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Abstract

Focal iron accumulation associated with brain iron dyshomeostasis is a
pathological hallmark of various neurodegenerative diseases (NDD). The
application of iron-sensitive sequences in magnetic resonance imaging has
provided a useful tool to identify the underlying NDD pathology. In the three
major NDD, degeneration occurs in central nervous system (CNS) regions
associated with memory (Alzheimer’s disease, AD), automaticity (Parkinson’s
disease, PD) and motor function (amyotrophic lateral sclerosis, ALS), all of
which require a high oxygen demand for harnessing neuronal energy. In PD, a
progressive degeneration of the substantia nigra pars compacta (SNc) is
associated with the appearance of siderotic foci, largely caused by increased
labile iron levels resulting from an imbalance between cell iron import, storage
and export. At a molecular level, α-synuclein regulates dopamine and iron
transport with PD-associated mutations in this protein causing functional
disruption to these processes. Equally, in ALS, an early iron accumulation is
present in neurons of the cortico-spinal motor pathway before neuropathology
and secondary iron accumulation in microglia. High serum ferritin is an
indicator of poor prognosis in ALS and the application of iron-sensitive
sequences in magnetic resonance imaging has become a useful tool in
identifying pathology. The molecular pathways that cascade down from such
dyshomeostasis still remain to be fully elucidated but strong inroads have been
made in recent years. Far from being a simple cause or consequence, it has
recently been discovered that these alterations can trigger susceptibility to an
iron-dependent cell-death pathway with unique lipoperoxidation signatures
called ferroptosis. In turn, this has now provided insight into some key
modulators of this cell-death pathway that could be therapeutic targets for the
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NDD. Interestingly, iron accumulation and ferroptosis are highly sensitive to
iron chelation. However, whilst chelators that strongly scavenge intracellular
iron protect against oxidative neuronal damage in mammalian models and are
proven to be effective in treating systemic siderosis, these compounds are not
clinically suitable due to the high risk of developing iatrogenic iron depletion
and ensuing anaemia. Instead, a moderate iron chelation modality that
conserves systemic iron offers a novel therapeutic strategy for neuroprotection.
As demonstrated with the prototype chelator deferiprone, iron can be
scavenged from labile iron complexes in the brain and transferred
(conservatively) either to higher affinity acceptors in cells or extracellular
transferrin. Promising preclinical and clinical proof of concept trials has led to
several current large randomized clinical trials that aim to demonstrate the
efficacy and safety of conservative iron chelation for NDD, notably in a long-
term treatment regimen.

AQ1

AQ2

Keywords
Parkinson’s disease
Amyotrophic lateral sclerosis
Conservative iron chelation
Ferroptosis
Iron metabolism

Flore Gouel, Anne-Sophie Rolland, James A. Duce, Jean-Christophe Devedjian
contributed equally.

Introduction
The development of disease-modifying therapies for slowing down progression
of neurodegenerative disorders remains a major clinical challenge. A
pathognomonic component of Parkinson’s disease (PD) and to a lesser extent,
amyotrophic lateral sclerosis (ALS) is the formation of labile iron, respectively,
in the substantia nigra pars compacta (SNc) or motor neurons and microglia of
the central and peripheral motor pathways. A very recent metanalysis confirmed
that iron concentration was constantly increased in the substantia nigra of PD
patients (18 studies 211 Parkinson’s disease, 215 control) (Sian et al. 2019). A
less obvious iron accumulation in ALS is likely to be due to the severity and
speed in progression of neurodegeneration in the disease and this observation is
substantiated by the accumulation of iron in the remaining phagocytic microglia
late in the disease. The presence of such a catalytically active and chelatable
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form of iron has been implicated in an increased production of noxious reactive
oxygen species (ROS) and ensuing oxidative damage of dopaminergic neurons.
Since cells normally regulate their iron levels by safely diverting excess
cytosolic metal towards ferritin-iron shells or effluxing excess iron out of the
cell, the generation of oxidative cell damage proximal to foci of iron
accumulation reflects a state of disrupted iron and/or redox homeostasis. The
chemical damage is attributed to a combination of labile iron propensity for ROS
formation and the biochemical as well as chemical antioxidant capability of a
given cell to cope not only with intracellular iron levels but also ROS. In this
context, cells with high aerobic metabolic profiles (e.g. dopaminergic neurons,
motor neurons and hippocampus in the CNS) are among the most susceptible to
iron-mediated damage proximal to the siderotic foci that are present in the SN of
PD and neuromotor pathways of ALS. Thus, focal iron detoxification by metal
chelation has been considered as a potential therapeutic strategy in
neurodegenerative diseases for some time, provided the treatment compromises
neither healthy brain cells nor the systemic iron status of the organism. These
factors led to the concept and eventual strategy of conservative chelation, namely
the scavenging of labile iron by chelating agents endowed with an ability to
recycle the chelated metal back into circulation via the physiological carrier
transferrin.

AQ3

In early studies with animal models of neurodegeneration, chelators were
designed originally to treat systemic siderosis but found serendipitously to cross
the BBB conferred neuroprotection from oxidative damage. However, for coping
with these disorders in a clinical setting, it is imperative that chelation should not
result in iatrogenic ID and ensuing anaemia. This consideration led to the
development of a more “moderate” iron chelation modality that conserves
systemic iron, offering a novel (safe) therapeutic strategy for neuroprotection
whilst not causing anaemia.

Overview of iron homeostasis in the brain
As a more detailed review of iron homoeostasis has recently been provided
(Ward et al. 2014), a synopsis of brain iron transport is as follows: when required
by the brain, peripheral iron is able to cross the vascular endothelial cells of the
blood–brain barrier, predominantly by import into the endothelial cells through
the diferric transferrin receptor 1 (TFR1) complex system and export into the
intracerebral space via ferroportin (Fpn); the only known exporting pore protein
for cellular iron (Ward et al. 2014). The other cell types within the brain, such as
oligodendrocytes, astrocytes, microglia and neurons, obtain their required iron by
extraction from the brain interstitial compartment using a range of cell-dependent
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import mechanism (predominantly not only TFR1 and Divalent metal transporter
1 but also other members of the metal transporter ZIP (SLC39A) family). The
flux of iron between these cell types is continuous through mechanisms that are
still being elucidated. Neurons are thought to predominantly acquire their iron
via TFR1, and efflux via Fpn is facilitated by it stabilization to its functional
location on the cell surface by β-amyloid precursor protein (APP) (Duce et al.
2010; McCarthy et al. 2014; Wong et al. 2014) and ceruloplasmin (CP) through
both non- and an autonomous cellular processes. In healthy ageing, several brain
regions are susceptible to small deposits of iron, with this iron safely bound
within ferritin, neuromelanin and in some cases hemosiderin. However, a greater
accumulation of iron than that reported in healthy ageing occurs in specific brain
regions of many neurodegenerative diseases and may contribute to
neurodegenerative processes.

AQ4

Cellular mechanisms implicated in iron redistribution in PD
and ALS
Elevated pro-oxidant labile iron in the SNc of PD or motor neurons and
microglia of ALS, in particular within the mitochondrial subcellular
compartment, has been proposed to result from an altered ability of cells to
regulate iron levels and distribution. This may arise from impaired iron
influx/efflux, altered iron storage or from deranged utilization (Hare and Double
2016).

Impaired iron release
Fpn in the SNc is depleted in several parkinsonian models including intoxication
with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-
hydroxydopamine (6-OHDA) (Wang et al. 2007; Lee et al. 2009; Finkelstein et
al. 2017). Levels of this protein are less clear in ALS models, where Fpn is
decreased in only one pathological region of a transgenic mouse model with the
G93A familial mutation in SOD1 (Halon et al. 2014; Gajowiak et al. 2016) and
increased in an alternative model with the familial SOD1  mutation.
However, the authors suggest that the Fpn increase in the SOD1  is not
sufficient enough to counter the dramatic increase in expression of proteins
involved in iron import and thus conclude that this has little effect on the overall
iron accumulation in this model (Jeong et al. 2009).

Depletion of either APP or tau (required for the transport of APP to the cell
surface (Lei et al. 2012) causes cellular iron retention as well as iron-dependent
nigral cell loss. As historically recognised neuropathogenic proteins, APP and
tau are not just altered in AD but markedly decreased in the SNc in PD (Lei et al.
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G37R
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2012; Ayton et al. 2013). Tau is often also identified to be post-translationally
modified in motor neurons from ALS (Stevens et al. 2019). Several rare variants
of APP predispose individuals to PD  and some familial Alzheimer’s disease
(AD) patients that carry mutations in APP present with a parkinsonian phenotype
and Lewy body pathology.

Cellular iron egress by ferroportin is assisted by ceruloplasmin, particularly in
glia. The physiological importance of ceruloplasmin in the brain is exemplified
by aceruloplasminemia; caused by loss of function mutations in CP that results in
phenotypic characteristics similar to PD. Indeed, ceruloplasmin deficient mice
develop age-dependent parkinsonism and the nigral iron elevation in the MPTP
model of parkinsonism can be rescued by peripheral ceruloplasmin infusion
(Ayton et al. 2013). Low ceruloplasmin activity has been identified in the SN,
cerebrospinal fluid (CSF) and serum of patients with PD (reviewed in 1). Point
mutations in the ceruloplasmin-encoding gene (especially the D544E mutation)
are significantly associated with parkinsonism  and R793H has been found to
segregate with SN hyperechogenicity in PD (Hochstrasser et al. 2005; Ayton et
al. 2013; Barbariga et al. 2015). In SOD1 models of ALS, initial observations
with CP are consistent with Fpn whereby the SOD1  mutation gives rise to no
change to CP levels in most pathological regions but the SOD1  mutation
elevates CP levels (Jeong et al. 2009; Halon et al. 2014; Gajowiak et al. 2016).
Of relevance, more recently, it has been determined that whilst total levels are
elevated in the SOD1  model, CP accumulates in a copper-deficient inactive
form that is unable to facilitate iron efflux through Fpn (Hilton et al. 2018). This
disparity between total levels and the enzymatic activity of CP is similarly
observed in ALS patients (Conti et al. 2008).

Altered iron storage
The limited capacity of select neurons to sequester surplus iron into ferritin
molecules, (Ward et al. 2014; Belaidi and Bush 2016) can be countered by
neuromelanin being used as an alternative “iron sink”(Zucca et al. 2017).
However, such capacities may still be exceeded in both PD and ALS [reviewed
in (Belaidi and Bush 2016)]. Importantly, the number of ferritin-immunoreactive
microglia is markedly increased in the SN of PD patients, especially in close
vicinity to neuromelanin-containing neurons. These microglia contain enhanced
amounts of ferritin (Wu et al. 2017) and the ferritin cores in the SN of PD
patients harbour relatively greater levels of iron compared to those of healthy
subjects. As elevated levels of densely iron-loaded ferritin may promote free
radical formation, this metastable reservoir of iron over time may contribute to
age-related neurodegeneration (Ward et al. 2014; Belaidi and Bush 2016; Zucca
et al. 2017). Whilst little has been reported on ferritin levels in ALS patient brain
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tissue, it is a strong peripheral indicator in CSF and serum (see below) and has
been identified to be altered in various models of ALS. In the SOD1  rat
model, ferritin is elevated with disease progression (Halon et al. 2014) and an
elevated ubiquitination of this protein may lead to an inability of it to control the
labile iron pool (Halon et al. 2010). In aged SOD  transgenic mice, an
increased cytosolic ferritin expression only occurs in glia, mainly microglia and
some astrocytes, but not in neurons. The presence of the iron-positive inclusions
in motor neurons of this model with the lack of cytosolic ferritin response
suggests that glia and neurons may retain and accumulate iron via different
mechanisms (Jeong et al. 2009).

Increased iron uptake
Analysis of single nucleotide polymorphisms in PD case–control studies have
identified a protective role of genetic variations in transferrin (Tf) and its
receptor (TfR) required for iron-bound Tf incorporation into the cell (Rhodes et
al. 2014). Clinical studies have also shown increased transferrin saturation in
ALS patient cohorts but a significant decrease in serum transferrin levels (Nadjar
et al. 2012; Veyrat-Durebex et al. 2014). The iron transporter lactoferrin (Lf) and
its receptor (LfR) may also play an important role as it has a higher affinity for
iron than Tf (due to its off rate) and is increased during inflammation. The
expression Lf and its receptor are both increased in PD and ALS (Leveugle et al.
1994; Hirsch 2006). As LfR expression is not regulated by intracellular iron
concentration, the Lf/LfR system may well be non-autonomously responsible for
increased iron uptake during neurodegeneration.(Faucheux et al. 1995).

Iron import through the non-transferrin family may also be affected in disease.
Iron accumulation in the SNc of PD patients and the MPTP mouse model
correlates with elevation of the divalent metal transporter 1 (DMT1) (Belaidi and
Bush 2016) and also with Nedd4 family-interacting protein1 (Ndfip1); a
ubiquitin ligase that regulates DMT1 expression most notably in non-neuronal
cell types such as astrocytes (Howitt et al. 2014). In a SOD  cell model, both
DMT1 and TfR1 are unregulated and this is replicated within the spinal cord
from SOD  transgenic mice (Jeong et al. 2009; Khadzhiev et al. 2013).

Impaired iron redistribution and inflammation
Compounding evidence has identified a close association with the innate immune
response and iron regulatory systems. It is, therefore, intriguing that there are
multiple occurrences of overlap between these systems in NDD. In-vitro studies
show that inflammation [stimulated either by nuclear factor—kappaB, tumour
necrosis factor α, interleukin 6, or lipopolysaccharide (LPS)] results in neuronal
and microglial iron accumulation but has no reported effect with astrocytic levels
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(Ward et al. 2014). The intraneuronal retention of iron following intracranial
injection of LPS also results in microglia activation, oxidative stress and
mitochondrial impairment. Whilst there is a direct impact on dopaminergic
neurodegeneration within the SN (Zhang et al. 2014) motor neuron degeneration
in ALS is thought to occur via the microglial activation induced by inflammation
(Frakes et al. 2014). One possible pathway in which a pro-inflammatory response
is able to cause neuronal iron retention is via cytokine-induced down-regulation
of Fpn. However, heme oxygenase-1 and inducible NO synthase are also up
regulated and may contribute to the general mechanism (Zhang et al. 2014). As
both inflammation and increased cytokine expression have been reported in the
spinal cord of SOD1 transgenic mice (Jeong et al. 2009), this may also be an
underlying factor to the increased levels of ferritin and capacity to store iron in
microglial. Whilst this not likely to be acutely detrimental to microglia,
prolonged elevated levels in iron could lead to iron-mediated toxicity as has been
demonstrated with glia forced to markedly increase their ferritin levels to
compensate for a loss of efflux iron capability (Jeong et al. 2009). Of note, iron
response element transcripts that are not directly regulated by iron can instead be
affected by factors such as proinflammatory cytokines and thus may be a
contributory factor in the iron associated detrimental changes observed in the
spinal cord of SOD1 transgenic mice (Ghezzi and Mennini 2001; Elliott 2001;
Hensley et al. 2002; Hensley 2003).

Lastly, hepcidin is a key peripheral regulator of the iron entry into circulation by
inhibiting cellular iron efflux via Fpn and is rapidly elevated during
inflammation (Ward et al. 2014). As peripherally released hepcidin can easily
cross the BBB and select cells in the brain secrete this peptide, it is likely to be
an important regulator in provoking decreased ferroportin expressing on the
plasma membrane of astrocytes, microglia, and neurons. Despite this being a
strong biomarker in other iron overload diseases, to date, there has been no clear
relationship in hepcidin levels in the brain and changes to iron or iron response
proteins with PD (Ward et al. 2014) or ALS (Jeong 2006).

Role of iron in neurons
In dopaminergic neurons
Iron is particularly abundant in the SNc dopaminergic neurons due to it being an
integral component of dopamine synthesis through the tyrosine hydroxylase (TH)
pathway as well as other enzymatic and non-enzymatic reactions associated with
dopamine metabolism (Meiser et al. 2013). The presence of brain labile non-
heme high-spin complexes that increase with age (Wofford et al. 2017) might
explain the iron catalytic role in the generation of:
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a. Noxious ROS by Fenton chemistry involving hydrogen peroxide; a result in
part from the oxidative deamination of dopamine by monoamine oxidase
(MAO).

b. Metastable iron-dopamine complexes that lead to dopamine auto-oxidation
and quinone formation.

These, in turn, will generate a variety of potentially toxic products sequestered
by neuromelanin (e.g. 6-OHDA) and confer a distinctive pigmentation upon the
SNc. However, as the neuromelanin sanctuary for toxins is lost during PD, (Hare
and Double 2016; Zucca et al. 2017) free 6-OHDA (the endogenous auto-
oxidation product of dopamine) can strongly inhibit mitochondrial complexes I
and IV and thereby exert neurotoxicity. The iron enrichment in the SNc is
necessary for the high energy demands required by the active dopaminergic
neurons with autonomous pace-making activity. But this higher energy demand
also renders the SNc more susceptible to an imbalance in labile iron level and
ensuing ROS production (Guzman et al. 2010). This may explain the selective
contribution to oxidative stress in the SNc that is exerted by the 6-OHDA
neurotoxin model of PD, whilst the ventral tegmental area remains relatively
unaffected (Hare and Double 2016). Intriguingly, iron levels also influence the
density of dopamine receptor D1 and D2 as well as dopamine transporter (DaT)
expression (i.e. iron chelation downregulates DaT) (Hare and Double 2016;
Belaidi and Bush 2016). Finally, iron is a cofactor of prolyl hydroxylases that
regulate hypoxia-inducible factor 1α, a major transcription factor required for
survival (Rajagopalan et al. 2016). In summary, accumulation of SNc iron in the
absence of adequate cell protective measures is a major contributory factor in
impairing dopaminergic neurophysiology and can exacerbate PD progression.

In motor neurons
Dysregulation of iron homeostasis has been observed in several pre-clinical and
clinical studies of ALS (Jeong et al. 2009; Kwan et al. 2012; Ignjatović et al.
2012; Veyrat-Durebex et al. 2014; Adachi et al. 2015; Lu et al. 2016; Golko-
Perez et al. 2017). Indeed, a total iron increase has been measured in SOD1
transfected cells compared to wild type (WT), associated with higher mRNA
expression of TfR1 and DMT1 (Jeong et al. 2009; Kwan et al. 2012; Ignjatović et
al. 2012; Veyrat-Durebex et al. 2014; Adachi et al. 2015; Lu et al. 2016; Golko-
Perez et al. 2017). Iron accumulation occurs both in motor neurons (MN) and
glia in the SOD1  mice, with a significant increase in mitochondria in both
cell population (Jeong et al. 2009). Because of these results, the therapeutic
potential of iron chelators has been tested in vivo. Particularly, brain permeable
iron-chelating drugs M30 and HLA20 protect the NSC-34 cell line against
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oxidative stress and extend lifespan and delay the onset of the disease of
SOD1  mice (Kupershmidt et al. 2009). Similar results are obtained with the
VK-28 chelator, associated with limited elevated iron level and decreased TDP-
43 aggregation (Wang et al. 2011). More recently, combined administration of
M30 chelator with a high-Calorie Energy-supplemented Diet (CED) shows
additive protective effect in SOD1  mice (Golko-Perez et al. 2016). Finally,
the co-treatment of SOD1  mice after the appearance of the symptoms with
CED and VAR10303 (a brain permeable chelating-radical scavenging drug)
shows an increase of motor performance and lifespan, and limited iron
accumulation and MN loss (Golko-Perez et al. 2017).

Pivotal interplay between iron and canonical proteins
involved in PD and ALS
α-synuclein
The aggregation of α-synuclein that contributes to intracellular inclusions (i.e.
Lewy bodies) in dopaminergic neurons is a common neuropathological feature in
PD. Iron can markedly induces to replace by induce  aggregation of α-synuclein
and enables redox cycling as well as oxidative catalysis of lipids and dopamine
metabolites (Duce et al. 2017). Moreover, the apparent increase in magnetic
susceptibility used to measure iron deposition with Magnetic Resonance Imaging
(MRI) sequence of Quantitative Susceptibility Mapping (QSM), follows a pattern
of tight concordance with the distribution of α-synuclein pathology in the dorsal
SN, basal ganglia and cortex of PD (Acosta-Cabronero et al. 2017). Accordingly,
iron chelation can reduce the amount of insoluble α-synuclein deposits in the
brains of murine synucleinopathy models (Ayton et al. 2015; Finkelstein et al.
2016).

Functionally, α-synuclein has been strongly implicated in neurotransmitter
storage and release at the synapse. By binding to the synaptic plasma membrane
via vesicle-associated membrane protein 2 (Synaptobrevin-2/VAMP2), α-
synuclein is able to modulate neurotransmitter release controlled by the fusion
and clustering of SNARE (Soluble N-ethylmaleimide-sensitive-factor attachment
protein receptor)-associated vesicles (Duce et al. 2017). An interaction with
vesicular monoamine transporter 2 (VMAT2), involved in vesicle filling, as well
as the dopamine transporter (DAT) required for dopamine reuptake, also indicate
that α-synuclein might normally modulate dopamine recruitment and
homeostasis (Butler et al. 2015). This is supported by evidence that α-synuclein
is a rate limiting factor in dopamine synthesis by tyrosine hydroxylase (TH).
Since iron can regulate protein translation of α-synuclein through its promoter
region,(Duce et al. 2017) a role for α-synuclein in modulating iron homeostasis
can also be suggested. Depletion of α-synuclein’s functional role with the
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membrane impairs the capacity for TfR to import iron and indicates that α-
synuclein could modulate clatherin-mediated endocytosis (Duce et al. 2017).
Recently, neonatal iron-feeding of a transgenic mouse model overexpressing
human α-synuclein bearing the A53T mutation has been shown to exacerbate
both PD-related motor and non-motor phenotypes, and that the deficits could be
rescued by iron chelation. Although these observations were not accompanied by
alterations in the α-synuclein aggregation state, this does support an interaction
between mutated α-synuclein and iron homeostasis (Carboni et al. 2017).

Tdp43
Misfolded or mislocalized RNA-binding proteins (and consequently altered
mRNA processing) can cause neuronal dysfunction and even lead to
neurodegeneration. A prominent example is the TAR DNA-binding protein of
43 kDa (TDP-43). Aggregates of TDP-43 are incorporated in ubiquitinated
inclusions of the cytoplasm of motor neurons in ALS. SOD1 interact with TDP-
43 (Higashi et al. 2010). Cai and colleagues (Cai et al. 2015) demonstrated that
TDP-43 modification, including phosphorylation and truncation, was increased
in the spinal cord of hSOD1G93A ALS mice and that SOD1 initiated the
modification and accumulation of TDP-43 (Zeineddine et al. 2017; Jeon et al.
2019). In hSOD1G93A ALS mice, iron chelators reduced TDP-43 aggregation
(Wang et al. 2011) but since oxidative stress-mediated accumulation of ROS
promotes the TDP-43 aggregation (Cohen et al. 2012), the effect of iron chelator
on TDP-43 aggregation may be indirect through a reduction in iron induced
oxidative stress.

Ferroptosis-a new iron-dependent cell-death pathway that
may yield further therapeutic options
A new iron-dependent cell-death pathway that has recently come to light has
strong implications in neuropathology. Ferroptosis appears to be selectively
triggered by an iron-dependent mechanism with key features including lipid
peroxidation, specific depletion of glutathione peroxidases-4 (Gpx4) to alter
glutathione protection, mitochondriopathy and distinct morphological
modifications that are independent from other cell-death pathways (e.g.
apoptosis, necrosis and autophagy) (Dixon et al. 2012; Friedmann Angeli et al.
2014; Doll and Conrad 2017). Inhibition of the xCT cystine/glutamate antiporter
during ferroptosis consequentially prevents cystine uptake into the cell and leads
to lower levels of GSH synthesis and increases cellular availability of labile iron
to catalyse lipid peroxidation (Fig. 2) (Dixon et al. 2012). Ferroptosis is
associated with pathogenic changes observed in PD, including nigral iron
elevation, mitochondriopathy, GSH depletion, lipid peroxidation, elevated ROS
generation and oxidation of dopamine ( Van Do To replace by DoVan for all the



05/01/2020 e.Proofing

https://eproofing.springer.com/journals_v2/printpage.php?token=YvUbfX2hEYAchyEy81aR5u4nPk8zBdd0uSwq821_Pxty935e3xNxwA 17/42

references 

et al. 2016; Guiney et al. 2017). Ferroptosis has been identified to be present in
vitro, using non-oncogenic dopaminergic neurons, ex vivo, on organotypically
cultured striatal slices and in vivo in the MPTP mouse model (Van Do et al.
2016). Ferroptosis can be rescued by iron chelation (e.g. with DFP), (Dixon et al.
2012; Torii et al. 2016; Van Do et al. 2016) supporting the requirement for iron
in the initiation of this cell-death pathway. Importantly, a range of inhibitors with
greater specificity to ferroptosis (e.g. ferrostatin-1 and liproxstatin-1) have
recently been designed with promising future implications in disease
modification.

Gpx4 is also essential for motor neuron health and survival. In vivo, conditional
ablation of Gpx4 in neurons of adult mice results in rapid onset and progressive
paralysis and death. Spinal motor neuron degeneration induced by Gpx4 ablation
exhibited features of ferroptosis (including lipid peroxidation) but not from
apoptosis (no caspase-3 activation, no TUNEL staining). Supplementation with
vitamin E, another inhibitor of ferroptosis, delayed the onset of paralysis and
death induced by Gpx4 ablation (Chen et al. 2015).

Gpx4 is important in the protection against lipid peroxidation because of its
ability to reduce hydroperoxides in lipids. Conversely, ACSL4 and LOX
activities contribute to the cellular pool of lipid hydroperoxides that initiate
ferroptosis. A robust anti-ferroptotic effect relies on a strongly reduced
incorporation of long gamma-6 polyunsaturated fatty acids (such as arachidonic
and adrenic acid) into phospholipids thus dramatically lowering the susceptibility
to lipid peroxidation events in membranes. Trostchansky and colleagues showed
that 12-hydroxyeicosatetraenoic acid (12-HETE), an LOX-derived oxidation
product, increases with disease progression in SOD1G93A mice. Moreover, they
demonstrated a protective role of Nitro-Oleic Acid in this ALS model due to its
ability to cross the BBB and lower the observed increase in brain 12-HETE
levels (Trostchansky et al. 2018).

Iron deposits: advancements in an imaging biomarker
The association of ageing with elevated iron levels across PD brain regions is a
risk factor most prominently found in the basal ganglia (caudate nucleus,
putamen and globus pallidus) (Ramos et al. 2014). In post-mortem SNc of
patients (Ayton et al. 2013, 2015; Ward et al. 2014; Belaidi and Bush 2016) as
well as all Parkinsonian animal models (Kaur et al. 2003; Ayton et al. 2013,
2015; Devos et al. 2014; Ward et al. 2014; You et al. 2015; Lei et al. 2015;
Belaidi and Bush 2016) relatively high iron accumulation has been observed and
this has been confirmed by iron-sensitive high-field MRI (3 and 7 Tesla) with the
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quantitative weighted T2* sequence showing a higher R2* value (R2* = 1/T2*)
of the SNc (Fig. 1) (Ulla et al. 2013; Rossi et al. 2014; Aquino et al. 2014; Hopes
et al. 2016; Langley et al. 2017). Both longitudinal and meta-analysis studies in
PD patients have shown iron overload with disease progression in the SNc and to
a lesser extent in the putamen and caudate nucleus (Ulla et al. 2013; Hopes et al.
2016; Wang et al. 2016). Although hyperintensity of the dorsolateral SNc in PD
has been noted by susceptibility weighted imaging (SWI) (Acosta-Cabronero et
al. 2017; Nam et al. 2017), a recent meta-analysis of SWI data (Mahlknecht et al.
2017) demonstrated: (a) visual assessment of dorsolateral nigral hyperintensity to
have excellent diagnostic accuracy for PD versus controls; a loss in
hyperintensity could be a diagnostic marker of nigral pathology (i.e. nigrosome 1
degeneration) in PD. (b) An ability to differentiate neurodegenerative from non-
neurodegenerative parkinsonian syndromes.

Fig. 1

Conservative iron chelation. Maldistribution of iron is a feature common to several
sideropathies, whereby excessive accumulation of the metal in particular loci
results in the release of labile-toxic metal but also generates focal deficiencies and
ensuing cell malfunctions. Removal of labile iron as means of detoxification by
iron chelators is beneficial in diseases of systemic iron overload, but could be
detrimental for disorders of focal iron accumulation in discrete brain or heart cells.
The application of chelators endowed with the ability to transfer chelated iron to
circulating transferrin (Tf) provides not only a safety tools to conserve iron
systemically but also redeploy the metal to iron-deficient compartments or
components. We define that property as conservative chelation
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These observations have been corroborated by a technique that is proposed to
detect ferritin-iron, independent of hemosiderin spin dephasing, based on
measurements of reduced transverse relaxation rates (RR2) (Bunzeck et al.
2013). A novel MRI approach with QSM has also recently demonstrated superior
sensitivity for mapping the whole-brain landscape of magnetostatic alterations as
a surrogate for changes in iron levels. In the dorsal SNc an increase in magnetic
susceptibility is consistent with non-heme iron deposition and clinical PD status
(Acosta-Cabronero et al. 2017; Wang et al. 2017). In addition, hyperechogenicity
of the SNc visualized by transcranial ultrasound is also an established
supplementary marker for PD diagnosis and can detect tissue that has increased
iron levels and alterations in iron metabolism genes (Berg et al. 2002, 2006;
Zecca et al. 2005). Local neuromelanin density is reduced in the SNc
(predominantly the lateral-ventral tier), in concordance with pathology, as
detected by a new sequence of magnetization transfer contrast (Huddleston et al.
2017). As neuromelanin in the SNc increases with age and decreases in PD, this
suggests a neuroprotective role in which neuromelanin chelates metals and
xenobiotics.

Iron accumulation was also observed in ALS patients decades ago (Ishikawa et
al. 1993; Oba et al. 1993) using T2-weighted imaging in the motor cortex.

Recent advances in MRI sequences and post-processing images using T2*-
weighted gradient echo imaging (T2*), Quantitative Susceptibility Mapping
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(QSM) and Susceptibility-Weighted Images (SWI) have allowed the detected low
signal intensity to be correlated with postmortem analysis and clinical data. With
T2*, hypointensities to the deeper layers of the motor cortex have been described
in ALS patients and these have corresponded with an iron accumulation in
microglial cells from these areas (Kwan et al. 2012) as well as a correlation
between increased area of hypointensities and decreased ALSFRS (Ignjatović et
al. 2013). In the same study, no significant difference was observed between
bulbar or limb onset, although patients with bulbar onset did tend to have higher
MRI scores. On SWI images, lower signal intensity of the precentral cortex was
detected in ALS patients and this correlated with post-mortem analysis showing
ferritin-positive staining in microglia and macrophages (Adachi et al. 2015).
More recently, Vazquez-Costa and collaborators (Vázquez-Costa et al. 2018)
found no differences in iron accumulation between genetic and non-genetic ALS,
which suggest that genetic factors do not influence hypointensities in the motor
cortex.

A therapeutic strategy of conservative chelation based on iron
scavenging and redeployment
The implication of siderosis and iron toxicity in NDD, notably PD and ALS, has
largely been based on the protective effects of iron chelation in cell and animal
models (Kaur et al. 2003; Jeong et al. 2009; Ayton et al. 2013, 2015; Weinreb et
al. 2013; Ramos et al. 2014; Devos et al. 2014; Ward et al. 2014; Workman et al.
2015; Matak et al. 2016; Evans et al. 2016; Belaidi and Bush 2016; Golko-Perez
et al. 2017; Zhu et al. 2017). However, for any chelator to be of clinical value in
disorders of regional siderosis they must be endowed with a requisite
accessibility to the relevant sites and differential specificity so as to spare
unaffected areas of the organism from scavenging this essential element
(Cabantchik et al. 2013). Multiple agents with iron-chelating features have been
assessed preclinically in NDD models. In PD, this includes:

• Deferoxamine (DFO),

• 8-Hydroxyquinolines analogs such as clioquinol, VK28, M30 (a multimodal
iron chelator that sequesters iron and inhibits MAO-A and MAO-B) and
M10 (containing a peptide NAPVSIPQ and an iron-chelating moiety),

• Prochelators such as SIH-B and BSIH (derived from salicylaldehyde
isocotinoyl hydrazine which is then converted to the active non-specific iron
chelator SIH during oxidative stress),

• Aroylhydrazones (Youdim et al. 2005; Whitnall and Richardson 2006; Perez
et al. 2008; Gal et al. 2010),
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• Natural plant-derived polyphenol flavonoids,

• New multimodal iron chelators with multifunctional characteristics (Nuñez
and Chana-Cuevas 2018).

As yet none of these compounds have progressed to clinical trial for PD and ALS
apart from deferiprone (DFP). DFP is considered exceptional among iron
chelators in its ability to cross membranes, including the blood brain barrier
(BBB), (Cabantchik et al. 2013) and to chelate components of the cellular labile
iron pool in brain tissue (Devos et al. 2014). DFP has the remarkable ability to
rescue transfusional hemosiderosis in the heart of β-thalassemia patients without
inducing anaemia. This capability of DFP is largely attributable to the
redeployment of captured iron to extracellular iron free transferrin and then
subsequent distribution (e.g. for uptake to iron-sulphur cluster and heme
biosynthetic machineries) (Fig. 2) (Cabantchik et al. 2013).

Fig. 2

Ferroptosis as a therapeutic target in Parkinson’s disease. Alterations in the iron-
regulatory pathway and phospholipid oxidation are implicated in Parkinson’s
disease pathology. 1 Increased intracellular iron occurs by enhanced import of iron
within transferrin (Tf) through Transferrin receptor (TfR) endocytosis that is
promoted by α-synuclein (α-syn), and increased import of Fe  through the
divalent metal transporter 1 (DMT1). In addition, iron export is impaired through
the destabilization of ferroportin (Fpn) on the cell surface by β-amyloid precursor
protein (APP) or ceruloplasmin (CP). 2 When the storage protein neuromelanin
(Nm) and ferritin (Ft) are no longer able to safely store intracellular iron, the labile
pool of iron is elevated and catalyses the formation of phospholipid
hydroperoxides. Free cytosolic polyunsatursted fatty acids (PUFA) are conjugated
to coenzyme-A (CoA) by acyl-CoA synthetase long-chain family member 4
(ACSL4) allowing PUFA-CoA to be incorporated into the phospholipids in the
plasma membrane. Phospholipid-PUFA are oxidised by lipoxygenases 12/15,
contributing to the accumulation of phospholipid hydroperoxides at the plasma
membrane level. Mitochondrial dysfunction, as reported in PD pathology result in
increased ROS production which may also contribute to lipid peroxidation in the
plasma membrane. Lipid peroxidation may also accumulate in mitochondrial
membrane further disrupting mitochondrial function. 3 Cystine uptake through the
X  antiporter (in oxidative conditions) or the alanine, serine, cysteine–preferring
(ASC) system (in reducing conditions) is required for biosynthesis of glutathione
(GSH). Glutathione peroxidase 4 (Gpx4) uses 2 GSH molecules to safely reduce
phospholipid hydroperoxides to their corresponding lipid-alcohols, producing H O
and glutathione disulphide (GSSG) as byproducts. Elevated levels of intracellular
iron with depletion of Gpx4, as evidenced in models of PD, promotes the
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accumulation of phospholipid hydroperoxides leading to a disruption in membrane
integrity through a ferroptotic pathway. 4 Reducing the labile iron pool (i.e.
deferiprone) or depleting the phospholipid hydroperoxides (i.e. liproxstatin-1 or
ferrostatin-1) are thus promising targets for inhibiting ferroptosis in PD pathology

This conservative repositioning strategy to subserve iron scavenging and
redeployment has now been applied to both PD and ALS using DFP at the oral
dose of 30 mg/kg/day (Devos et al. 2014; Moreau et al. 2018). In PD, an initial
study used 40 early-stage patients with a disease duration of less than 3 years
that were enrolled in a delayed start paradigm (6 months DFP or placebo
pretreatment followed by 12 months DFP for all). A significant reduction in SNc
and putamen siderosis was observed, particularly in the group that started early
with DFP. Compared to placebo this remained stable until completion
(18 months). A concomitant clinical benefit was noted at 6 months with a three-
point improvement in the unified Parkinson’s disease rating scale (UPDRS) for
motor skills in the early start group (21.6 ± 8) versus the delayed start group (24 
± 6). Importantly, at 12 months, these ‘early start’ patients retained a
significantly lower motor handicap (1 point on the motor UPDRS: 21.3 ± 8)
compared to the delayed start group (22.8 ± 6), signifying a disease modifying
effect (Devos et al. 2014). Interestingly, an independent trial in 22 early-onset
PD patients receiving DFP at 20 or 35 mg/kg or placebo for 6 months also
showed promising results (Martin-Bastida et al. 2017). The dose of 30 mg/kg/day
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and a treatment period of 12 months appeared yet more efficient than 20 mg and
6 months, respectively (Devos et al. 2014).

In ALS, 23 consecutive sporadic patients (22 limb onset and 1 bulbar onset),
enrolled at time of diagnosis, showed a significant decrease in iron (by R2*)
following treatment with DFP in the cervical spinal cord, medulla oblongata and
motor cortex, but not in areas outside the motor system (i.e. the cerebellum and
the occipital cortex). Levels of iron, oxidative stress and the neurofilament light
chains were also lowered after DFP treatment in the cerebrospinal fluid. A
decrease in the ALS Functional Rating Scale score was significantly smaller for
the first 3 months of DFP treatment than for the 3-month treatment-free period (5
versus 2 points). Likewise, the decrease in the Body Mass Index (BMI) was
significantly altered, with a decrease of about 1 kg during the first 3 months but a
small increase during the treatment period (BMI: 26.3 ± 4 versus 25.9 ± 4 and
back to 26.0 ± 4 under DFP), upon which BMI remained unchanged for a further
9 months. The reduction in manual muscle testing scores was lower in patients
on DFP than placebo matched patients from the Mitotarget study, although this
difference did not reach statistical significant (Moreau ARS). In all, DFP trials
have a good safety profile, despite the requirement for weekly blood counts
during the first 6 months to monitor reversible neutropenia that could occur in 1–
3% (agranulocytosis in 0.8%) of patients.

The conservative mode of chelation was reflected by an absence of systemic iron
loss, with patients showing normal iron indices that were unaltered after DFP
treatment for 18 or 24 months in PD and 12 months in ALS. Interestingly, for
compassionate reasons 3 ALS patients followed deferiprone for more than
50 months and one atypical PD patients for 5 years and none showed abnormal
iron indices (i.e. anaemia). The only modification identified was a mild ferritin
reduction in blood and CSF from PD patients that persisted long term but still
remained within a range considered normal in patients. In ALS patients, the
reduction of ferritin was slight and very transient (only 3 months) with a
subsequent return to normal levels in the long term. Thus, it appears that iron
homeostasis is able to be maintained under small doses of DFP (equal or below
30 mg/kg/day) for at least for a few years. This important finding in a small
patient population requires confirmation on larger ALS cohorts treated longer
term.

These promising results have now led to several large phase II clinical trials: a
European multicentre, parallel-group, placebo-controlled, randomized clinical
trial (FAIRPARK-II www.fairpark2.eu (Nuñez and Chana-Cuevas 2018)) on 372
de novo PD patients for 9 months, and a French multicentre, parallel-group,
placebo-controlled, randomized clinical trial on 240 ALS patients at the
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diagnosis for 12 months (FAIRALS-II). Importantly, Apopharma has launched
the clinical development in PD with the SKY study; a DFP dose-ranging study of
efficacy, safety and pharmacokinetics using delayed release tablets in 140 early
PD patients for 9 months (300 mg vs 600 mg vs 900 mg vs 1200 mg vs placebo).
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