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Apolipoprotein A-I (apoA-I), the major protein in high-density lipoproteins, plays a critical role in lipid 
metabolism by transporting excess cellular cholesterol from the peripheral tissues to the liver1. ApoA-I 
contains 11/22-mer tandem repeats that have a high tendency to form amphipathic �​-helices, which have 
lipid-binding activity2. About 50% of the apoA-I secondary structure consists of �​-helices, and its N-terminus 
comprises an �​-helix bundle3,4. Some apoA-I mutants are associated with the hereditary amyloidosis called 
AApoA1 amyloidosis5. As of today, 19 mutations have been associated with AApoA1 amyloidosis6. One of these 
mutations, a G26R single substitution (herein referred to as the Iowa mutation), is the �rst mutation that was 
determined to be associated with AApoA1 amyloidosis7,8. �is mutation facilitates proteolysis of apoA-I, and 
the resulting N-terminal fragments (amino acid residues 1–83) of the variant apoA-I deposit as amyloid �brils 
in various organs, such as the kidney, liver, and heart6,7,9. In protein misfolding diseases such as amyloidosis, 
protein aggregates that accumulate or deposit in organs and tissues are abnormally folded; these aggregates 
are formed by aberrant production of precursor proteins or disturbances in the intracellular or extracellular 
protein degradation pathways10,11. �e mechanism by which these apoA-I variants can form amyloid �brils is 
not fully understood. Small intermediates or soluble oligomers that are found during the aggregation process 
are synaptotoxic or cytotoxic in some protein misfolding diseases such as Alzheimer’s disease, Parkinson’s 
disease, and Huntington’s disease12, and amyloid �brils are also reportedly cytotoxic13. We previously showed 
that cellular interactions with and cytotoxicity of apoA-I �brils depended on the sulfate moieties of heparan 
sulfate on the cell surface14, but the mechanisms of cellular degradation and cytotoxicity of apoA-I �brils remain 
to be elucidated.

Since discovery of lysosomes in the early 1950 s, they have been shown to be involved in various lysosomal 
storage diseases and other human diseases such as cancer, obesity, and neurodegeneration15,16. With regard to 
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amyloidosis, Liu et al. reported that amyloid �​ (A�​) that has accumulated in lysosomes destabilizes the lysosomal 
membrane and induces neurotoxicity17. Another study suggested that �​2-microglobulin amyloid �brils accu-
mulated in lysosomes in a neuroblastoma cell line and disrupted lysosomal membrane protein tra�cking and 
lysosomal degradation of proteins18.

Macroautophagy (referred to here as autophagy) is a cellular protein degradation system for long-lived pro-
teins and organelles19. Autophagy includes a number of steps: sequestration, transport or fusion to lysosomes, 
degradation, and reuse of degradation products. During degradation, autophagosome components that formed 
during the �rst step of autophagy are degraded by lysosomal hydrolases20. �us, clearance of autophagosomes 
depends on lysosomal function21. Autophagy has also been implicated in clearance of various amyloidogenic 
proteins. For example, recent studies showed that autophagy played a critical role in degradation of human islet 
amyloid polypeptide (IAPP) and protected �​-cells against cytotoxicity of IAPP22–24. Lysosome-dependent dysreg-
ulation of autophagy was also suggested to underlie cardiomyopathy pathogenesis in amyloidogenic light chain 
amyloidosis25.

Here, we used cell-based assays to investigate the role of lysosomes and autophagy in cellular degradation 
and cytotoxicity of G26R apoA-I fibrils (apoA-IIowa fibrils). ApoA-IIowa fibrils were degraded via the 
autophagy-lysosomal pathway in human embryonic kidney (HEK) 293 cells, which resulted in a loss of lysosomal 
acidity and in the cytosolic release of the lysosomal protease cathepsin B. �e mitochondrial dysfunction caused 
by apoA-IIowa �brils was reversed by enhancing the degradation of apoA-IIowa �brils and inhibiting cathepsin 
B. Our results thus emphasize the importance of autophagy and lysosomes in the pathology of AApoA1 
amyloidosis.

���‡�•�—�Ž�–�•
ApoA-IIowa���¤�„�”�‹�Ž�•���™�‡�”�‡���†�‡�‰�”�ƒ�†�‡�†���‹�•���ƒ�•���ƒ�—�–�‘�’�Š�ƒ�‰�›�æ���ƒ�•�†���Ž�›�•�‘�•�‘�•�‡�æ�†�‡�’�‡�•�†�‡�•�–���•�ƒ�•�•�‡�”�ä We �rst 
determined whether apoA-IIowa �brils were degraded in cultured cells. As previously reported, the 1–83 fragments 
of wild-type (WT) apoA-I formed �brils and these �brils were cytotoxic14,26. However, amyloid �brils of WT 
apoA-I are reportedly associated with atherosclerotic plaques27, not with hereditary AApoA1 amyloidosis. In the 
present study, we focused on the pathological e�ect of amyloid �brils of the Iowa mutant of apoA-I. As shown in 
Supplementary Fig. S1a, the �bril content of the apoA-IIowa �brils preparation that were used in the present study 
was more than 90%. One of the authors also reported that apoA-IIowa �brils were positive for thio�avin T and 
consisted of long and straight �brils having heights of 5 to 10 nm as revealed by the atomic force microscopy26. 
ApoA-IIowa fragments without incubation at 37 °C (i. e., freshly solubilized apoA-IIowa fragments) showed no 
cytotoxicity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Supplementary 
Fig. S1b), which enabled us to exclude a possibility of cytotoxicity of non-�brillar apoA-IIowa fragments. HEK293 
cells were incubated with apoA-IIowa �brils for 12 h, washed 3 times with Dulbecco’s modi�ed Eagle’s medium 
(DMEM), and cultured for additional tme periods (0, 6, 12, 24 h). Cells were �xed, permeabilized, and stained 
with an anti-apoA-I antibody. As Fig.�1a shows, cells incubated with apoA-IIowa �brils for 12 h demonstrated 
robust apoA-I staining, which indicates that apoA-IIowa �brils interacted with HEK293 cells. Signals from apoA-
IIowa �brils disappeared 6–24 h a�er cells were washed with PBS, in a time-dependent manner. �ese results 
suggest that HEK293 cells degraded the apoA-IIowa �brils. Results of dot blotting con�rmed that apoA-I �brils 
were almost completely degraded during the additional culture period (Fig.�1b). Because previous reports 
showed that A� ​ was degraded by lysosomes28,29, we analyzed the e�ect of chloroquine on cellular degradation of 
apoA-IIowa �brils. Chloroquine is a weak base and reportedly impaired functions of acidic organelles, including 
lysosomes, by means of neutralization30. As seen in Fig.�1c, cellular degradation of apoA-IIowa �brils was reduced 
to approximately 10% in the presence of chloroquine. �us, it was indicated that apoA-IIowa �brils were degraded 
via the lysosomal pathway.

Given the �nding that protein aggregates or inclusion bodies within cells were cleared by a certain type of 
autophagy termed aggrephagy31, we then studied whether apoA-IIowa �brils were degraded via the autophagy 
pathway. 3-Methyladenine (3-MA) inhibits the activity of class III phosphatidylinositol 3-kinase, which plays 
an essential role in the biogenesis of autophagosomes, and thereby interrupts autophagy32. When autophagy 
was inhibited by adding 3-MA, degradation of apoA-IIowa �brils was almost completely suppressed (Fig.�1d). 
Rapamycin (sirolimus) is a macrocyclic antibiotic made by the bacterium Streptomyces hygroscopicus, which 
occurs in the soil of Easter Island. Rapamycin inhibits the mechanistic target of rapamycin (serine/threonine 
kinase) complex 1 and thus induces autophagy33. In contrast to the e�ect of 3-MA, rapamycin markedly facili-
tated the degradation of apoA-IIowa �brils (Fig.�1e). �ese �ndings indicate that degradation of apoA-IIowa �brils 
occurred in an autophagy-lysosomal pathway-dependent fashion in cultured cells.

Transcription factor EB (TFEB) enhanced degradation of apoA-IIowa���ˆ�‹�„�”�‹�Ž�•�ä  Sardiello et al. 
reported that TFEB induced lysosomal biogenesis and increased degradation of pathogenic proteins such as the 
polyglutamine-expanded huntingtin protein, which causes Huntington’s disease34. Because apoA-IIowa �brils 
appeared to be degraded in lysosomes, we questioned whether increasing lysosomes by overexpressing TFEB 
would enhance degradation of apoA-IIowa �brils. We transfected HEK293 cells with pEGFP-N1-TFEB before 
treating cells with apoA-IIowa �brils. By means of immunoblotting with an anti-lysosomal-associated membrane 
protein 2 (LAMP2) (Supplementary Fig. S2), which is a lysosome marker35, we con�rmed that TFEB overex-
pression increased the number of lysosomes. As Fig.�1f illustrates, degradation of apoA-IIowa �brils was greatly 
(approximately two times) enhanced in TFEB-transfected cells. �ese results suggest that TFEB overexpression 
facilitated apoA-IIowa �bril degradation by increasing the number of lysosomes.

Effects of dynamin and actin dynamics on cell interactions with apoA-IIowa�� �ˆ�‹�„�”�‹�Ž�•�ä The 
above-described results showing that apoA-IIowa �brils were degraded via the autophagy-lysosomal pathway 
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strongly suggested that apoA-IIowa �brils were internalized by cells and transported to lysosomes. �us, we stud-
ied the internalization pathway of apoA-IIowa �brils by using HEK293 cells and inhibitors of di�erent types of 
endocytosis. Inasmuch as many endocytosis pathways depend on actin dynamics36, we also used cytochalasin D,  

Figure 1.  ApoA-I Iowa �brils were degraded via the autophagy-lysosomal pathway. (a) HEK293 cells were 
plated on poly-L-lysine-coated cover glasses and treated with apoA-IIowa �brils (1 � ​M) at 37 °C for 12 h. 
Cells were washed with fresh DMEM and then incubated in DMEM at 37 °C for 0, 6, 12, or 24 h. ApoA-
IIowa �brils were visualized by using an anti-apoA-I antibody and an Alexa Fluor 568-conjugated secondary 
antibody. (b) HEK293 cells were treated with apoA-IIowa �brils (1 � ​M) at 37 °C for 12 h. Cells were washed 
with fresh DMEM and then incubated in DMEM for 6 h, a�er which whole cell lysates were prepared. �e 
apoA-I contents of the whole cell lysates were analyzed by means of dot blotting. � ​-Actin was used as a 
loading control. �e graph shows quanti�cation of cellular apoA-IIowa �brils. Data are means � ​ SE of three 
independent experiments. (c,d,e) HEK293 cells were plated and treated with 1 � ​M apoA-IIowa �brils for 12 h. 
Cells were washed with fresh DMEM and cultured at 37 °C for an additional 6 or 12 h in fresh DMEM in the 
presence or absence of chloroquine (c; 50 � ​g/mL, 12 h), 3-MA (d; 0.75 � ​g/mL, 12 h), or rapamycin (e; 2.5 � ​M, 
6 h), a�er which whole cell lysates were prepared. �e apoA-I contents of the whole cell lysates were analyzed 
by using dot blotting. � ​-Actin was used as a loading control. (f) E�ects of TFEB overexpression on cellular 
degradation of apoA-IIowa �brils. HEK293 cells were plated, transfected with pEGFP-N1-TFEB or an empty 
vector, and cultured at 37 °C for 48 h. Cells were treated with 1 � ​M apoA-IIowa �brils for 12 h, washed with 
fresh DMEM, and incubated for 12 h, a�er which whole cell lysates were prepared. �e apoA-I contents in 
whole cell lysates were analyzed by dot blotting with an anti-apoA-I antibody. � ​-Actin was used as a loading 
control. �e graphs show quanti�cation of the degraded �brils. Data are means � ​ SE of three independent 
experiments. � ​p � ​ 0.0013 (c), 0.011 (d), 0.017 (e), and 0.032 (f) versus each drug or TFEB (�) cells.
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which inhibits actin dynamics-dependent endocytosis by disrupting actin polymerization37. Dynasore is 
a small molecule that inhibits dynamin 2, which is essential for endocytic vesicle formation in clathrin- and 
caveolin-mediated endocytosis, as well as clathrin- and caveolin-independent endosytosis38. Nystatin disrupts 
caveolae formation by binding to sterols and thus inhibits caveolin-mediated endocytosis. Cytochalasin D and 
dynasore, but not nystatin, reduced the content of apoA-IIowa �brils in HEK293 cells by 40–50% a�er incubation 
(Fig.�2). �ese results suggest that dynamin and actin dynamics were involved in internalization of apoA-IIowa 
�brils.

ApoA-IIowa���¤�„�”�‹�Ž�•���‹�•�†�—�…�‡�†���Ž�›�•�‘�•�‘�•�ƒ�Ž���ƒ�•�†���•�‹�–�‘�…�Š�‘�•�†�”�‹�ƒ�Ž���†�›�•�ˆ�—�•�…�–�‹�‘�•�ä  Because some amyloid �brils 
reportedly interfered with lysosomal function18,25 and our data strongly suggested that apoA-IIowa �brils were 
transported to lysosomes, we investigated whether apoA-IIowa �brils would a�ect lysosomal function. We used 
LysoSensor, a pH-sensitive �uorescent dye, to assess lysosomal pH. Consistent with our previous study with 
Chinese hamster ovary cells14, the numbers of acidic compartments including lysosomes decreased in HEK293 
cells treated with apoA-IIowa �brils (Fig.�3a), which suggests that apoA-IIowa �brils caused a reduction in lysosomal 
acidity.

We also previously showed that apoA-IIowa �brils caused increased production of reactive oxygen species 
(ROS)39. Lysosomal membrane permeabilization and subsequent cytosolic release of lysosomal protease may 
lead to a loss of mitochondrial membrane potential and ROS production40. We found, as Fig.�3b illustrates, that 
apoA-IIowa �brils induced a loss of mitochondrial polarization in HEK293 cells. �ese �ndings, together with 

Figure 2.  E�ects of endocytic inhibition on cellular uptake of apoA-IIowa �brils. HEK293 cells were plated 
and treated with 1 � ​M apoA-IIowa �brils for 12 h in the presence or absence of cytochalasin D (1 � ​M), dynasore 
(15 � ​M), or nystatin (50 � ​g/mL), a�er which whole cell lysates were prepared. �e apoA-I contents in the lysates 
were analyzed by using dot blotting. � ​-Actin was used as a loading control. �e graphs show quanti�cation of 
cellular apoA-IIowa �brils. Data are means � ​ SE of three independent experiments. � ​p � ​ 0.0002 (cytochalasin D) 
and 0.0098 (dynasore) versus each drug (�) cells.
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results showing that apoA-IIowa �brils were transported to lysosomes and caused lysosomal dysfunction, indicated 
the possibility that apoA-IIowa �brils caused lysosomal membrane permeabilization.

Cathepsin B is a cysteine cathepsin41 that stimulates ROS production and has a role in the loss of mitochon-
drial inner membrane potential a�er its release into cytosol42. We thus evaluated whether apoA-IIowa �brils would 
induce cytosolic release of cathepsin B. Figure�3c shows that cathepsin B in the cytosolic fraction increased in 
cells that were treated with apoA-IIowa �brils, which suggests that apoA-IIowa �brils induced leakage of lysosomal 
cathepsin B into the cytosol. As shown in Supplementary Fig. S3, we did not observed TUNEL (terminal deoxy-
nucleotidyl transferase dUTP nick end labeling) positive cells in apoA-IIowa �bril-treated cells.

���‡�•�…�—�‡���‘�ˆ���������x�•�y���…�‡�Ž�Ž�•���ˆ�”�‘�•���…�›�–�‘�–�‘�š�‹�…�‹�–�›���‘�ˆ���ƒ�’�‘���æ��Iowa���ˆ�‹�„�”�‹�Ž�•�ä  We also investigated whether 
enhancement of degradation of apoA-IIowa �brils would rescue cells that were damaged by the �brils. Because 
rapamycin facilitated degradation of apoA-IIowa �brils, we incubated cells in the presence of rapamycin and 
assessed mitochondrial dysfunction. Rapamycin lessened the mitochondrial dysfunction caused by treating cells 
with apoA-IIowa �brils (Fig.�4a). Next, to investigate that release of cathepsin B into the cytosol was responsible for 

Figure 3.  ApoA-I Iowa �brils induced lysosomal dysfunction, mitochondrial depolarization, and cytosolic 
release of cathepsin B. (a) HEK293 cells were plated on poly-L-lysine-coated cover glasses and treated with 
1 � ​M apoA-IIowa �brils at 37 °C for 6 h. �e number of acidic organelles was assessed by using LysoSensor 
dye. Representative images of acidic signals (red) and di�erential interference contrast (DIC) microscopy 
are shown. �e graph shows quanti�ed LysoSensor signals. Data are means � ​ SE of three independent 
experiments. � ​� ​p � ​ 0.0093 versus non-treated cells. (b) Mitochondrial membrane potential was analyzed by 
using TMRE �uorescent dye, a�er treatment with 1 � ​M apoA-IIowa �brils for 12 h. Representative images of 
TMRE �uorescence (red) and DIC microscopy are shown. �e graph shows quanti�ed TMRE signals. Data 
are means � ​ SE of three independent experiments. � ​p � ​ 0.016 versus non-treated cells. (c) �e lysosomal and 
cytosolic fractions of HEK293 cells that had been treated with 1 � ​M apoA-IIowa �brils for 6 h were subjected to 
Western blotting with an anti-cathepsin B antibody to assess cytosolic release of cathepsin B. � ​-Actin was used 
as a loading control. �e data represent two independent experiments.



www.nature.com/scientificreports/

6

mitochondrial depolarization, we treated cells with CA-074, which is a cathepsin B inhibitor43, a�er treating them 
with apoA-IIowa �brils. �e additional treatment with CA-074 ameliorated the apoA-IIowa �bril-induced mito-
chondrial dysfunction (Fig.�4b), which suggests that activity of cytosolic cathepsin B contributed to apoA-IIowa 
�bril-induced mitochondrial dysfunction.

ApoA-IIowa�� �ˆ�‹�„�”�‹�Ž�•�� �‹�•�’�ƒ�‹�”�‡�†�� �ƒ�—�–�‘�’�Š�ƒ�‰�‹�…�� �…�Ž�‡�ƒ�”�ƒ�•�…�‡�ä  The p62 protein sequestosome 1 is a 
ubiquitin-binding sca�old protein and also binds to LC3, microtubule-associated protein 1 light chain 3, which is 
a speci�c autophagy e�ector44. p62 is an autophagy adaptor molecule and is used as a marker of autophagic �ux, 
inasmuch as p62 is degraded in the autolysosome, which is a product of direct fusion of an autophagosome and a 
lysosome45. Because apoA-IIowa �brils caused a loss of lysosomal acidity, we evaluated whether lysosomal activity 
also decreased, which would lead to accumulation of p62. As Fig.�5a shows, apoA-IIowa �brils induced an increase 
in p62 protein level. Immunocytochemistry demonstrated swollen p62-positive puncta in apoA-IIowa �bril-treated 
cells (Fig.�5b). �ese data, together with �ndings that apoA-IIowa �brils induced lysosomal dysfunction, suggest 
that apoA-IIowa �brils impaired clearance of p62 protein by interfering with lysosomal proteolytic activity. A sum-
mary of our �ndings is shown in Fig.�6.

Discussion
�e lysosomal pathway has been shown to have an important role in degradation of protein aggregates including 
those of � ​-synuclein, tau, and mutant huntingtin proteins46 as well as IAPP22–24. Autophagy has been implicated 
in the clearance of protein aggregates in neurodegenerative diseases47,48. In the present study, degradation of 
apoA-IIowa �brils occurred via the autophagy-lysosomal pathway. Upregulation of lysosomal biogenesis by TFEB 
overexpression facilitated this degradation. Furthermore, apoA-IIowa �brils induced lysosomal membrane per-
meabilization and a loss of lysosomal acidity. �us, although apoA-IIowa �brils were degraded in lysosomes, the 
presence of an excess number of apoA-IIowa �brils in the lysosomes, more than the lysosomes could degrade, may 
be detrimental to the lysosomes. As p62 was accumulated in the apoA-IIowa �brils-treated cells, it is also suggested 
that the proteolytic capacity of the lysosomes was disturbed. One study showed that inhibition of mammalian 

Figure 4.  Rapamycin and an inhibitor of cathepsin B improved mitochondrial depolarization induced by 
apoA-IIowa �brils. HEK293 cells were plated on poly-L-lysine-coated cover glasses and treated with 1 � ​M  
apoA-IIowa �brils at 37 °C for 12 h (a) in the presence or absence of rapamycin (2.5 � ​M) or (b) in the presence or 
absence (vehicle) of an inhibitor of cathepsin B (CA-074, 1 � ​M) for 6 h for recovery from the cytotoxicity of apoA-
IIowa �brils, a�er which mitochondrial membrane potential was analyzed by using TMRE dye. Representative 
images of TMRE �uorescence (red) and DIC microscopy are shown. �e graphs show quanti�cation of TMRE 
signals. Data are means � ​ SE of three independent experiments. Where no bars appear in the graphs, experimental 
values were between 0 and 0.013. (a) � ​� ​� ​p � ​ 0.00032 versus cells treated with apoA-IIowa �brils. (b) � ​� ​� ​p � ​ 0.000070 
versus apoA-IIowa �brils for 12 h or vehicle for 6 h.
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target of rapamycin, mTOR, resulted in induction of defective autophagy and exacerbated neurodegenerative 
phenotypes in amyotrophic lateral sclerosis49. In contrast, Guan et al. showed that targeting mTOR by rapamycin 
protected cardiomyocytes against amyloidogenic light chain proteotoxicity25. In agreement with this �nding, 
our study here demonstrated that rapamycin reduced mitochondrial dysfunction induced by apoA-IIowa �brils. 
All these data suggest that the autophagy-lysosomal pathway plays a critical role in the clearance of apoA-I 
�brils and that targeting of autophagy and lysosomes may be an attractive strategy for treatment of AApoA1 

Figure 5.  ApoA-I Iowa �brils inhibited autophagic �ux in HEK293 cells. (a) HEK293 cells were plated and 
treated with 1 � ​M apoA-IIowa �brils at 37 °C for 12 h, a�er which whole cell lysates were prepared. �e lysates 
were subjected to Western blotting with an anti-p62 antibody. � ​-Actin was used as a loading control. �e graph 
shows quanti�cation of p62. Data are means � ​ SE of three independent experiments. � ​p � ​ 0.042 versus non-
treated cells. (b) Cells were plated on poly-L-lysine-coated cover glasses and treated with 1 � ​M apoA-IIowa �brils 
at 37 °C for 12 h. A�er cells were �xed, they were stained with an anti-p62 antibody, followed by an Alexa Fluor 
488-conjugated secondary antibody. DAPI counterstaining appears blue.

Figure 6.  A possible mechanism of the cytotoxicity of apoA-IIowa �brils. ApoA-IIowa �brils were internalized 
and transported to the lysosomes, and some portions of them were degradable in the lysosomes. However, 
the presence of an excess amount of apoA-IIowa �brils in the lysosomes caused a loss of lysosomal acidity and 
cytosolic release of cathepsin B followed by mitochondrial depolarization.
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amyloidosis. Jakhria et al. reported that fragmented amyloid �brils of � ​2-microglobulin accumulated in lysosomes 
and impaired their proteolytic ability without causing an increase in lysosomal pH18, whereas amyloidogenic 
light chain proteins impaired autophagic �ux by increasing lysosomal pH and subsequently interfering with the 
proteolytic ability of the lysosomes25. In the present study, an overload of lysosomes with apoA-IIowa �brils as well 
as an increase in lysosomal pH may contribute to impaired lysosomal proteolytic activity.

We previously showed that apoA-IIowa �brils inhibited the reduction of 3-(4,4-dimethylthiazol-2-yl)-2,5-diph
enyltetrazolium bromide (MTT) and induced ROS production14,39. Also, apoA-IIowa �brils induced mitochondrial 
depolarization14. �ese results suggested that apoA-IIowa �brils acted, directly or indirectly, on mitochondria. Our 
results showing that apoA-IIowa �brils were transported to lysosomes and induced increased lysosomal acidity 
also suggest that apoA-IIowa �brils may act on lysosomes from the inside. �us, apoA-IIowa �brils induced cytosolic 
release of the lysosomal protease cathepsin B, which is reportedly responsible for mitochondrial depolarization42. 
Indeed, mitochondrial depolarization induced by apoA-IIowa �brils was rescued by treating cells with a cathepsin 
B inhibitor. A previous study has shown that A�​42 induced lysosomal membrane damage and cytosolic release of 
lysosomal contents in cultured cell17. Our results indicate that lysosomal dysfunction and cytosolic release of lyso-
somal contents are also crucial for cytotoxicity of apoA-IIowa �brils. How apoA-IIowa �brils induce lysosomal mem-
brane damage is currently unknown. Milanesi et al. reported that amyloid �brils formed from �​2-microglobulin 
interacted strongly with and disrupted lipid bilayers50, and disruption of membranes was enhanced in acidic pH51. 
One of the authors of the present study recently reported that formation of apoA-IIowa �brils was promoted on a 
lipid membrane, which suggests that apoA-IIowa �brils may interact with lipid bilayers52. �us, apoA-I Iowa �brils 
may interact with and disrupt the lysosomal membrane in a manner similar to that of �​2-microglobulin amyloid 
�brils. As we did not observed cell death in apoA-IIowa �bril-treated cells, we ruled out a possibility that cytosolic 
release of lysosomal cathepsin B was due to cell death. Although ROS production was linked to mitochondrial 
depolarization53,54 and oxidative stress induced lysosomal labilization55, our results indicate that the primary 
inducer of mitochondrial dysfunction in apoA-IIowa �bril-treated cells was lysosomal membrane permeabiliza-
tion. Lysosomal membrane permeabilization may also contribute to the loss of lysosomal acidity.

TFEB is a basic helix-loop-helix leucine zipper transcription factor and was identi�ed as a master regulator of 
lysosomal genes including LAMP1, LAMP2, cathepsins, and subunits of vacuolar ATPases34. TFEB overexpres-
sion in cultured cells increased lysosomal biogenesis and enhanced clearance of pathogenic protein aggregates 
formed by the mutant huntingtin protein34. Astrocytic expression of TFEB reportedly facilitated A�​ clearance 
and attenuated amyloid plaque formation in a mouse model of Alzheimer’s disease56. In our study here, TFEB 
overexpression promoted degradation of apoA-IIowa �brils. �us, activation of lysosomal biogenesis may be a 
potential therapeutic target and enhance cell clearance of protein aggregates in neurodegenerative diseases as 
well as amyloidosis.

Pinocytosis-dependent and dynamin-dependent endocytoses were implicated in the internalization and 
cytotoxicity of �​2-microglobulin amyloid �brils18,57. In the present study, cytochalasin D and dynasore inhib-
ited degradation of apoA-IIowa �brils, whereas nystatin did not. Cytochalasin D and nystatin are inhibitors of 
endocytosis that depends on actin dynamics and caveolae formation, respectively36,38. Dynasore is an inhibitor 
of the GTPase activity of dynamin, which is a regulator of membrane �ssion and indispensable for clathrin- and 
caveolin-mediated endocytosis, as well as clathrin- and caveolin-independent endocytosis37. �us, our results 
suggest that apoA-IIowa �brils may be internalized by cells and transported to lysosomes in a dynamin- and actin 
dynamics-dependent, but caveolin-independent, manner. Similarly, dynasore and cytochalasin D reportedly 
reduced the cytotoxicity of �​2-microglobulin amyloid �brils, possibly by inhibiting �bril internalization18,57. 
Nonphagocytic cells internalized beads having a diameter of 5.5 � ​M in a clathrin- and dynamin-dependent 
fashion58. Given that some types of pinocytosis depend on dynamin36, apoA-IIowa �brils may be internalized via 
pinocytosis and/or dynamin-dependent endocytosis. Elucidating the detailed mechanisms of internalization and 
intracellular transport of amyloid �brils is an important challenge for the future.

In summary, we showed that apoA-IIowa �brils were degraded via the autophagy-lysosomal pathway and 
induced lysosomal and mitochondrial dysfunction. Degradation of apoA-IIowa �brils was facilitated by enhancing 
autophagy and lysosomal biogenesis, and cytotoxicity of apoA-IIowa �brils was consequently ameliorated. �ese 
results indicate that enhancing the degradation of apoA-IIowa �brils may be a therapeutic strategy. Although addi-
tional studies are needed to con�rm the role of the autophagy-lysosomal pathway in clearance of apoA-I �brils  
in vivo, our �ndings support the importance of the autophagy-lysosomal pathway in the pathogenesis and pathol-
ogy of amyloidosis and provide a new insight into the development of AApoA1 amyloidosis treatment.

Materials and Methods
���ƒ�–�‡�”�‹�ƒ�Ž�•�ä Chloroquine was purchased from Wako Pure Chemical Industries (Osaka, Japan). 3-MA, rapa-
mycin, and dynasore were purchased from Cayman Chemical (Ann Arbor, MI). A polyclonal anti-p62 antibody 
was purchased from Cell Signaling Technology, Inc. (Beverly, MA), a polyclonal anti-�​-actin antibody was from 
Sigma (St. Louis, MO), and a polyclonal anti-LAMP2 antibody was from Bioss Antibodies (Woburn, MA). An 
inhibitor of cathepsin B (CA-074) was purchased from Peptide Institute, Inc. (Osaka, Japan). Nystatin and cyto-
chalasin D were purchased from Sigma. A monoclonal anti-apoA-I antibody (Wt20-7) was produced as previ-
ously described14. pEGFP-N1-TFEB was a gi� from Shawn Ferguson (Addgene plasmid #38119)59.

���”�‡�’�ƒ�”�ƒ�–�‹�‘�•���‘�ˆ���ƒ�’�‘���æ�����’�”�‘�–�‡�‹�•�•�ä  cDNA that encodes the N-terminal fragment (amino acid residues 1–83)  
of apoA-I was obtained by using PCR methods in which full-length human apoA-I cDNA was used as the tem-
plate. A mutation to create the G26R variant was introduced into the cDNA encoding the N-terminus of apoA-I 
(amino acid residues 1–83) by using the QuikChange Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA). 
The cDNA was ligated into the pET32a� ​ expression vector (Novagen, Madison, WI), after which the con-
struct was transformed into Escherichia coli strain BL21 Star (DE3) (�ermo Fisher Scienti�c, Waltham, MA).  
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The apoA-I fusion proteins were expressed and purified as previously described4. The apoA-I preparations 
were at least 95% pure, as determined by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) followed by staining with Coomassie Brilliant Blue. �e apoA-I preparations were lyophilized and 
stored at �​20 °C before use.

���”�‡�’�ƒ�”�ƒ�–�‹�‘�•���‘�ˆ���ƒ�’�‘���æ�����¤�„�”�‹�Ž�•�ä  �e N-terminal fragment (amino acid residues 1–83) of apoA-I carrying the 
Iowa mutation was solubilized in 6 M guanidine hydrochloride in phosphate-bu�ered saline (PBS) and dialyzed 
into PBS. �e peptide solution obtained was diluted with PBS to give a �nal concentration of 0.3 mg/mL, and the 
solution was incubated in a microcentrifugation tube in a rotating mixer at 37 °C for 7 days. Fibril formation of 
the apoA-IIowa fragments were monitored by measuring �uorescence of thio�avin T (10 � ​M) at 485 nm with an 
excitation wavelength of 445 nm.

���‡�Ž�Ž���…�—�Ž�–�—�”�‡�ä  HEK293 cells were cultured in DMEM (Sigma) supplemented with 10% heat-inactivated fetal 
bovine serum (BIOWEST SAS, Nuaillé, France), 100 U/mL penicillin (Sigma), and 100 � ​g/mL streptomycin 
(Sigma) at 37 °C in an atmosphere containing 5% CO2.

Assay of cellular degradation of apoA-IIowa���¤�„�”�‹�Ž�•���„�›���—�•�‹�•�‰���†�‘�–���„�Ž�‘�–�–�‹�•�‰���ƒ�•�†���‹�•�•�—�•�‘�…�›�–�‘�…�Š�‡�•�‹�•�–�”�›�ä  
Cells were plated on 6-well culture plates and cultured for 12 h. Cells were then incubated with 1 � ​M apoA-IIowa 
�brils at 37 °C for 12 h, followed by an additional incubation in fresh DMEM with or without inhibitors or induc-
ers of lysosomes and autophagy. In some experiments, cells were transfected with the pEGFP-N1 plasmid con-
taining human TFEB cDNA by using the ViaFect Transfection Reagent (Promega Corporation, Fitchburg, WI) 
and were cultured for 48 h before treatment with apoA-IIowa �brils. A�er incubation, whole cell lysates were pre-
pared by trichloroacetic acid precipitation and apoA-I contents were analyzed by using dot blotting as previously 
described14. Brie�y, cells were washed 3 times with PBS and then treated with 10% trichloroacetic acid (w/v) in 
PBS. A�er incubation on ice for 30 min, the samples were centrifuged at 1,000 � ​ g for 5 min at 4 °C. Resultant 
precipitates were dissolved in SDS-PAGE sample bu�er [0.125 M Tris-HCl, 4% (w/v) SDS, 20% (v/v) glycerol, and 
0.01% (w/v) bromophenol blue] for preparation of whole cell lysates. �e whole cell lysates obtained were blotted 
on nitrocellulose membranes (Pall Corporation, Port Washington, NY). ApoA-IIowa �brils on the membranes 
were probed with an anti-apoA-I antibody followed by a horseradish peroxidase-labeled anti-mouse antibody 
(Cell Signaling Technology, Inc.) and ImmunoStar LD (Wako Pure Chemical Industries). Protein contents of cell 
lysates were normalized to the expression level of �​-actin protein. Signals were visualized and analyzed by using 
an LAS-3000 luminescent image analyzer (Fuji�lm, Tokyo, Japan).

For immunocytochemistry, cells were plated on a poly-L-lysine-coated cover glass and cultured overnight. 
They were then incubated with 1 � ​M apoA-IIowa fibrils at 37 °C for 12 h, after which they were washed with 
fresh DMEM and cultured in DMEM for an additional 6–24 h. �e cells were �xed with 4% paraformaldehyde 
in PBS at room temperature for 20 min. A�er the cells were washed 3 times with PBS, they were blocked and 
permeabilized with 10% normal goat serum and 0.05% saponin in PBS at room temperature for 20 min. �ey 
were then incubated with an anti-apoA-I antibody followed by Alexa Fluor 568-conjugated secondary antibody 
(�ermo Fisher Scienti�c). �e stained specimens were mounted with Vectashield mounting medium containing  
4�​,6-diamidino-2-phenylindole (DAPI) (Vector Laboratories, Inc., Burlingame, CA) and examined with an A1R 
confocal laser microscope (Nikon Corporation, Tokyo, Japan).

Assay of the internalization pathway of apoA-IIowa���¤�„�”�‹�Ž�•���˜�‹�ƒ���†�‘�–���„�Ž�‘�–�–�‹�•�‰�ä HEK293 cells were 
plated on 6-well culture plates and treated with 1 �​M apoA-I Iowa �brils at 37 °C for 12 h in the presence or absence 
of cytochalasin D (1 � ​M), dynasore (15 � ​M), or nystatin (50 � ​g/mL). Whole cell lysates were prepared and the 
apoA-I contents of the lysates were analyzed by using dot blotting as described above.

���•�ƒ�Ž�›�•�‹�•���‘�ˆ���ƒ�—�–�‘�’�Š�ƒ�‰�‹�…���ª�—�š���˜�‹�ƒ�����‡�•�–�‡�”�•���„�Ž�‘�–�–�‹�•�‰���ƒ�•�†���‹�•�•�—�•�‘�…�›�–�‘�…�Š�‡�•�‹�•�–�”�›�ä  Brie�y, for Western 
blotting with an anti-p62 antibody, cells were plated on 6-well culture plates and treated with 1 � ​M apoA-IIowa 
�brils at 37 °C for 12 h, a�er which whole cell lysates were prepared and subjected to Western blotting with an 
anti-p62 antibody, as described above.

For immunocytochemistry, cells were plated on a poly-L-lysine-coated cover glass and cultured overnight. 
�e cells were then incubated with 1 � ​M apoA-IIowa �brils at 37 °C for 12 h, washed with PBS, and �xed with 4% 
paraformaldehyde in PBS at room temperature for 20 min. A�er the cells were washed 3 times with PBS, they 
were blocked and permeabilized with 10% normal goat serum and 0.05% saponin in PBS at room temperature for 
20 min. �e cells were then incubated with an anti-p62 antibody followed by Alexa Fluor 488-conjugated second-
ary antibody (�ermo Fisher Scienti�c). Stained specimens were mounted with Vectashield mounting medium 
containing DAPI and examined with an A1R confocal laser microscope.

���‡�ƒ�•�—�”�‡�•�‡�•�–���‘�ˆ���•�‹�–�‘�…�Š�‘�•�†�”�‹�ƒ�Ž���•�‡�•�„�”�ƒ�•�‡���’�‘�–�‡�•�–�‹�ƒ�Ž�ä Mitochondrial membrane potential was deter-
mined by using the mitochondrial membrane potential-sensitive �uorophore tetramethylrhodamine ethyl ester 
(TMRE) (MitoPT assay kit; ImmunoChemistry Technologies, Bloomington, MN). Brie�y, HEK293 cells were 
plated and cultured on a poly-L-lysine-coated cover glass, followed by treatment with 1 � ​M apoA-I �brils at 37 °C 
for 12 h. A�er the cells were washed 3 times with PBS, they were treated with TMRE (10 nM) at 37 °C for 20 min 
in the dark. TMRE �uorescence was acquired by using an excitation wavelength of 555 nm with an LSM 710 con-
focal microscope (Carl Zeiss MicroImaging GmbH, Jena, Germany). For quanti�cation, images were analyzed by 
using ImageJ so�ware (NIH, Bethesda, MD).

���•�•�‡�•�•�•�‡�•�–���‘�ˆ���Ž�›�•�‘�•�‘�•�ƒ�Ž���’���ä Lysosomal pH was analyzed by means of LysoSensor Yellow/Blue DND-160 
(�ermo Fisher Scienti�c) as previously reported14. Brie�y, HEK293 cells were treated with 1 � ​M apoA-I �brils at 
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37 °C for 6 h followed by the LysoSensor (1 � ​M, 3 min). Samples were examined with an LSM 710 confocal laser 
microscope according to the manufacturer’s instructions. Red signals indicated acidic conditions. For quanti�ca-
tion, images were analyzed by using ImageJ so�ware.

���•�•�‡�•�•�•�‡�•�–���‘�ˆ���…�›�–�‘�•�‘�Ž�‹�…���”�‡�Ž�‡�ƒ�•�‡���‘�ˆ���…�ƒ�–�Š�‡�’�•�‹�•�����ä For subcellular fractionation into cytosolic and lysoso-
mal fractions, cells were treated with 1 �​M apoA-I �brils at 37 °C for 6 h, washed 3 times with PBS and incubated 
with twice the volume of MSH bu�er (210 mM mannitol, 70 mM sucrose, 20 mM HEPES, 1 mM EDTA, and a 
protease inhibitor cocktail, pH 7.5) at 4 °C for 45 min. Cells were lysed by using a 25-G needle and were then 
centrifuged for 5 min at 350 � ​ g to precipitate nuclei. To obtain a crude membrane/lysosomal fraction, the post-
nuclear supernatant was centrifuged at 16,000 � ​ g for 20 min followed by ultracentrifugation at 100,000 � ​ g for 
45 min, and the pellet was resuspended in MSH bu�er containing 1% Triton. �e supernatant (cytosolic fraction) 
and lysosomal fraction were subjected to Western blotting with an anti-cathepsin B antibody as described above.

���–�ƒ�–�‹�•�–�‹�…�ƒ�Ž���ƒ�•�ƒ�Ž�›�•�‹�•�ä  Data were analyzed via one-way analysis of variance, including the appropriate varia-
bles, followed by the Bonferroni test or unpaired Student’s t-test. Results were regarded as signi�cant for p � ​ 0.05.

���‡�ˆ�‡�”�‡�•�…�‡�•
1.	�ader, D. J., Alexander, E. T., Weibel, G. L., Billheimer, J. & �othblat, G. H. �e role of reverse cholesterol transport in animals and 

humans and relationship to atherosclerosis. J Lipid �es 50 Suppl, S189–S194 (2009).
2.	Segrest, J. P. et al. �e amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid 

�es. 33, 141–166 (1992).
3.	Brouillette, C. G., Anantharamaiah, G. M., Engler, J. A. & Borhani, D. W. Structural models of human apolipoprotein A-I: a critical 

analysis and review. Biochim Biophys Acta 1531, 4–46 (2001).
4.	Saito, H. et al. Domain structure and lipid interaction in human apolipoproteins A-I and E, a general model. J Biol Chem. 278, 

23227–23232 (2003).
5.	Eri�sson, M. et al. Hereditary apolipoprotein AI-associated amyloidosis in surgical pathology specimens: identi�cation of three 

novel mutations in the APOA1 gene. J Mol Diagn. 11, 257–262 (2009).
6.	Obici, L. et al. Structure, function and amyloidogenic propensity of apolipoprotein A-I. Amyloid 13, 191–205 (2006).
7.	Nichols, W. C., Gregg, �. E., Brewer, H. B., Jr. & Benson, M. D. A mutation in apolipoprotein A-I in the Iowa type of familial 

amyloidotic polyneuropathy. Genomics 8, 318–323 (1990).
8.	Nichols, W. C., Dwulet, F. E., Liepnie�s, J. & Benson, M. D. Variant apolipoprotein AI as a major constituent of a human hereditary 

amyloid. Biochem Biophys �es Commun. 156, 762–768 (1988).
9.	�owczenio, D. et al. Amyloidogenicity and clinical phenotype associated with �ve novel mutations in apolipoprotein A-I. Am  

J Pathol. 179, 1978–1987 (2011).
10.	�opito, �. �. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10, 524–530 (2000).
11.	Alves-�odrigues, A., Gregori, L. & Figueiredo-Pereira, M. E. Ubiquitin, cellular inclusions and their role in neurodegeneration. 

Trends Neurosci. 21, 516–520 (1998).
12.	Haass, C. & Sel�oe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid b-peptide. Nat �ev 

Mol Cell Biol. 8, 101–112 (2007).
13.	Xue, W.-F. et al. Fibril fragmentation enhances amyloid cytotoxicity. J Biol Chem. 284, 34272–34282 (2009).
14.	�uwabara, �. et al. Cellular Interaction and Cytotoxicity of the Iowa Mutation of Apolipoprotein A-I (ApoA-IIowa) Amyloid 

Mediated by Sulfate Moieties of Heparan Sulfate. J Biol Chem 290, 24210–24221 (2015).
15.	de Duve, C. �e lysosome turns ��y. Nat Cell Biol. 7, 847–849 (2005).
16.	Ballabio, A. �e awesome lysosome. EMBO Mol Med. 8, 73–76 (2016).
17.	Liu, �.-Q. et al. Membrane localization of b-amyloid 1-42 in lysosomes: a possible mechanism for lysosome labilization. J Biol Chem. 

285, 19986–19996 (2010).
18.	Ja�hria, T. et al. b2-microglobulin amyloid �brils are nanoparticles that disrupt lysosomal membrane protein tra�c�ing and inhibit 

protein degradation by lysosomes. J Biol Chem. 289, 35781–35794 (2014).
19.	Levine, B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120, 159–162 (2005).
20.	Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861–2873 (2007).
21.	Appelqvist, H., Wäster, P., �ågedal, �. & Öllinger, �. �e lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol. 5, 

214–226 (2013).
22.	Shigihara, N. et al. Human IAPP-induced pancreatic b cell toxicity and its regulation by autophagy. J Clin Invest. 124, 3634–3644 

(2014).
23.	�ivera, J. F., Costes, S., Gurlo, T., Glabe, C. G. & Butler, P. C. Autophagy defends pancreatic b cells from human islet amyloid 

polypeptide-induced toxicity. J Clin Invest. 124, 3489–3500 (2014).
24.	�im, J. et al. Amyloidogenic peptide oligomer accumulation in autophagy-de�cient �​ cells induces diabetes. J Clin Invest. 124, 

3311–3324 (2014).
25.	Guan, J. et al. Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated 

cardiotoxicity. EMBO Mol Med 6, 1493–1507 (2014).
26.	Adachi, E. et al. Dual role of an N-terminal amyloidogenic mutation in apolipoprotein A-I: destabilization of helix bundle and 

enhancement of �bril formation. J Biol Chem. 288, 2848–2856 (2013).
27.	Mucchiano, G. I., Häggqvist, B., Sletten, �. & Westermar�, P. Apolipoprotein A-1-derived amyloid in atherosclerotic plaques of the 

human aorta. J Pathol. 193, 270–275 (2001).
28.	Nishitsuji, �., Hosono, T., Uchimura, �. & Michi�awa, M. Lipoprotein lipase is a novel amyloid beta (Ab)-binding protein that 

promotes glycosaminoglycan-dependent cellular upta�e of Ab in astrocytes. J Biol Chem. 286, 6393–6401 (2011).
29.	Majumdar, A. et al. Activation of microglia acidi�es lysosomes and leads to degradation of Alzheimer amyloid �brils. Mol Biol Cell 

18, 1490–1496 (2007).
30.	de Duve, C. et al. Commentary. Lysosomotropic agents. Biochem Pharmacol. 23, 2495–2531 (1974).
31.	Hyttinen, J. M. T. et al. Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. 

Ageing �es �ev. 18, 16–28 (2014).
32.	Seglen, P. O. & Gordon, P. B. 3-Methyladenine: speci�c inhibitor of autophagic/lysosomal protein degradation in isolated rat 

hepatocytes. Proc Natl Acad Sci USA 79, 1889–1892 (1982).
33.	Laplante, M. & Sabatini, D. M. mTO� signaling at a glance. J Cell Sci. 122, 3589–3594 (2009).
34.	Sardiello, M. et al. A gene networ� regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).
35.	Fu�uda, M. Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular traffic�ing. J Biol Chem. 266, 

21327–21330 (1991).
36.	Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu �ev Biochem 78, 857–902 (2009).



www.nature.com/scientificreports/

11

37.	Gottlieb, T. A., Ivanov, I. E., Adesni�, M. & Sabatini, D. D. Actin micro�laments play a critical role in endocytosis at the apical but 
not the basolateral surface of polarized epithelial cells. J Cell Biol. 120, 695–710 (1993).

38.	Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10, 839–850 (2006).
39.	Na�ajima, H. et al. �e polyphenol (–)-epigallocatechin-3-gallate prevents apoA-IIowa amyloidosis in vitro and protects human 

embryonic �idney 293 cells against amyloid cytotoxicity. Amyloid 23, 17–25 (2016).
40.	�roemer, G. & Jaattela, M. Lysosomes and autophagy in cell death control. Nat �ev Cancer 5, 886–897 (2005).
41.	Tur�, B. & Tur�, V. Lysosomes as “suicide bags” in cell death: myth or reality? J Biol Chem. 284, 21783–21787 (2009).
42.	Boya, P. et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med. 197, 

1323–1334 (2003).
43.	Montaser, M., Lalmanach, G. & Mach, L. CA-074, but not its methyl ester CA-074Me, is a selective inhibitor of cathepsin B within 

living cells. Biol Chem. 383, 1305–1308 (2002).
44.	Bjør�øy, G. et al. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452, 181–197 (2009).
45.	Pan�iv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. 

J Biol Chem. 282, 24131–24145 (2007).
46.	Bahr, B. A. & Bendis�e, J. �e neuropathogenic contributions of lysosomal dysfunction. J Neurochem. 83, 481–489 (2002).
47.	Berger, Z. et al. �apamycin alleviates toxicity of di�erent aggregate-prone proteins. Hum Mol Genet. 15, 433–442 (2006).
48.	�avi�umar, B., Duden, �. & �ubinsztein, D. C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are 

degraded by autophagy. Hum Mol Genet. 11, 1107–1117 (2002).
49.	Zhang, X. et al. �apamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral 

sclerosis. Autophagy 7, 412–425 (2011).
50.	Milanesi, L. et al. Direct three-dimensional visualization of membrane disruption by amyloid �brils. Proc Natl Acad Sci USA 109, 

20455–20460 (2012).
51.	Goodchild, S. C. et al. � ​2-Microglobulin amyloid �bril-induced membrane disruption is enhanced by endosomal lipids and acidic 

pH. PLoS One 9, e104492 (2014).
52.	Mizuguchi, C. et al. Amyloidogenic mutation promotes �bril formation of the N-terminal apolipoprotein A-I on lipid membranes. 

J Biol Chem. 290, 20947–20959 (2015).
53.	Xi, Q., Cheranov, S. Y. & Jaggar, J. H. Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2�  spar�s. 

Circ �es. 97, 354–362 (2005).
54.	Cherra, S. J., Dagda, �. �., Tandon, A. & Chu, C. T. Mitochondrial autophagy as a compensatory response to PIN�1 de�ciency. 

Autophagy 5, 1213–1214 (2009).
55.	Terman, A., �urz, T., Gustafsson, B. & Brun�, U. T. Lysosomal labilization. IUBMB Life 58, 531–539 (2006).
56.	Xiao, Q. et al. Enhancing astrocytic lysosome biogenesis facilitates Ab clearance and attenuates amyloid plaque pathogenesis.  

J Neurosci. 34, 9607–9620 (2014).
57.	O�oshi, T., Yamaguchi, I., Ozawa, D., Hasegawa, �. & Nai�i, H. Endocytosed b2-microglobulin amyloid �brils induce necrosis and 

apoptosis of rabbit synovial �broblasts by disrupting endosomal/lysosomal membranes: a novel mechanism on the cytotoxicity of 
amyloid �brils. PLoS One 10, e0139330 (2015).

58.	Veiga, E. et al. Invasive and adherent bacterial pathogens co-Opt host clathrin for infection. Cell Host Microbe. 2, 340–351 (2007).
59.	�ocznia�-Ferguson, A. et al. The transcription factor TFEB lin�s mTO�C1 signaling to transcriptional control of lysosome 

homeostasis. Sci Signal 5, ra42 (2012).

Acknowledgements
�e authors would like to thank the Support Center for Advanced Medical Sciences, Institute of Biomedical 
Sciences, Tokushima University Graduate School. �is work was partly supported by the Grant-in-Aid for Scienti�c 
Research B-25293006 (to H.S.), the Grant-in-Aid for Challenging Exploratory Research 26670190 (to N.S.), and 
the Grant-in-Aid for Young Scientists B-15K19488 (to K.N.) from the Japan Society for the Promotion of Science.

Author Contributions
H.K., H.N. and S.M. performed the experiments. K.O. contributed the experimental materials and interpreted the 
data. N.S. contributed experimental materials and tools. H.S. contributed reagents, materials, and analytical tools 
and supervised the entire project. N.K. established the anti-apoA-I antibody. K.U. contributed reagents, materials, 
and analytical tools, interpreted the data, and edited the manuscript. K.N. designed the research, interpreted 
the data, wrote the paper and takes full responsibility for the manuscript. All authors reviewed the results and 
approved the �nal version of the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing �nancial interests: �e authors declare no competing �nancial interests.

How to cite this article: Kameyama, H. et al. Iowa Mutant Apolipoprotein A-I (ApoA-IIowa) Fibrils Target 
Lysosomes. Sci. Rep. 6, 30391; doi: 10.1038/srep30391 (2016).

�is work is licensed under a Creative Commons Attribution 4.0 International License. �e images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© �e Author(s) 2016


	Iowa Mutant Apolipoprotein A-I (ApoA-IIowa) Fibrils Target Lysosomes
	Introduction




