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Frequency locking and controllable chaos through exceptional point in optomechanics

P. Djorwe,1, ∗ Y. Pennec,1, † and B. Djafari-Rouhani1, ‡

1Institut d’Electronique, de Microélectronique et Nanotechnologie,
UMR CNRS 8520 Université de Lille, Sciences et technologies, Villeneuve d’ Ascq 59652, France

We engineer mechanical gain (loss) in system formed by two optomechanical cavities (OMCs),
that are mechanically coupled. The gain (loss) is controlled by driving the resonator with laser that
is blue (red) detuned. We predict analytically the existence of multiple exceptional points (EPs),
a form of degeneracy where the eigenvalues of the system coalesce. At each EP, phase transition
occurs, and the system switches from weak to strong coupling regimes and vice versa. In the weak
coupling regime, the system locks on an intermediate frequency, resulting from coalescence at the
EP. In strong coupling regime, however, two or several mechanical modes are excited depending
on system parameters. The mechanical resonators exhibit Rabi-oscillations when two mechanical
modes are involved, otherwise the interaction triggers chaos in strong coupling regime. This chaos is
bounded by EPs, making it easily controllable by tuning these degeneracies. Moreover, this chaotic
attractor shows up for low driving power, compared to what happens when the coupled OMCs are
both drived in blue sidebands. This works opens up promising avenues to use EPs as a new tool to
study collective phenomena (synchronization, locking effects) in nonlinear systems, and to control
chaos.

PACS numbers: 42.50.Wk, 42.50.Lc, 05.45.Xt, 05.45.Gg
Keywords: Optomechanics, exceptional point, frequency locking, chaos

I. INTRODUCTION

Optomechanical systems provide a promising platform
to explore light-matter interactions for both technological
applications and fundamental physics [1]. Through op-
tomechanics, a mechanical resonator can be studied from
quantum ground state [2],[3],[4] to the amplified regime
characterized with large displacements [5],[6],[7].

At the parametric instability point, where the
backaction-induced mechanical gain overcomes mechani-
cal loss, mechanical self-oscillations start [8], [9],[10], and
the system enters into a nonlinear regime. This regime is
a prerequisite to study collective phenomena such as syn-
chronization and frequency locking [11],[12],[13],[14],[15].
Such phenomena have practical applications in rf commu-
nication [16], signal-processing [17], clock synchroniza-
tion [18] and novel computing and memory concepts [19].
In [13], two lasers were used to lock two optomechani-
cal systems, while the all-optical light-mediated locking
of three spatially distant optomechanical oscillators was
achieved using a single laser source in [15]. The thresh-
old of this locking effect as well as the mechanism behind
it are not well predicted, but occurs spontaneously as
the driving strength is increasing [13], [15]. Therefore,
predictability and controllability of locking phenomenon
become relevant.

In optomechanics, it is well-known that strong driving
strength induces period doubling and chaos [20],[21],[22],
[23]. Chaotic behaviour is useful for generating random
numbers and implementing secret information process-
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ing (see [24] and references therein). However, to apply
chaos into a secret communication scheme, good control-
lability and low-power threshold are required [25],[26].
Low-driving threshold chaos has been achieved in [25],
using optical PT-symmetry in an optomechanical system;
while controllable chaos with a low-driving threshold has
been investigated in an electro-optomechanical system in
[26]. A system that can handle these issues concerning
locking phenomenon and chaos, would be a good bench-
mark for technological applications based on nonlinear
optomechanics.

Here, we investigate a system that provides both con-
trollability and low-power threshold for chaos as well as
the predictability and control of frequency locking phe-
nomenon. The key point of this is the exceptional points
(EPs), a form of degeneracy in gain and loss systems,
where the eigenvalues coalesce and become conjugate
complex numbers [27]. The proposal system is formed
by two OMCs, that are mechanically coupled. The gain
and loss are created by symmetrically driving the cavi-
ties with blue and red detuned lasers, respectively. In-
teresting counter-intuitive features and intriguing effects
such as stopping light [28], loss-induced suppression and
revival of lasing, pump-induced lasing death, and unidi-
rectional invisibility have been observed in the vicinity
of EPs (see [29] and references therein). Owing to these
interesting properties of EPs, here we show that: (i)
chaos and multistability vanish at the EP and (ii) fre-
quency locking effect is induced by EP. This dual effect
results from the coalescence of modes. Therefore, switch-
ing from multimode to single mode scrucially depends on
the EP. These results pave a way to control chaos and to
predict locking effects in large-scale networks of nonlin-
ear systems by exploiting EPs. This work is organized as
follows. In Sec. II, the system and the dynamical equa-
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tions are described. The predictability of frequency lock-
ing effect and control of chaos are presented in Sec. III.
Section IV is devoted to investigate the transient chaotic
behaviour and out of phase synchronization, while Sec.
V concludes the work.

II. MODELLING AND DYNAMICAL
EQUATIONS

The system of our proposal is the one in Fig. 1a, where
the cavity labelled 1 (labelled 2), is driven with a red
(blue) detuned laser. In the rotating frame of the driving
fields, the Hamiltonian (~ = 1) describing this system is,

H = HOM +Hint +Hdrive, (1)

with
HOM =

∑
j=1,2[−∆ja

†
jaj + ω0jb

†
jbj − ga

†
jaj(b

†
j + bj)]

Hint = −J(b1b
†
2 + b†1b2)

Hdrive =
∑
j=1,2E(a†j + aj).

(2)
In this Hamiltonian, ω0j (ω01 6= ω02) and ∆j = ωjp−ωjcav
are the mechanical frequency of the jth resonator and the
optical detuning between the jth optical drive (ωjp) and
the jth cavity eigenfrequency (ωjcav), respectively. The
quantities aj and bj are the annihilation bosonic field op-
erators describing the optical and mechanical resonators,
respectively. The mechanical displacements xj are con-
nected to bj as xj = x

ZPF
(bj + b†j), where x

ZPF
is the

zero-point fluctuation amplitude of the mechanical res-
onator. The mechanical coupling strength between the
two mechanical resonators is J , and the optomechanical
coupling is g. The amplitude of the driving pump is E.
The quantum Langevin equations (QLEs) for the opera-
tors of the optical and the mechanical modes are derived
from Eq. (2) as,{

ȧj = [i(∆j + g(b†j + bj))− κ
2 ]aj − i

√
κ(ain + ξaj ),

ḃj = −(iω0j + γm
2 )bj + iJb3−j + iga†jaj +

√
γmξbj ,

(3)
where optical (κ) and mechanical (γm) dissipations have
been added, and the amplitude of the driving pump has
been substituted as E =

√
κain in order to account

for losses. In this form, the input laser power Pin acts
through ain =

√
Pin

~ωp . The term ξaj (ξbj ) denotes the
optical (thermal) Langevin noise at room temperature.

We seek to investigate in the classical limit, where pho-
ton and phonon numbers are assumed large in the system,
and noise terms can be neglected in our analysis. Thus,
we rewrite Eq. (3) into a set of differential equations for
the four complex scalar fields, {αj}j=1,2 for the optics
and {βj}j=1,2 for the mechanics, standing for the mean
values of the operators 〈a〉 = αj and 〈b〉 = βj . This leads
to the following set of nonlinear equations,{

α̇j = [i(∆j + g(β∗j + βj))− κ
2 ]αj − i

√
καin,

β̇j = −(iω0j + γm
2 )βj + iJβ3−j + igα∗jαj ,

(4)

For simplicity, the parameters (γm, g, κ) are assumed to
be degenerated for both cavities. Throughout the work,
we assume the hierarchy of parameters γm, g � κ� ω0j ,
similar to the experiments carried out in the resolved
sideband regime [30],[31].

In Figs. 1(b)−(e), we show the overall properties of
the steady state solutions of Eq. (4), where all the tran-
sient dynamics has died out. Three regimes can be iden-
tified in (αin, J) parameter’s space. As the driving αin
increases for a fixed J = 2.2×10−2ωm (see dashed line in
Fig. 1b), the system switches from the linearized regime
(blue area) to the nonlinear one (gray and green colors)
through the onset of the self-induced oscillations. In the
nonlinear regime, the system switches twice into weak
coupling regimes (gray color), and once into a strong
coupling regime (green color). The meaning of weak
(strong) coupling regime will be given later on. Each
transition in weak coupling regime is followed by limit
cycle oscillations, and both mechanical resonators lock
and start oscillating with a common frequency (see Fig.
1c). However, this frequency locking phenomenon is de-
stroyed when the system jumps into the strong coupling
regime, where Rabi oscillations show up (see Fig. 1d and
Fig. 1e). These Rabi oscillations can be regular (Fig.
1d) or chaotic like-behaviour (Fig. 1e and light green
area in Fig. 1b). This chaotic attractor is bounded be-
tween two limit cycle regimes. Such phase transitions,
between weak and strong couplings in coupled gain/loss
system, are reminiscent of EP [32],[33]. It results that,
(i) our system features multiple EPs [34], which are use-
ful: (ii) to induce frequency locking, (iii) and to control
chaotic dynamics.

To get insight of the EP features, we approach the
limit cycle oscillations by the ansatz, βj(t) = β̄j +
Aj exp(−iω

lock
t) [35]. β̄j is a constant shift in the origin

of the movement, Aj is the slowly time dependent ampli-
tude of the cycles, and ω

lock
is the mechanical locked fre-

quency. Similar to multistability in optomechanics [35],
this ansatz aims to provide analytical tools, describing
the feature of multiple EPs. Using this ansatz, it is
straightforward to integrate αj(t) out of the full sys-
tem (see Appendix B), resulting in effective equations
of motion for just the mechanical resonators having the
form i∂tΨ = HeffΨ. We have set the state vector
Ψ = (β1, β2)

T and the effective Hamiltonian is,

Heff =

[
ω1
eff − i

γ1
eff

2 −J
−J ω2

eff − i
γ2
eff

2

]
. (5)

This Hamiltonian has the eigenvalues,

λ± '
ω1
eff + ω2

eff

2
− i

4

(
γ1
eff + γ2

eff

)
± σ

2
. (6)

Here ωjeff = ω0j + δωj and γjeff = γm + γjopt are the ef-
fective frequencies and dampings respectively. The quan-

tity σ ≈
√

4J2 − ∆γ2
eff

4 , with ∆γeff = γ2
eff − γ1

eff , is
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FIG. 1: (a) Generic setup. (b) Numerical diagram depicting the possible regimes involved. (c) Locked frequency and its
corresponding phase space representation (see inset, p is the momentum). (d) and (e) Regular and chaotic Rabi oscillations,
respectively. Blue (red) color is related to the blue (red) mechanical supermode. In (c)-(e), J = 2.2 × 10−2ωm and αin =
(4.3×102, 4.5×102, 5.5×102)

√
ωm respectively. The other used parameters are, γm = 10−3ωm, κ = 10−1ωm, g = 2.5×10−4ωm,

ω01 = 1.002ωm, ω02 = ωm, ∆1 = −ωm and ∆2 = ωm.

amplitude dependent through the normalised amplitude
εj =

2gRe(Aj)
ω

lock
. Indeed, the optical dampings γjopt are ex-

pressed as ,

γjopt =
2(gκαin)2

εj

∑
n

Jn+1 (−εj) Jn (−εj)∣∣∣hj∗n+1h
j
n

∣∣∣2 , (7)

where Jn is the Bessel function, hjn = i
(
nω

lock
− ∆̃j

)
+ κ

2

and ∆̃j = ∆j + δj , with δj = 2g(β̄j), is the nonlin-
ear detuning (see Appendix B). The eigenfrequencies
and the dampings of the system are defined as the real
(ω± = <(λ±)) and imaginary (γ± = =(λ±)) parts of λ±,
respectively. However, the quantities ω± and γ± depend
on σ, delimiting the weak and strong regimes aforemen-
tioned in Fig. 1b. The strong coupling regime is defined
for J >

∆γeff
4 , while the weak coupling one holds for

J <
∆γeff

4 . The EPs, phase transitions between these
two regimes, are defined by J =

∆γeff
4 . This induces

σ = 0, whose solutions predict multiple EPs [34], ow-
ing to the oscillating nature of σ (see the dashed line in
Fig. 1b). After demonstrating the emergence of multi-
ple EPs, we take a step further, showing that EPs can

be used as a new paradigm both for achieving frequency
locking and to control chaos.

III. FREQUENCY LOCKING AND CHAOS

A. Frequency locking

In the linear regime, εj → 0, we use {σ(εj), µ(εj)} →
{σ0, µ(0)}, where µ stands for any amplitude-dependent
term. The mechanical resonators oscillate with two
eigenfrequencies (see Fig. 2a),

ω± '
ω1
eff (0) + ω2

eff (0)

2
± σ0

2
, (8)

that exchange energy through Rabi oscillations [32],[33]
as depicted in the inset of Fig. 2a. These Rabi oscil-
lations have an exponentially decaying profile whose is
defined by the imaginary parts of the eigenvalues (see
Fig. 2b),

γ± =
−
(
γ1
eff (0) + γ2

eff (0)
)

4
. (9)
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The quantity ∆γeff is quadratic in αin (see Eq. (7)),
and it will overcome 4J2 as αin is increasing, that is at
EP1. Consequently, the two mechanical resonators spon-
taneously lock at the frequency ω

lock
=

ω1
eff+ω2

eff

2 , as it
can be deduced from Eq. (8). This locking effect per-
sists until another EP is reached. This constitutes one of
our findings, showing that frequency locking is achieved
through EP. This result opens up novel prospects for ap-
plications of EPs in realizing locking modes in optome-
chanics and others similar devices.

FIG. 2: (a), (b) Real and imaginary part of the eigenmodes,
respectively. Inset of (a) shows (mechanical) Rabi oscillations
at αin = 3 × 102√ωm. The coupling strength is J = 2.2 ×
10−2ωm and the other parameters are as in Fig. 1.

B. Chaos

In the nonlinear regime, linear approximation is pre-
served for weak amplitudes (εj � 1) [30],[36], and both
dissipations (γ±) keep the same sign (see inset of Fig.
2b). For non-negligible εj , the oscillations of σ can lead
to multiple EPs. For J = 2.2 × 10−2ωm for instance,
EP2 and EP3 are induced as shown in Fig. 3a and Fig.
3b (see also vertical and horizontal line intersections in
Fig. 1b). Weak coupling holds between EP1 and EP2.
Beyond EP2, the system jumps into a strong coupling
regime, where Rabi oscillation emerge (see Fig. 1d). As
the driving increases, the optical nonlinearity δj splits
into multistable solutions (see Fig. 3a), affecting the
frequency of Rabi oscillations σ. In our proposal, this

multistability process constitutes a route to chaos [23].
When the optomechanical nonlinearities become compa-
rable to the optical linewidth (δj ∼ κ

2 ), chaotic oscilla-
tions are triggered in the system. This can be seen in
Fig. 3b, showing range of frequencies continuum. This
figure is obtained by collecting peaks and corresponding
frequencies, of the mechanical steady states, from Fast
Fourier Transform (FFT). Such bifurcation diagram in
frequency space is useful here, since it has the advantage
of well-tracking dynamics of Rabi oscillations (see Ap-
pendix A). Through Lyapunov Exponent (LE) [24],[25],
we have confirmed this chaotic behaviour in Fig. 3c.
The negative (positive) value of LE indicates that the
system exhibits periodic (chaotic) dynamics. For quasi-
periodic behaviour, discrete frequencies in Fig. 3b, LE
is close to zero. As the driving strength is growing,
EP3 is reached, and the system switches back into the
weak coupling regime. Features stemming from the pres-
ence of EP3 are the disappearance of Rabi oscillations
[32] and the spontaneous emergence of frequency lock-
ing (see Fig. 3b for αin ∼ 5.6 × 102√ωm). It results
that, the chaotic attractor is bounded between EP2 and
EP3. Threshold of this chaos can be controlled by tun-
ing EPs through system’s parameters. We focus our in-
vestigation here on the mechanical frequency mismatch
ω01 − ω02. The reason lies on the difficuties to engineer
two identical mechanical resonators, that have exactly
the same frequencies. For a fixed J = 2.2 × 10−2ωm,
Fig. 3d shows that, the mechanical resonators can be
no longer strongly coupled if their frequency mismatch
exceeds (ω01 − ω02) & 10−2ωm. Furthermore, large fre-
quency mismatch destroys chaotic dynamics, since chaos
is limited for (ω01 − ω02) . 5 × 10−3ωm as shown by
the light green color in Fig. 3d. It follows that, an in-
crease (decrease) of the mechanical frequency mismatch
controls (induces) chaotic dynamics. Conversely, increas-
ing (ω01 − ω02) enhances frequency locking effect. This
provides a method of manipulating and controlling chaos
through EPs, making it useful in large technological
platforms [23]. This is our second finding, suggesting
a bounded and controllable chaos through EPs in cou-
pled OMCs. The main ingredient for the emergence
of this chaos is a strong coupling between the mechani-
cal resonators, instead of being a strong driving strength
[20],[21],[22], [23].

In the above discussion, we considered the blue-red
configuration of coupled cavities. For a matter of com-
parison, the inset of Fig. 3c shows the LE obtained in the
analog blue-blue configuration, using the same parame-
ters. It results that, the threshold of chaos is reduced
almost four times in our proposal (see also [24], [25]).
Lowering threshold of chaos is a requiring element in a
secret communication scheme, and our work provides a
new paradigm based on tunability of EP.
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FIG. 3: (a) Frequency shift and origin of nonlinearities. (b) Frequencies of the mechanical resonators versus αin. (c) Corre-
sponding Lyapunov Exponent (LE) versus αin. The inset of (c) is the LE for the analog blue−blue configuration. (d) Overview
of dynamical states related to frequency mismatch ω01 − ω02 at J = 2.2× 10−2ωm.

IV. TRANSIENT CHAOS AND
π-SYNCHRONIZATION

A. Transient chaos

The phenomenon of transient chaos was recently stud-
ied in optomechanics [39]. Besides being a physically
meaningful phenomenon by itself, these authors have
shown that transient chaos constitutes a bridge for the
quantum-classical transition. However, we show here
that transient chaos induces transition towards frequency
locking. At the EP3, chaotic dynamics vanishes, and the
system locks back at ω

lock
(see Fig. 3b). This locked

state depends on whether there is a coexistence between
transient chaos and limit cycle attractors or not. In the
former case, this coexistence locks the system on a higher
energy state, otherwise the locking is achieved on the
lower energy state. As we can see in the gray area in Fig.
3b, the system starts on the upper branch (higher en-
ergy), and gradually switches on the lower branch (lower
energy) as the driving strength is increasing. This is de-
picted in Fig. 4, where we have chosen two values of αin,
one for the upper branch (see Fig. 4a) and the other
on the lower branch (see Fig. 4b). It results that, tran-
sient chaos and limit cycle attractors coexist on the up-
per branch, while Rabi-oscillations precede limit cycles
on the lower branch. When transient chaos is involved,

the LE starts diverging, and decays over time in order to
match the appropriate limit cycle dynamics. However,
this relaxation time is long that the chaotic signature
persists in the LE (see the green box in Fig. 3c). As the
configuration in Fig. 4b is more stable than the one in
Fig. 4a [39], after a short competition between upper and
lower branches, the system finally settles into the lower
branch that is more stable. Besides its dynamical aspect,
the transient state determines the kind of collective phe-
nomenon exhibited by the final steady state (see zooms
in Fig. 4a and Fig. 4b).

B. π-synchronization

Beyond this transient regime (gray area in Fig. 3b),
only the locked state with the lower energy persists
and the mechanical resonators exhibit two different be-
haviours based on their phase difference. Either they os-
cillate out of phase or they exhibit limit cycle oscillations
with different dissipations,

γ± =
−
(
γ1
eff + γ2

eff

)
4

± σ

2
. (10)

In the latter case, the asymmetry between the dissi-
pation rates (|γ−| 6= |γ+|) induces unidirectional flow
of phonons [37], [38] between the resonators as shown
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FIG. 4: (a) Transient chaos induced π-synchronization at αin = 5.7 × 102√ωm. (b) Frequency locking with transient Rabi-
oscillations at J = 5.9× 10−3ωm. (a)-(b) correspond to the coupling strength J = 2.2× 10−2ωm.

in Fig. 5a. However, the first case happens when
γ1
eff ∼ −γ2

eff , leading to γ± ∼ ±σ2 [33]. Conse-
quently, the mechanical resonators carry out approxi-
mately broken PT −symmetry dynamics, resulting in a
π−synchronization (∆φ = φ1 − φ2 = π) as a signature.
This is shown in Fig. 5b, where the standard devia-
tion of ∆φ is represented. The phase is defined as being
tan(φj) =

Im(βj)
Re(βj)

, confirming the phase difference of π
when γ± ∼ ±σ2 .

The parameters we have used here are similar to
those in the recent experiments [30], [31]. This offers
the prospects to experimentally reproduce the present
results. Moreover, this study can be extended to a
wide variety of optomechanical systems, including hybrid
optical-microwave setups and electromechanical systems.
Our findings do not necessarily need PT −symmetry, and
the resonators can have different frequencies (see Fig.
3d).

V. CONCLUSION

In conclusion, we have studied two optomechanical
systems that are mechanically coupled. By driving the
cavities, one by blue detuned laser and the other with
a red detuned laser, we have respectively created gain
and loss on these mechanical resonators. We have pre-
dicted analytically, the existence of multiple EPs. The
system switches from weak to strong coupling regimes
through these EPs. In the weaks coupling regimes, we
demonstrated frequency locking effect induced by these
degeneracies. In the strong coupling regime instead, we
have shown that optical nonlinearities trigger chaos. This
chaotic attractor is bounded between two EPs, provid-
ing an accurate way to control it by adjusting gain/loss
parameters. This work offers the prospects to use EPs as
a new tools for controlling and thresholdless chaos. Fur-
thermore, EPs open up a promising route for realizing

FIG. 5: (a) Asymmetric dissipation at J = 5 × 10−3ωm. (b)
Standard deviation of δφ showing π-synchronization for J =
6 × 10−2ωm. The insets in (a) and (b) show limit cycle and
time propagation at αin = 8×102√ωm. The other parameters
are as in Fig. 1.

collective phenomena (locking effect, synchronization) in
nonlinear devices.
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Appendix A: Dynamical states

Numerical steady state solutions of Eq. (4) are shown
by Fig.1b in the main text. Three dynamical states are
depicted, the fixed point regime, the limit cycles regime,
and the regime where Rabi oscillations emerge. The aim
here is to characterize dynamically, the steady states
solutions in these regimes. For this purpose, we have
fixed J = 2.2× 10−2ωm, where all these regimes are met
by varying the driving strength αin (see the horizontal
dashed line in Fig.1b in the main text). Hence, time prop-
agation of some steady state solutions are given in Fig.
6. Fixed point regime is shown in Fig. 6a, where Rabi
oscillations are decaying with a same rate as explained in
the main text. The frequency of these Rabi oscillations
is σ0, and the mechanical resonators are in strong cou-
pling regime. Fig. 6b represents limit cycle oscillations
at αin = 4.3×102√ωm, and the system is in a weak cou-
pling regime. Figs. 6(c)−(d), show Rabi oscillations in
the nonlinear regime (see green area in Fig.1b in the main
text). At αin = 5×102√ωm, Fig. 6c shows quasi-periodic
behaviour, and at less three frequencies can be observed.
In Fig. 6d however, several frequencies are involved, re-
sulting in chaotic dynamics. To further characterize these
dynamical states, we have used bifurcation diagram in
frequency space (see Fig.3b in the main text). The reason
lies on the difficulty of catching Rabi oscillation’s dynam-
ics in phase space. Indeed, Fig. 7a shows one period of
Rabi oscillations with its corresponding phase space rep-
resentation in the inset. Accordingly, this phase space
trajectory features a set of limit cycles, each of those
corresponds to each amplitude involved in the Rabi cy-
cle [40]. Figs. 7(b)−(d) are the Fourier spectra corre-
sponding respectively to regular (αin = 4.5 × 102√ωm),
quasi-periodic (αin = 5× 102√ωm) and chaotic Rabi os-
cillations (αin = 5.5 × 102√ωm). The insets of these
figures are the phase space representations, and they all
feature a set of limit cycles as in Fig. 7a. It follows that,
phase space representation is not a useful tool to dis-
tinguish between different dynamical states here. How-
ever, Fourier spectra in Figs. 7(b)−(d) clearly discrimi-
nate the dynamical states involved. Hence, varying the
driving αin at a fixed J = 2.2 × 10−2ωm, we were able
to construct Fig.3b of the main text from Fast Fourier
Transform (FFT).

Appendix B: Analytics

In the limit cycles regime, the amplitudes of the me-
chanical oscillations change only slowly over time (see
Fig. 6b). Thus, we solve the equation for αj assuming a
fixed amplitude for the mechanical oscillations, and then
use the result to solve the equation for βj [41], [35]. Un-
der this assumption, the mechanical oscillation can be
described by the ansatz,

βj(t) = β̄j +Aj exp(−iωlockt), (B1)

where β̄j is a constant shift in the origin of the resonator
and the amplitude Aj is taken to be a slowly varying
function of time. In such a weak coupling regime, we have
denoted the locked frequency by ωlock. We substitute this
ansatz into the equation for αj , and use the assumption
of a slowly evolving amplitude to solve it, first neglecting
the time dependence of Aj [35], [41]. We then obtain the
intracavity field in the form,

αj(t) = e−iθj(t)
∑
n

αjne
inωlockt. (B2)

The phase is θj (t) = −εj sinωlockt and the amplitudes of
the different harmonics of the optical field are,

αjn = −i√κjαin
Jn (−εj)
hjn

, (B3)

where εj =
2gRe(Aj)
ωlock

, ∆̃j = ∆j + 2gRe(β̄j), hjn =

i
(
nωlock − ∆̃j

)
+ κ

2 and Jn is the Bessel function of the
first kind of order n.

As we are interested in the regime of limit cycles of the
resonators, a rotating wave approximation can be made
in which we drop all the terms (in the mechanical dy-
namics) except the constant one and the term oscillating
at ωlock. Hence, we substitute Eq. (B2) in the equation
for βj (see Eq. (B1)) which, by equating constant terms,
leads to the zero-frequency components,


β̄1 = 1

ω01−i γm2

(
gκ
∑
n

(αinJn(−ε1))
2

|h1
n|2

+ Jβ̄2

)
,

β̄2 = 1
ω02−i γm2

(
gκ
∑
n

(αinJn(−ε2))
2

|h2
n|2

+ Jβ̄1

)
,

(B4)

that induce a shifts of the cavity frequencies,

δj = 2gRe(β̄j). (B5)

The equations of motion for the oscillating part of βj
are deduced from βjr(t) = βj(t) − β̄j ≡ Aj exp(−iωlockt)
and read,{

β̇1
r (t) = −i (ω01 + δω1)β1

r −
γm+γ1

opt

2 β1
r + iJβ2

r

β̇2
r (t) = −i (ω02 + δω2)β2

r −
γm+γ2

opt

2 β2
r + iJβ1

r

(B6)
Here the optical spring effect δωj and the optical damp-

ing γjopt coming both from the average dynamics of the
cavity are given by,

δωj = −2κ(gαin)2

ωlockεj
Re

(∑
n

Jn+1 (−εj) Jn (−εj)
hj∗

n+1hj
n

)
, (B7)
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FIG. 6: Time propagations. (a) Fixed point state at αin = 3 × 102√ωm. (b) Limit cycle state at αin = 4.3 × 102√ωm.
The corresponding spectrum and phase space trajectory are those of Fig.1c in the main text. (c) Quasi-periodic state at
αin = 5 × 102√ωm. (d) Chaotic state at αin = 5.5 × 102√ωm. States (c) and (d) can be confirmed from the Lyapunov
Exponent in the main text. The coupling strength is J = 2.2× 10−2ωm and the other parameters remain the same as in Fig.1
in the main text. Blue (red) color is related to the blue (red) mechanical supermode.

and

γjopt =
2(gκαin)2

εj

∑
n

Jn+1 (−εj) Jn (−εj)∣∣∣hj∗n+1h
j
n

∣∣∣2 . (B8)

For εj � 1, the linear approximation is still valid and

both the optical spring effect and the optical damping
can be rewritten accordingly. Indeed, εj � 1 induces

Jn (−εj) ≈ 1
n!

(
−εj

2

)n
for n ≥ 0 and J−n (−εj) = Jn (εj).

Using these considerations in Eq. (B7) and Eq. (B8)
yield,

δωj (0) ≈ −
2
(
gjα

in
j

)2
κj∆̃j

[
3κ2
j

4 +
(
ωlock − ∆̃j

)(
ωlock + ∆̃j

)]
(
κ2
j

4

[
κ2
j

4 +
(
ωlock − ∆̃j

)(
ωlock + ∆̃j

)]
− κj∆̃2

j

)2

+ ∆̃2
j

[
3κ2
j

4 +
(
ωlock − ∆̃j

)(
ωlock + ∆̃j

)]2 , (B9)

γjopt (0) ≈ −
∆̃jωlock

(
2gjκjα

in
j

)2(
∆̃2
j +

κ2
j

4

)[(
ωlock + ∆̃j

)2

+
κ2
j

4

] [(
ωlock − ∆̃j

)2

+
κ2
j

4

] . (B10)

These expressions are well in agreement with what is
obtained in the linear regime [41], where both δωj and
γjopt are not amplitude dependent.

Appendix C: Effective Hamiltonian

From Eq.(B6), it is possible to define effective Hamil-
tonian in order to figure out supermodes involved in the
system. Such supermodes will be deduced from the eigen-
modes of the effective model, describing the mechanical
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FIG. 7: Fourier spectra and phase space trajectories. (a) One Rabi cycle and the corresponding phase space, featuring a set of
limit cycles. (b) Regular Rabi oscillations at αin = 4.5× 102√ωm. The corresponding time propagation is Fig.1d in the main
text. (c) Quasi-periodic state corresponding to Fig. 6c, some satellite peaks can be observed. (d) Chaotic state corresponding
to Fig. 6d, several peaks have emerged. Insets of these figures are their phase space trajectories, which all feature a set of limit
cycles. Consequently, Fourier spectra are useful to distinguish these states, instead of the phase space representations. Blue
(red) color is related to the blue (red) mechanical supermode.

resonators. Indeed, the real parts of the eigenmodes give
the eigenfrequencies of the coupled system while their
imaginary parts stand for the dissipations rate of the sys-
tem. In the limit cycles regime, the constant shift β̄j is
weak compared to the amplitude of the mechanical res-
onator (β̄j � Aj). This means that βj(t) ∼= βjr(t), and
Eq.(B6) can be assumed as a set of equations describing
the effective system that reads,

 β̇1 = −
(
iω1
eff +

γ1
eff

2

)
β1 + iJβ2,

β̇2 = −
(
iω2
eff +

γ2
eff

2

)
β2 + iJβ1,

(C1)

where ωjeff = ω0j + δωj and γ
j
eff = γm ± γjopt define the

effective frequencies and the effective damping, respec-
tively.

Furthermore, Eq.(C1) can be rewritten in the compact
form,

∂tΨ = −iHeffΨ (C2)

with the effective Hamiltonian,

Heff =

[
ω1
eff − i

γ1
eff

2 −J
−J ω2

eff − i
γ2
eff

2

]
(C3)

and the state vector Ψ = (β1, β2)
T .

The eigenvalues of the Hamiltonian given in Eq.(C3)
are obtained by solving the equation,

det (Heff − λI) = 0, (C4)

and that yields to the following eigenvalues λ− and λ+,

λ± '
ω1
eff + ω2

eff

2
− i

4

(
γ1
eff + γ2

eff

)
± σ

2
. (C5)

with σ =

√
4J2 − ∆γ2

eff

4 and ∆γeff = γ1
eff − γ2

eff . The
frequencies and the dissipations of the supermodes are
given by the real and imaginary parts of λ±, respectively

ω± = Re (λ±) and γ± = Im (λ±) .

From Eq.(C5), we deduce whether the system is in
strong coupling regime or not. Indeed, for J > ∆γeff

4 , σ
is real and this induces two distinct frequencies,

ω± =
ω1
eff + ω2

eff

2
± σ

2
(C6)

that are spectrally separated by

σ = ω+ − ω− =

√
4J2 −

∆γ2
eff

4
. (C7)
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This splitting modes is the sign of strong coupling be-
tween the resonators and σ is the frequency of Rabi os-
cillations that emerge. The mechanical resonators have

the same damping γ± =
−(γ1

eff+γ2
eff)

4 . However, for
J <

∆γeff
4 , σ is imaginary and the resonators oscillate

at the same frequency,

ω± =
ω1
eff + ω2

eff

2
, (C8)

with two distinct dissipations,

γ± =
−
(
γ1
eff + γ2

eff

)
4

± σ

2
. (C9)

This corresponds to a regime where the mechanical res-
onators are weakly coupled. The phase transition be-
tween these two regimes happens at the exceptional point
(EP), where J =

∆γeff
4 that is equivalent to σ = 0.

To demonstrate the feature of multiple EPs, we need to
show that σ = 0 can leads to multiple solutions. For this
purpose, let us remind that ∆γeff ≡ ∆γjopt. Then, us-
ing Eq.(B8) in Eq.(C7), leads straightforwardly to under-
stand that σ is amplitude-dependent through the Bessel
functions. Due to these Bessel functions, σ = 0 oscil-
lates. These oscillations of σ, depending on the system’s
parameters, induce multiple solutions of σ = 0, resulting
in multiple EPs feature.
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