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Bilayers of chiral molecules can self-assemble into twisted and tubular structures, as was recently shown with

chiral molecular constituents such as ssDNA-amphiphiles. I show that the dynamics of the transition between

these topologies is driven by a nucleation mechanism that bears a striking formal similarity to that encountered in

first-order wetting and dewetting transitions. Exploiting this analogy enables the critical nuclei of the transition

to be calculated.
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I. INTRODUCTION

DNA remains the most interesting material for self-

assembly, with numerous variations that have appeared in

the literature over the past years. Research has mostly

been concerned with the construction of complex topologies,

and less with the dynamical processes underlying the self-

assembly—whose knowledge, however, is crucial in order to

obtain correct structures or sufficient yields. This has been

highlighted recently by the work by Jacobs et al., who demon-

strated the importance of nucleation kinetics in DNA-brick

construction [1].

A different class of DNA-based self-assembly processes

falls into the class of the statistical mechanics of ribbons,

itself conceptually fitting into the emerging paradigm of

geometrically frustrated (self-)assembly [2]. Much work has

been devoted to the morphological states of ribbons [3–7],

while again the explicit dynamics of the transitions between

the morphologies is far less developed. Of particular interest in

this field are chiral ribbons, for which the general equilibrium

theory was already developed [8–10]. Several years ago,

Ghafouri and Bruinsma [11] showed that a ribbon made of

a molecular bilayer of a chiral lipid can display twisted or

tubular ribbon structures depending on its width w. This

result was derived from a wormlike chain-type model for

the bilayer. Subsequent experiments by Ziserman et al. [12]

were able to validate this result experimentally. Recently,

an ssDNA-amphiphile system was shown also to exhibit

these ribbon states [13]; this motivated the present work.

Another relevant experimental case may be β-amyloid fibrils

[14,15].

Figure 1 sums up the structural details of the system studied

in Ref. [13] as an exemplary case. The ssDNA-amphiphile

constructs shown in Fig. 1(a) build up the ribbon (bilayer) in

the indicated manner, and they produce structures of twisted

and tubular ribbons.

The transition between these generic morphologies was

studied recently using both microscopic and continuum ap-

proaches [16,17]. In this work, I highlight an interesting and

unexpected analogy of the ribbon-state transition to first-order

wetting and dewetting transitions. The knowledge gained in

this field can therefore be exploited to deduce key features of

ribbon transitions. In the following section, I first develop

a phenomenological continuum theory of the equilibrium

states of the ribbons, building on the results from [11] and

[16].

II. EQUILIBRIUM RIBBON STATES

As the starting point of the construction of the equilibrium

states, I take the ribbon free energy per unit ribbon length L,

which I denote by F (w). F (w) should have a shape similar to

the elastic energy E(w) calculated by Ghafouri and Bruinsma

(see their Fig. 2) [11]. E(w) has two minima, one at a finite

value of w, which is identified with the ribbon state, and

one at infinite w, identified with the tubule state, as seen in

Fig. 2. The relative height of the two minima can change

by changing the Föppl–van Kármán parameter, which we

effectively parametrize as a function of temperature. Note

that in [11], the ribbon width is not allowed to change by

the addition of particles. For this we need to add a chemical

potential term, hence we consider

F (w) = E(w) − �μw. (1)

The definition of the chemical potential difference (per unit

area) can be found in [16]. As the insert of Fig. 3 in their paper

shows, the derivative of the free energy dF (w)/dw should be a

constant at both small and large values of w, while E(w) → 0

from [11]. Thus, the definition of �μ must contain the limiting

behavior of the elastic energy of the wide ribbon as defined in

[16],

Ewide =

(

Yk2
0 t

3

24
−

μ0

a2

)

w, (2)

where Y is Young’s modulus, k0 the curvature of the ribbon,

and t is the square root of the ratio of bending to stretching

modulus. The comparison of this expression with the one in

[11] thus shows that, in order to match both expressions, �μ

in Eq. (1) must be chosen as

�μ ≡
μ0

a2
−

Yk2
0 t

3

24
, (3)

which also has the correct dimensions, with μ0 having

dimensions of energy.

The equilibrium states of twisted and tubular ribbons as a

function of chemical potential described by Armon et al. can

be recovered from the condition dF (w)/dw = 0 yielding the

equation

dE(w)

dw
= �μ. (4)

The ribbon states can be located as follows in the phase

diagram of Fig. 3. For �μ > 0, the free energy is unbounded
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FIG. 1. (a) Schematics of an ssDNA-decorated amphiphile and

the placement of the amphiphiles in the bilayer in a cross-section

view; (b) the resulting ribbon topologies, namely the twisted and the

tubular ribbon.

for large w such that only tubular states exist for any

temperature. Physically, this means that at any oversaturation

in particles, the ribbons will always close to tubules. Along the

transition line �μ = 0, for T < Tt , the minimum at w = w0

will lie lower than the minimum at w = ∞: E(w) < E(∞),

such that the twisted ribbon state is stable. For T > Tt , the

reverse situation applies. For the case of undersaturation,

�μ < 0, the chemical potential term rises linearly for large

w such that the free energy per unit ribbon length F (w) in

general has two minima. As in [16], these states exist in a

range of chemical potential values, bounded by the dashed

lines in Fig. 3, which in fact correspond to a spinodal region

in which F (w) has two minima of different depth; they have

the same depth only at an off-coexistence line. Note that the

unfolding of this full phase diagram is not given in [16], as

their parametrization of narrow and wide ribbons does not

allow to capture the change in the relative depths of the two

minima of F (w) due to the second parameter, here identified

as temperature; when the coexistence line is crossed at a fixed

w

E(w)

w0

FIG. 2. Schematic ribbon free energy E(w) as obtained from

the WLC model in [11]. The free energy describes the case

when the tubular ribbon is stable since E(w = ∞) < E(w0) with

w0 as the location of the minimum at small w.

FIG. 3. Phase diagram of the ribbon morphologies, based on the

minima of E(w) − �μw. For �μ � 0, T > Tt , the tubular ribbons

are the stable configurations. For �μ � 0, T < Tt , narrow twisted

ribbons are stable; at the transition line for �μ < 0, T > Tt , twisted

and tubular ribbons exchange stability if the chemical potential or

temperature is changed to cross the line (from the shaded into the

white area or reverse); a path at constant T is indicated by an arrow.

The transition line is bounded by a spinodal region, indicated by

dashed lines, within which F (w) has two minima, corresponding to

a stable twisted ribbon and a metastable tubular ribbon state in the

shaded area, and a metastable twisted ribbon and a stable tubular

ribbon in the white area. Outside of the dashed lines, F (w) only has

one minimum, i.e., either a twisted ribbon or a tubular ribbon in the

corresponding regions of the phase diagram.

temperature T > Tt , the transition is from a twisted to a tubular

ribbon, passing through the spinodal region.

The shape of E(w) in Fig. 2 bears a striking similarity

to the free energy per unit area of a flat film of thickness f

above a solid substrate, commonly denoted as the effective

interface potential V (f ), which dimensionally is a free energy

per unit area. (For authoritative and exhaustive introductions

into wetting physics, see the reviews in [18] and [19].) Both

E(w) and V (f ) have a double-well shape with one minimum

at a finite value, separated by a barrier from a minimum

at infinity. For the wetting case, the minimum at finite f

corresponds to the nonwet substrate covered at most by a

microscopic film, while the infinitely thick film corresponds

to a macroscopic (complete) wetting layer. In analogy with the

wetting case, the deviation from complete wetting arises if the

film is coupled to a reservoir governed by a corresponding

chemical potential, �μ, controlling its thickness. The full

potential φ(f ) = V (f ) − �μf then gives rise to a more

symmetric double-well potential, and this holds true in the

ribbon case, by analogy. In wetting, the off-coexistence term

results in a line of first-order transitions at undersaturation,

called the prewetting line, which ends in a critical point of

the Ising universality class. As we discuss here ribbon states

of finite size, the transitions that arise in the present case are

pseudo-phase-transitions, corresponding in fact to transitions

in morphologies.

III. NUCLEATION OF RIBBON STATES

Having established the basic model free energy and its

equilibrium states, we can now turn to the nonequilibrium

aspect, i.e., the nucleation of one ribbon state from another.

Again, relevant information is available from the wetting case.

In wetting films, the complete wetting situation is highly

asymmetric with respect to nucleation: going from the nonwet

to the wet (or the thin to the thick) film proceeds by the
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nucleation of droplets on the wall, which can be calculated

within homogeneous nucleation theory if a proper free-energy

functional is assumed, e.g., the effective interface Hamiltonian,

H [f ] =
∫

d2x[
γ

2
(∇f )2

+ V (f ) − �μf ], wherein γ is the

surface tension of the liquid-vapor interface (the free film

surface). The critical nucleus then follows from the variational

equation δH/δf (r) = 0, with r being the radial coordi-

nate in two dimensions, accompanied by suitable boundary

conditions. The reverse direction is essentially blocked for

nucleation as the position of the thick film minimum lies at

infinity: the corresponding critical hole to be nucleated in

a complete wetting film would have an infinite excess free

energy. This easily explains why the undercooling of wetting

films has always shown long-lived metastable states [20], a

fact that has been observed experimentally [21]. Likewise,

an undercooling of the tubular state should lead to long-lived

metastable tubules.

As for the case of first-order wetting, the nucleation of

twisted and tubular ribbons is controlled by the nucleation

rate Ŵ ∼ exp −(H [w∗]/kBT ), where H [w∗] is the excess free

energy of the critical nucleus of either the twisted or the

helicoid phase, with w∗ denoting the width of the critical

nucleus. H [w∗] can be computed by adopting a free-energy

expression for an inhomogeneous ribbon. The free energy one

can write down for the system is given by

H [w] =

∫ L

0

dx

[

τ

2
(�w)2

+
γ

2
(∇w)2

+ E[w] − �μw

]

,

(5)

where a line stiffness τ associated with the ribbon border is

introduced, as well as a line or border tension γ . Further, in

Eq. (5), L is the length of the ribbon, which is supposed to

remain unchanged in the transition; dimensionally, we always

have a ≪ w ≪ L, where a is the thickness of the ribbon; for

an illustration of these lengths, see Fig. 1. To characterize

the nuclei of the ribbon transitions, we will be interested in

the excess free energy �H = H [w∗] − H [w0] with H [w0] =

LF (w0), where, as a reminder, F is a free energy per unit

ribbon length.

The profile of the critical nucleus can be determined from

the variation of Eq. (5), δH [w]/δw = 0, in a one-dimensional

geometry, which gives the ribbon nucleus equation

τ

(

d4w

dx4

)

− γ
d2w

dx2
+ ∂wE[w(x)] − �μ = 0. (6)

The solutions of this equation can be understood by invoking

a simpler membrane problem in which the nonlinear terms are

first neglected. The membrane equation is then of the well-

studied Helfrich type and reads

τ

(

d4w

dx4

)

− γ
d2w

dx2
= 0. (7)

Consider the solution of this equation for a membrane spread

over a step edge [22]. It is given by the expression

w(x) = A + Bx + C cosh(x) + D sinh(x), (8)

where the constants are fixed by the conditions w(0) = w∗,

w′(0) = 0, w(L∗) = 0, and w′(L∗) = 0, where x ≡ x/λ with

λ2
≡ τ/γ ; furthermore, we introduce ℓ ≡ L∗/λ. The exact

solution is given by

w(x)/w∗
=

[

1 −
[cosh(ℓ) − 1][cosh(x − 1] − sinh(ℓ)[sinh(x) − x]

[cosh(ℓ) − 1][cosh(ℓ − 1] − sinh(ℓ)[sinh(ℓ) − ℓ]

]

, (9)

which for γ → 0 becomes

w(x)/w∗
= 1 − 3

(

x

L∗

)2

+ 2

(

x

L∗

)3

. (10)

As the membrane equation (7) is linear, both w∗ and L∗ are

free parameters. This ceases to be true for the nucleus due to

the nonlinearity in H .

At this stage, it is worth remembering how the critical

nucleus of the wetting problem is computed, which when

going from a nonwet to a wet state corresponds to a critical

droplet. In d > 2, the solution to δH [f ]/δf (r) = 0 has a radial

symmetry and is obtained by requiring the initial condition

f (0) = F to be found such that f (∞) = f0, the value of

a metastable nonwet state. In addition, one requires as a

second boundary condition f ′(0) = 0. In d = 2, by virtue

of a conserved first integral, the initial condition f (0) is

determined by V (f (0)) = V (f0), and the solution has mirror

symmetry with respect to its center. In the ribbon case, the

nucleus forms at a finite-size object, and the preferred site for

its formation will be one of the four corners of the ribbon.

The boundary conditions are analogous to the step-edge

problem, however now the initial height w∗ and the value

L∗ < L must be found such that w(L∗) = w0; furthermore,

w′(0) = 0,w′(L∗) = 0. This solution can be found using a

shooting argument. Fixing first w∗, there are two solutions

to the equation, one undershooting and one overshooting the

minimum of the potential. For each w∗, there is a value of L∗

that corresponds to the nucleus solution. The critical nucleus is

then obtained from the maximum value of w∗ for which a finite

L∗ can still be obtained, or, in other words, the maximum in the

free energy H [w∗(L∗)]. The parameters w∗ and L∗ thus play

a role analogous to the radius R in the simple droplet model of

nucleation in a bulk vapor, or the height F and droplet radius

R in wetting droplet and dewetting hole nucleation.

Figure 4 sketches the overall configuration of the nucleus

formed at a ribbon. Figure 4(a) corresponds to the nucleation

of a helicoidal or tubular state from the twisted nanotape,

and Fig. 4(b) corresponds to the reverse case, which can only

be realized for �μ < 0, i.e., in the situation in which the

ribbon has a finite width and has not closed up to a tubule.

Qualitatively, the nuclei in both cases are approximately the

mirror image of each other. Note that in this drawing the in-

plane bending of the ribbon in space is ignored, as well as

in the model, which is justified in the limit a ≪ w ≪ L, as
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FIG. 4. Schematic drawing of nucleation at a ribbon, going from

a small-width ribbon to a large-width ribbon in (a), representing the

nucleation of the tubular state from the twisted ribbon, and the inverse

case in (b). The initial state of width w0 is drawn with broken lines.

The bending of the ribbon in space, although ignored in the model, is

tentatively indicated.

stated before. Finally, Fig. 5 shows a comparison of the exact

result for the Helfrich membrane, Eq. (7), with a numerically

computed profile of Eq. (6).

The ribbon nuclei can also be characterized by their scaling

behavior in the vicinity of the transition. To obtain this, one has

to balance the bending and line tension energy terms against

the decay of E(w) at large w, which we take as

E(w) ∼ w1−σ (11)

with σ > 1. For short ribbons, line tension dominates over

bending, and one obtains from Eq. (5) the scaling

w∗
∼ (L∗)

2
σ+1 , (12)

while for long ribbons the bending term dominates and one

has

w∗
∼ (L∗)

4
σ+1 . (13)

In both case, the excess free energy �H = H [w∗] − H [w0]

scales as �H ∼ L∗, hence with the corresponding different

exponent when expressed in terms of w∗. For the case

of a tubular ribbon above the first-order transition point

FIG. 5. Ribbon nucleus (red) vs membrane at a step (blue). The

energy E(w) is approximated by a cubic polynomial, which is valid

away from the transition, when the minimum at w0 is not very

pronounced (near the spinodal). E(w) = w2
− 0.3w3 served as the

model potential for this case; τ = γ = 1.

approaching the coexistence line �μ = 0 from below, one

has in addition the condition w∗
∼ �μ−1 .

To conclude, we have shown that the critical nuclei of the

twisted-tubular ribbon transition can be computed from an

effective model that bears strong similarities to the effective

interface model approach in wetting and dewetting. The

dependence of the excess free energy on the ribbon length

L∗
∼ L indicates that this parameter is also relevant for

the formation process of the ultimate stable structure (see

Ref. [13]). Experiments at different ribbon lengths L would

thus be of interest to test the predicted behavior, in particular

at undersaturation conditions, �μ < 0.
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