0

= − ε

2βe2

( R

R0

)2

ER[φ1(R) − φ2(R)]

+ 1

2a2
[σ ∗

1 φ1(R0) + σ ∗
2 φ2(R0)]. (B1)

The boundary conditions at the cell particles and surfaces
follow from the known exact solution of the electrostatic
potential of a single cell with a solute of radius R0, embedded
in a spherical cell of radius R which contains a salt solution,
as given in [40]:

φ(r) = R0φ(R0)

r
cosh[κ (r − R0)]

+ Rφ(R) − R0φ(R0) cosh[κ (R − R0)]

sinh[κ (R − r0)]

× sinh[κ (r − R0)].

The boundary values φ(R0) and φ(R) thus follow from the
derivatives of φ(r) at r = R0, R.

In the linear theory we discuss, denoting the vector φ′ =
(φ′(R0), φ′(R)) of derivatives, one needs to invert the matrix
equation φ′ = M · φ which can be computed from the deriva-
tive of the solution. One finds

φi(R0) = 1

det M
[γφ′

i (R0) − τφ′
i (R)]

and

φi(R) = 1

det M
[−ξφ′

i (R0) + νφ′
i (R)],
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FIG. 7. Two-phase surface-charge density coexistence region
around the symmetry axis with α = −3, at χ = 6 for K = 20.

where the boundary values for the two cells are given
by Eqs. (11) and (12) of the main text. The parameters
in the equations are functions of the three characteris-
tic lengths in the system (solute size, screening length,

cell radius):

ν = −
[

1

R0
+ κC(R)

S(R)

]
, τ = R

R0

κ

S(R)
,

ξ = −R0

R

κ

S(R)
, γ = − 1

R
+ κC(R)

S(R)
,

where C(R) = cosh[κ (R − R0)] and S(R) = sinh[κ (R − R0)].
Further,

det M = νγ − τξ .

One has ν < 0, τ > 0, ξ < 0, γ > 0, and det M < 0. Af-
ter computation of the boundary conditions at the macroion
radius R0 and the binary cell radius R, the resulting expres-
sion (B1) needs to be minimized with respect to ER, which is
found to behave as ER ∼ σ ∗

1 − σ ∗
2 . Finally, collection of terms

leads to Eq. (14) of the main text.
Within DH theory, the surface-charge density coexistence

curve has a balloonlike shape (see Fig. 7). The upper part
of the surface-charge density coexistence curve widens for
increasing χ . The location of the upper critical point of the
phase coexistence curve moves from (χ,v) = (3.6, 0.79)
to (χ,v) = (16, 0.97), which for K = 20 covers the inter-
val in which surface-charge density coexistence exists in the
DH limit.
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