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Abstract: Invasive fungal infections represent an expanding threat to public health. During the past
decade, a paradigm shift of candidiasis from Candida albicans to non-albicans Candida species has
fundamentally increased with the advent of Candida auris. C. auris was identified in 2009 and is
now recognized as an emerging species of concern and underscores the urgent need for novel drug
development strategies. In this review, we discuss the genomic epidemiology and the main virulence
factors of C. auris. We also focus on the different new strategies and results obtained during the
past decade in the field of antifungal design against this emerging C. auris pathogen yeast, based
on a medicinal chemist point of view. Critical analyses of chemical features and physicochemical
descriptors will be carried out along with the description of reported strategies.

Keywords: Candida auris; antifungal drugs; repurposed drugs; combinatorial therapy; natural
compounds; nanoparticles

1. Introduction

First identified in 2009 from the ear canal of a patient in Japan [1], C. auris is now recog-
nized as an emerging species of concern [2,3], and more and more publications are related
to C. auris studies (Figure 1). When searching for “Candida auris” key words on Scifinder,
fewer than 1000 reports have been compiled, most of them during the two last years,
proving the acceleration of research and clinical studies around this emerging pathogen.
Its emergence is defined by the occurrence of C. auris infections in a dozen of countries
all around the world. In Europe, since 2015, sporadic epidemics have been reported in
Spain [4], United-Kingdom [5], Germany, or Norway [6], for example. Simultaneously,
candidiasis caused by C. auris were reported in Korea [7], South Korea [8], India [9–11],
South-Africa [12], or Kowait [13]. In the same period, the United States were also af-
fected [14–16]. This human pathogen is associated with severe invasive infections with
high mortality rates ranging from 35 to 72% [8,12,17,18]. Since June 2016, governmental in-
stitutions (Centers for Disease Control and Prevention (CDC), European Centre for Disease
Prevention and Control (ECDC), World Health Organization (WHO), Pan American Health
Organization (PAHO), National institute for Communicable Diseases (NICD) . . . ) have
issued clinical alerts to health care facilities and provided interim guidelines for clinical
management, laboratory testing and infection control of C. auris [19,20]. This fungus poses
significant challenges to microbiologists and clinicians because of its frequent multidrug
resistance; high transmissibility and severe outcomes coupled with misidentification by
standard biochemical identification systems such as Vitek 2 [21].
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Figure 1. Evolution of annual reports dealing with C. auris studies (Scifinder search, key word 
Candida auris, Data Compiled on 31 December 2020). 

Moreover, the widespread and prolonged use of available antifungal drugs has given 
rise to multidrug resistance that alters the therapeutic available options. It has been re-
ported that nearly 90% of C. auris isolates exhibit resistance to fluconazole, around 30% 
resistance to amphotericin B, and less than 5% resistance to echinocandins [22,23]. Under 
such compelling circumstances, C. auris displays all the features of a “superbug” and ef-
forts are ongoing to identify new therapeutic alternatives to fight against C. auris infec-
tions. After introducing C. auris genomic epidemiology and virulence factors, this review 
aims at compiling the different strategies and results obtained during the past ten years 
in the field of antifungal research against emerging C. auris from a medicinal chemist point 
of view. To summarize, six complementary strategies have been developed, from the most 
attractive to the less reported: (i) repurposing of drugs; (ii) evaluation of combination 
drugs; (iii) discovery of new drug-candidates; (iv) traditional medicines and natural com-
pounds; (v) metal, metalloids and complexes; (vi) others approaches including nanopar-
ticles and irradiation. Results and data will be analyzed from a chemical approach based 
on chemical features and physicochemical descriptors such as lipophilicity (expressed by 
logP) and topological polar surface area (TPSA) in order to establish a comparison be-
tween classes of compounds and define potential common pharmacophoric moieties.  

2. Candida auris Genomic Epidemiology and Virulence Factors 
2.1. Global View 

C. auris is taxonomically placed as a close relative to the Candida haemulonii since its 
discovery in 2009 from the ear canal of a patient in Japan [1]. C. auris was isolated in all 
continents except Antarctica. Munoz et al. found that four of the five clades of C. auris are 
genetically related to other Candida species including C. haemulonii, C. duobushaemulonii, 
and C. psuedohaemulonii [24]. These five genetically distinct clades of C. auris correspond 
to: Clade I from India and Pakistan (South Asian), Clade II from Japan (East Asian), Clade 
III from South Africa (African), Clade IV from Venezuela (South American) and most re-
cently a potential Clade V from Iran [22,25]. Over the past ten years, C. auris has been 
isolated across all major continents, including elsewhere in Asia, Africa, North and South 
America, Australia, Europe, and the Middle East. 

Outbreaks in United States have been reported to different clades of C. auris that are 
introduced from other continents. In terms of the analysis of whole-genome sequencing 
studies, Chow et al. found that the 133 clinical isolates of C. auris identified in United-
States between 2013 and 2017 were related to South Asian, South American, African, and 
East Asian isolates but unexpectedly, only 7% of these clinical C. auris isolates were iden-
tified from patients with clear evidence of being acquired through health-care exposures 
abroad [16]. Outbreaks in Europe were also attributed to recent spread from other conti-
nents. For example, the first case of C. auris infection in France has been reported in 2018 
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Figure 1. Evolution of annual reports dealing with C. auris studies (Scifinder search, key word
Candida auris, Data Compiled on 31 December 2020).

Moreover, the widespread and prolonged use of available antifungal drugs has given
rise to multidrug resistance that alters the therapeutic available options. It has been reported
that nearly 90% of C. auris isolates exhibit resistance to fluconazole, around 30% resistance
to amphotericin B, and less than 5% resistance to echinocandins [22,23]. Under such
compelling circumstances, C. auris displays all the features of a “superbug” and efforts
are ongoing to identify new therapeutic alternatives to fight against C. auris infections.
After introducing C. auris genomic epidemiology and virulence factors, this review aims at
compiling the different strategies and results obtained during the past ten years in the field
of antifungal research against emerging C. auris from a medicinal chemist point of view. To
summarize, six complementary strategies have been developed, from the most attractive
to the less reported: (i) repurposing of drugs; (ii) evaluation of combination drugs; (iii)
discovery of new drug-candidates; (iv) traditional medicines and natural compounds;
(v) metal, metalloids and complexes; (vi) others approaches including nanoparticles and
irradiation. Results and data will be analyzed from a chemical approach based on chemical
features and physicochemical descriptors such as lipophilicity (expressed by logP) and
topological polar surface area (TPSA) in order to establish a comparison between classes of
compounds and define potential common pharmacophoric moieties.

2. Candida auris Genomic Epidemiology and Virulence Factors
2.1. Global View

C. auris is taxonomically placed as a close relative to the Candida haemulonii since its
discovery in 2009 from the ear canal of a patient in Japan [1]. C. auris was isolated in all
continents except Antarctica. Munoz et al. found that four of the five clades of C. auris are
genetically related to other Candida species including C. haemulonii, C. duobushaemulonii,
and C. psuedohaemulonii [24]. These five genetically distinct clades of C. auris correspond to:
Clade I from India and Pakistan (South Asian), Clade II from Japan (East Asian), Clade III
from South Africa (African), Clade IV from Venezuela (South American) and most recently
a potential Clade V from Iran [22,25]. Over the past ten years, C. auris has been isolated
across all major continents, including elsewhere in Asia, Africa, North and South America,
Australia, Europe, and the Middle East.

Outbreaks in United States have been reported to different clades of C. auris that are
introduced from other continents. In terms of the analysis of whole-genome sequencing
studies, Chow et al. found that the 133 clinical isolates of C. auris identified in United-States
between 2013 and 2017 were related to South Asian, South American, African, and East
Asian isolates but unexpectedly, only 7% of these clinical C. auris isolates were identi-
fied from patients with clear evidence of being acquired through health-care exposures
abroad [16]. Outbreaks in Europe were also attributed to recent spread from other conti-
nents. For example, the first case of C. auris infection in France has been reported in 2018
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from a patient who travelled in India and Iran two months before his hospitalization in
France [26].

C. auris is believed to have been misidentified as C. haemulonii on several occasions,
suggesting that C. auris has likely been circulating as a human fungal pathogen before
2009. However, retrospective analysis of the SENTRY Antifungal Surveillance collection
of over 15,000 Candida isolates from 135 participating medical centers in North America,
Europe, Latin America, and the Asia-Pacific regions since 1997 shows no misidentifications
of C. auris before 2009 [27].

2.2. Virulence Factors of C. auris

Like C. albicans, C. auris expresses several virulence factors that contribute to patho-
genesis including the transition between blastoconidia and filamentous forms, hydrolytic
enzyme production, thermotolerance, biofilm/adhesion to host cells, osmotolerance, fila-
mentation, and phenotypic switching (Figure 2).
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perature changes supporting the hypothesis that C. auris is the first example of a new 
pathogenic fungus emerging from human-induced global warming [29].  

C. auris is also osmotolerant and known to survive at high salt concentrations, which 
might enable it to survive environmentally including hypersaline desert lakes, salt-evap-
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Figure 2. Schematic overview of C. auris virulence factors. Stress resistance, hydrolytic enzyme
production, thermotolerance, biofilm/adhesion to host cells, osmotolerance, filamentation, and white
and opaque switching are important virulence traits in C. auris.

In contrast to other close relatives including C. haemulonii or C. pseudohaemulonii,
C. auris is able to grow at 42 ◦C [1]. The thermotolerance of C. auris contributes to persist
against the high fever response and causes an invasive candidemia [28]. Casadevall et al.
suggested that the thermotolerance of C. auris is related to climate change and global
temperature changes supporting the hypothesis that C. auris is the first example of a new
pathogenic fungus emerging from human-induced global warming [29].

C. auris is also osmotolerant and known to survive at high salt concentrations, which
might enable it to survive environmentally including hypersaline desert lakes, salt-evaporat-
ing ponds, or tidal pools (Figure 2) [28]. C. auris is able to survive on human skin and
environmental surfaces for several weeks and can even tolerate being exposed to some
commonly used disinfectants [30].

In terms of filamentation of C. auris, Yue et al. showed that C. auris can switch to
three distinct cell types including typical yeast, filamentation-competent (FC) yeast, and
a filamentous form [31]. Of note, typical yeast cells are filamentation-incompetent while
FC yeast and filamentous cells are filamentation-competent under specific in vitro culture
conditions [31]. Furthermore, the difference between the typical yeast and filamentous cell
types was variable among the expression levels of metabolism genes. In particular, both
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Krebs cycle- and glycolytic pathway-associated genes were downregulated in filamentous
C. auris cells while fatty acid metabolism-related genes were upregulated, supporting that
C. auris employs different metabolic modes to adapt to its host to reap the overall benefits
of its commensal and pathogenic lifestyle [31]. Additionally, some strains of C. auris do not
produce pseudohypae and show a decreased ability to assimilate different carbon sources
(galactose, l−sorbose, cellobiose, l−arabinose, ethanol, glycerol, salicin, or citrate) [1].

Another morphological switch implicates the interconversion between white and
opaque forms of C. auris [32]. Opaque yeast cells are more frequent colonizers in skin
infections than white cells, whereas white yeast cells are much virulent in systemic infec-
tions than opaque cells [33,34]. Bentz et al. showed that C. auris phenotypic switching is
regulated by WOR1 that control phenotypic switching in C. auris [33].

Like C. albicans, C. auris can produce the extracellular hydrolytic enzymes that are
recognized as an important virulence trait including proteinases, hemolysins, lipases and
phospholipases. Regarding secreted aspartyl proteinases (SAPs), that are one of the most
significant extracellular enzymes produced in Candida species [35], SAPs contribute to
degradation of host tissue by providing nutrients for pathogen propagation and promote
the inactivation of host antimicrobial peptides, the evasion of the immune responses and the
induction of inflammatory mediator release from host cells [36]. In terms of the difference
of SAP activity between C. auris and C. albicans, C. auris is able to maintain high SAP
activity at 42 ◦C when compared to that of C. albicans supporting that C. auris maintains its
pathogenicity at higher temperatures [36].

Another important group of lytic enzymes are the lipases and phospholipases that are
involved in the host damage, immune evasion and biofilm formation [37,38]. In contrast to
C. albicans, the production of C. auris lipases or phospholipases appears to be decreased
and strain-dependent although C. auris and C. albicans share the same quantity of lipase
encoding genes in the genome [39].

Hemolysin is an exotoxin that is capable of lysing red blood cells as well as nucle-
ated cells and different pathogenic Candida species including C. auris display hemolysin
activity [40]. C. auris strains isolated from hospital infections exhibit a high production of
hemolysin when compared to those from environmental sources suggesting that hemolysin
activity is involved in C. auris virulence factors (Figure 2) [41].

In terms of stress sensitivities of C. auris, Hog1-related stress-activated protein kinase
is an important virulence trait for fungal survival against host-imposed stresses and are
highly required for the pathogenicity of many fungal pathogens during infection [42].
Day et al. showed that Hog1 is involved in regulating stress resistance, cell morphology,
aggregation, and virulence in C. auris [43].

With regard to biofilm formation, in contrast to C. albicans which forms the heteroge-
neous architecture of biofilms combined with blastoconidia and hyphae embedded within
the extracellular matrix, C. auris produces thin biofilms composed mostly of blastoconidia
and occasionally pseudohyphae embedded within very limited extracellular matrix [40]. In-
terestingly, these C. auris biofilms display lower susceptibility against antifungals including
polyenes, azoles, echinocandins and chlorhexidine when compared to those of C. albicans
suggesting other mechanisms to be more important for this antifungal-resistant biofilm
than the reduced biomass of C. auris or limited extracellular matrix [43–45]. Additionally,
adhesion plays a key role in C. auris virulence and biofilm formation. Agglutinin-like
sequence (ALS) proteins, in particular Als3, are involved in C. auris adherence [46]. Singh
et al. showed that sera containing anti-Als3 antibodies prevent C. auris biofilm formation
supporting an important role of Als3 in biofilm formation [47]. Knowing the specificity
of C. auris and its virulence factors, different strategies are conducted to fight this emerg-
ing superbug.
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3. Repurposing Drugs
3.1. Drugs: In Vitro Screening

Repurposing of drugs is an attractive pathway to discover new applications to already
developed and filed drugs. Drug repositioning could help spare substantial costs linked to
new drug discovery and development. It is also highly interesting because it involves the
use of de-risked compounds, avoiding high attrition rate [47,48]. Therefore, this strategy
has been applied for repurposing of drugs against C. auris. It is notable that the reported
studies have been mainly conducted in vitro unless specified.

In that context, the Prestwick Chemical library®, a repurposing library of 1280 small
mainly off-patent molecules, has been screened several times by different research groups.
In 2018, Wall et al. identified, from this library, ebselen as a repositionable molecule [49].
Ebselen is a synthetic organoselenium drug molecule with antioxidant, anti-inflammatory,
and cytoprotective activity (Figure 3). It exhibited 100% inhibition of growth of C. auris at a
concentration of 2.5 µM. In addition, ebselen also inhibited the formation of biofilm and
was defined as a broad-spectrum antifungal, not only active on Candida species, but also
against a variety of medically important fungi, including yeasts and molds.
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Figure 3. Structures of ebselen and alexidine dichloride.

Mamouei et al. recently reported the results issued from their own screening of the
same chemical collection against C. auris [50]. They focused on inhibitors able to block the
fungal growth and to kill preformed biofilms. The bis-biguanide alexidine dihydrochloride
(AXD) (Figure 3), a potent and selective PTPMT1 (Protein Tyrosine Phosphatase Localized
to the Mitochondrion 1) inhibitor, exhibited the highest antifungal and antibiofilm activity
against a panel of pathogens, including C. auris.

In parallel, from the Prestwick Library®, a major work dealing with repurposing of
compounds to fight specifically against C. auris has been conducted by Zagaroza et al. in
2019 [51]. From this massive screening, 27 drugs proved to inhibit the growth of three
different strains of C. auris with different geographical origin: CL-10093, JCM 15448, and
KCTC 17810 (Table 1). From this pre-selection, the scientists carried complementary studies
on 10 drugs, namely MK 801 hydrogen maleate, ciclopirox ethanolamine, trifluoperazine
dihydrochloride, suloctidil, ebselen, tamoxifen citrate, rolipram, thiethylperazine dimalate,
guanadrel sulfate, and pyrvinium pamoate, and also recently confirmed the described
repositionable compounds such as alexidine and ebselen.
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Table 1. Active repositionable drugs against C. auris according to Zagaroza et al.

Structure Name Class
Growth Inhibition (%) at 50 µM

CL 10093 JCM 15448 KCTC 17810
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of depression, against three different isolates of C. auris (Figure 4). Sertraline demon-
strated to effectively kill C. auris but also to inhibit the formation of biofilm. Its mode of 
action was elucidated by in silico studies and revealed the binding nature of sertraline to 
the sterol 14 α-demethylase which is involved in ergosterol biosynthesis [52]. 

Taurolidine and its derivatives have been recently patented by Diluccio and 
Reidenberg for the treatment of blood infection by C. auris [53]. Taurolidine (Figure 4) is 
an antimicrobial that is used to try to prevent infections in catheters.  

Octenidine dihydrochloride is a cationic gemini-surfactant, derived from pyridine 
(Figure 4). More than two decades ago, it was designed for skin, mucous membrane and 
wound antisepsis. It is currently used as antiseptic in a large field of applications as alter-
native to chlorhexidine, polyvidone-iodine or triclosan [54]. In 2019, Ponnachan et al. re-
ported the ability of octenidine dihydrochloride to kill C. auris strains [55]. 

Fifty commercially available herbicides, targeting acetohydroxyacid synthase, were 
recently evaluated by Guddat et al. against C. auris CBS10913 strain. Among these com-
pounds, bensulfuron methyl (BSM), belonging to the sulfonylurea chemical subfamily 
was the most potent discovered antibiofilm formation and antifungal agent (Figure 4) [56]. 
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Using medicines for malaria venture’s pathogen box, Wall et al. recently confirmed 

iodoquinol and miltefosine as potent inhibitors of C. auris strain 0390, both under plank-
tonic and biofilm growing conditions (Figure 4) [57]. Both compounds possess broad-
spectrum of activity against Candida spp., including multiple strains of the emergent C. 
auris, irrespective of their resistance profiles. Miltefosine (MFS) was also reported in com-
bination with amphotericin B [58]. In the last few months, Barreto et al. confirmed the 
interest of MFS as an alternative approach to fight against the emerging fungus C. auris 
[59]. They reported its fungicidal activity against planktonic cells of C. auris clinical iso-
lates, and antibiofilm ability. They also studied the encapsulation of MFS in alginate na-
noparticles (MFS-AN). Using a Galleria mellonella larvae infected by C. auris model, they 
demonstrated that both MFS and MFS-AN were able to increase the survival rate. The 
main advantage of MFS-AN over MFS was its reduced toxicity. 

Zotepine Antipsychotic 59 63 56

Gowri et al. studied sertraline, a repurposing drug classically used for the treatment
of depression, against three different isolates of C. auris (Figure 4). Sertraline demonstrated
to effectively kill C. auris but also to inhibit the formation of biofilm. Its mode of action was
elucidated by in silico studies and revealed the binding nature of sertraline to the sterol 14
α-demethylase which is involved in ergosterol biosynthesis [52].
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Taurolidine and its derivatives have been recently patented by Diluccio and Reiden-
berg for the treatment of blood infection by C. auris [53]. Taurolidine (Figure 4) is an
antimicrobial that is used to try to prevent infections in catheters.

Octenidine dihydrochloride is a cationic gemini-surfactant, derived from pyridine
(Figure 4). More than two decades ago, it was designed for skin, mucous membrane
and wound antisepsis. It is currently used as antiseptic in a large field of applications as
alternative to chlorhexidine, polyvidone-iodine or triclosan [54]. In 2019, Ponnachan et al.
reported the ability of octenidine dihydrochloride to kill C. auris strains [55].

Fifty commercially available herbicides, targeting acetohydroxyacid synthase, were
recently evaluated by Guddat et al. against C. auris CBS10913 strain. Among these com-
pounds, bensulfuron methyl (BSM), belonging to the sulfonylurea chemical subfamily was
the most potent discovered antibiofilm formation and antifungal agent (Figure 4) [56].

3.2. Drugs: In Vitro Screening and In Vivo Validation

Using medicines for malaria venture’s pathogen box, Wall et al. recently confirmed
iodoquinol and miltefosine as potent inhibitors of C. auris strain 0390, both under planktonic
and biofilm growing conditions (Figure 4) [57]. Both compounds possess broad-spectrum
of activity against Candida spp., including multiple strains of the emergent C. auris, irre-
spective of their resistance profiles. Miltefosine (MFS) was also reported in combination
with amphotericin B [58]. In the last few months, Barreto et al. confirmed the interest of
MFS as an alternative approach to fight against the emerging fungus C. auris [59]. They
reported its fungicidal activity against planktonic cells of C. auris clinical isolates, and
antibiofilm ability. They also studied the encapsulation of MFS in alginate nanoparticles
(MFS-AN). Using a Galleria mellonella larvae infected by C. auris model, they demonstrated
that both MFS and MFS-AN were able to increase the survival rate. The main advantage of
MFS-AN over MFS was its reduced toxicity.

3.3. Vaccines: In Vivo Evaluation

Ibrahim et al. reported the efficacy of NDV-3A vaccine to protect mice from multidrug
resistant Candida auris infection [43,60]. NDV-3A vaccine, harboring the N-terminus of
Als3p formulated with alum, has been developed initially against C. albicans. The au-
thors proved that it generated cross-reactive antibodies against C. auris clinical isolates and
protected neutropenic mice from C. auris infection. Moreover, this repositioning vaccine dis-
played an additive protective effect in neutropenic mice when combined with micafungin.
This vaccine alternative has been recently filed [46].

3.4. Critical Analysis of Repurposing Drugs from a Chemical/Physicochemical Point of View

From a chemical point of view, it has to be mentioned that the chemical diversity
of reported antifungal active against C. auris is quite low. Only 30 repositionable com-
pounds have been described for their activity against C. auris and most of them can be
gathered based on common chemical features: quinoline/isoquinoline, guanidine, phe-
nothiazine/benzothiepine or amide-based cores. These cores are decorated with proton-
able/polarizable nitrogen groups (pyridine, ternary amine, ammonium, piperazine) and
lipophilic moieties (fatty chain or halogenated aromatics). This could be summarized
as followed in Figure 5. The protonable nitrogen could be part of the core moiety as in
quinoline/isoquinoline derivatives.
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Figure 5. Proposed scaffold of reported C. auris antifungals.

The reported repositionable compounds have been gathered in Tables 2–4 and Figures 5 and 6
with analysis of their composition according to the proposed scaffold.
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Concerning the quinoline/isoquinoline sub-group, composed of five molecules, it is
notable than the simplest drugs—clioquinol and chloroxine—differed in only one halogen
atom. Indeed, the iodine in clioquinol is replaced by a chlorine in chloroxine. This slightly
impacted the lipophilicity of the compound as chloroxine is a little more hydrophilic than
clioquinol. However, these two compounds could be referred as analogs (Table 2, Entries 1
and 2). In dimethisoquin, the quinoline core is substituted by an additional dimethylamine
group which is easily protonable and a fatty butyl chain to enhance the lipophilicity
(Table 2, entry 3). Dequalinium dichloride is a bis-quinoline derivative than perfectly fit
the proposed scaffold (Table 2, entry 4). In the same manner, pyrvinium pamoate respects
the defined features (Table 2, entry 5). On the whole, the quinoline/isoquinoline series is
composed of lipophilic compounds (2.86 < logP < 4.29).

Concerning the guanidine derivatives, the same features are also represented (Figure 6).
The guanidine core serves also as the protonable part. From a descriptor point of view, these
compounds are not blood brain barrier (BBB) permeants. The bis-biguanidines (chlorhex-
idine and alexidine) are quite lipophilic with logP equal to 2.79 and 4.67, respectively.
However, guanadrel is quite balanced (logP = 0.59). The three drugs exhibited high TPSA
(82.86 to 167.58 Å).

Heterocyclic sulfur compounds bearing a phenothiazine or a benzothiepine core dis-
played good activities against C. auris. All are highly absorbed in the gastrointestinal tract
and can pass the BBB. The five reported compounds could be divided into two sub-classes
and differed only by the nature of the R-substitution on the aromatic moiety (Table 3). Two
benzothiepine derivatives (methiothepin and zotepine) were reported. Both are lipophilic
(logP > 3.9) and exhibited a protonable N-methylpiperazine ring as the side-chain. The same
N-methylpiperazine moiety is kept in the phenothiazine derivatives (prochlorperazine,
thiethylperazine, trifluoperazine) with logP ranging from 3.47 to 4.53. The introduction
of more lipophilic substituents—ethylsulfur and trifluoromethyl—increased the activity
against C. auris JCM 15448 strain particularly.
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Table 2. Critical analysis of quinoline/isoquinoline repositionable drugs.

Entry Structures Log P 1 TPSA 2

(Å)
M

(g/mol)
Druglikeliness 3

(Alert)
BBB

Permeant 4
GI

Absorption 5

1
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Pyrvinium active
compound

4.29 12.05 382.52 MW > 350
XLOGP > 3.5 Yes High

1. LogP = octanol/water partition coefficient calculated by SwissADME; 2 TPSA = topology polar surface area by SwissADME; 3 Druglikliness = criteria which should be problematic for drug development
according to SwissADME; 4 BBB permeant: blood brain barrier permeant as predicted by SwissADME; 5 gastro-intestinal permeation ability as predicted by SwissADME.
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Table 3. Critical analysis of benzothiepine/phenothiazine repositionable drugs.

Entry Structure R LogP 1 TPSA (Å) 2 M (g/mol) Druglikeliness (Alert) 3

1
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Table 4. Cont.

Entry Structures LogP 1 TPSA 2

(Å)
M (g/mol) Druglikeliness 3

(Alert) BBB Permeant 4 GI 5

Absorption

4
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The last sub-group which could be addressed is based on an amide fragment. The
following repositionable drugs have been also analyzed (Table 4). In that case, the polar
amide bond could replace the nitrogen-protonable part. However, lipophilic moieties
are clearly present, such as para-chlorobenzyl or cyclohexyl groups. It is notable that
taurolidine, a bis-sulfonamide drug, is the only repositionable drug, which is hydrophilic,
with low GI absorption.

All others repositionable compounds except artemisin and hexaclophene exhibited a
nitrogen protonable group or a quaternary ammonium coupled with a lipophilic moiety
even if no common core can be distinguished (Figure 7). Their logP ranged from 2.98 to
5.11, proving their lipophilicity.
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4. Combination Drugs

Because discovering co-drugs capable of overcoming resistance to frontline antifungals
is of prime clinical importance, combination drugs were often reported during the last five
years. The potential combinations could be between known antifungal agents (Section 4.1),
between repurposing drug and one antifungal (Section 4.2) or between a novel active
compound and an “old” antifungal (Section 4.3).

4.1. Combination of Antifungal Drugs

To date, only in vitro results are described in this part.
In 2017, Fakhim et al. reported the effects of combination between echinocandins

and triazoles against 10 multidrug-resistant C. auris isolates [61]. Using a microdilution
checkerboard technique, they screened the in vitro interactions of azoles and echinocandins
in indian clinical isolates resistant to fluconazole and/or micafungin. They discovered
promising synergistic interactions for two couples: micafungin/voriconazole and mica-
fungin/fluconazole. This strategy has also been demonstrated recently by the in vitro
synergistic combination of isavuconazole (azole derivative) with colistin [62].

In 2020, O’Brien et al. tested if two-drug combinations were effective in vitro against
multidrug-resistant C. auris isolates [63,64]. From nine reference antifungals and around a
thousand tested combinations, they reported that flucytosine (5FC) at 1.0 µg/mL potenti-
ated the most combinations, especially in the case of amphotericin B, echinocandins and
voriconazole resistant strains where its addition allowed to restore the fungicidal activity.
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4.2. Combinations of a Repositioning Drug with an Antifungal Drug
4.2.1. In Vitro Screening

In 2018, Seleem et al. studied the combinations between sulfa drugs and reference
azole antifungals. Among the active sulfa drugs, the bacteriostatic antibiotic sulfamethox-
azole exhibited the most potent in vitro synergistic interactions with voriconazole and
itraconazole (Figure 8). The addition of sulfamethoxazole restored the activity of azole
drugs against azole-resistant strains if the resistance originated from either overproduction
of or decreased affinity for the azole target (ERG11p). Strains resistant because of efflux
pump hyperactivity were not susceptible to these combinations [65].
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In a parallel manner, in 2020, the same team from Seleem, Mayhoub et al. evaluated the
ability of Pharmakon® 1600 drug library to sensitize an azole-resistant C. albicans to the effect
of fluconazole [66]. They discovered that pitavastatin, a relatively newly developed cholesterol
lowering agent, was a potent azole chemosensitizing agent (Figure 8). From a chemical point
of view, pivastatin belongs to the quinoline sub-group, including some repurposing drugs.
Pivastatin displayed broad-spectrum synergistic interactions with both fluconazole even
against C. auris strains (MIC from 8 to 64 µg/mL for combination against 64 to 256 µg/mL
for drugs alone). Moreover, pitavastatin-fluconazole combination significantly reduced the
biofilm-forming abilities of the tested Candida species by up to 73%.

In 2019, the team of Chowdhary reported the in vitro effects of combination between
geldanamycin (Hsp90-inhibitor) with triazoles and echinocandins against common and
emerging Candida species (Figure 8) [67]. Whereas synergistic interactions between gel-
damycin and antifungal drugs were observed for C. albicans, C. glabrata and C. parapsilosis,
no interesting effect was observed for any combination against C. auris.

Dannaoui et al. evaluated the in vitro interaction between colistin and two echinocan-
dins (caspofungin and micafungin) against 15 C. auris isolates [68]. Colistin, or polymyxin
E, is a last-resort antibiotic against multidrug resistant gram-negative infections (Figure 9).
It displayed no activity with MIC of >64 µg/mL for all the isolates. However, when colistin
was combined with caspofungin, synergistic interactions were observed for all strains.

Very recently, Seleem et al. demonstrated that aprepitant, an antiemetic agent, is a
novel broad-spectrum azole chemosensitizing agent (Figure 9). The combination aprepi-
tant/itraconazole is particularly efficient in an in vivo C. elegans model of infection by
C. auris. This synergistic relationship could be mediated by interferences with metal ion
homoestasis and subsequent impact on ROS production [69]. The same team also reported
that lopinavir, an HIV protease inhibitor, is able to chemosensitize azole drug.
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4.2.2. In Vivo Confirmation

Following the report by Seleem et al., the synergy between sulfamethoxazole and
voriconazole was confirmed in vivo in a C. elegans model of C. auris infection [65].

Moreover, the same group demonstrated in vivo that the lopinavir/itraconazole com-
bination decreased the fungal burden in C. auris-infected C. elegans nematodes by 88.5%
and enhanced their survival rate by 90% relative to that of the untreated control [70].
Comparing lopinavir and aprepitant, both studies reported by the same team on the same
in vivo protocols, lopinavir seems to be more potent than aprepitant in the optimized
combination with itraconazole.

4.3. Combination of New Compounds and Old Drug: In Vitro Results

Revie, Robbins et al. recently described the ability of oxadiazolecontaining macrocyclic
peptides to potentiate the antifungal activity of fluconazole [71]. Few of the newly obtained
oxadiazole-containing macrocyclic peptides displayed activity against Candida spp on their
own, but many increased the efficacy of fluconazole, resulting in a synergistic combination
(Figure 10).
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Figure 10. Oxadiazole-containing macrocylic peptides and azoffluxin.

The synthetic library created by Boston University’s Center for Molecular Discovery®

(BU-CMD) was screened at 50 µM to identify azole-synergizing compound. Azoffluxin,
due to its strong synergistic interaction with fluconazole against a resistant strain of C. auris
Ci6684 was identified (Figure 10). Azoffluxin enhances azole efficacy in a Cdr1-dependent
manner [72].

Seleem et al. tested nine stilbene compounds for their ability to interact synergisti-
cally with azole drugs, particularly against azole-resistant fungal isolates (Figure 11) [73].
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Ospemifene displayed the most potent azole chemosensitizing activity and increased the
potency of itraconazole against C. auris. Indeed, when MIC are superior to 256 µg/mL
for both ospemifene and itraconazole alone, their combination exhibited a MIC equal
to 2 µg/mL. Moreover, the authors determined that ospemifene interfered directly with
fungal efflux systems, thus allowing the fungal intake of itraconazole.
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Ahmad et al. examined the effects of combination of natural monoterpene phenols
with antifungal drugs against 25 clinical isolates of C. auris [74]. None of the monoterpene
phenols was active alone against C. auris (Table 5). Carvacrol was the most active phenol
with median MIC of 125 µg/mL and its combination with amphotericin B, nystatin, flu-
conazole and caspofungin resulted synergistic and additive effects in 64%, 96%, 68%, and
28%, respectively.

Table 5. Antifungal activity of phenolic compounds against C. auris as reported by Ahmad et al.

Test Agents Structure
MIC Values (µg/mL) (n = 3)

Median (Range)

C. auris

Carvacrol
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5. Novel Compounds

In this section, we reviewed series of novel compounds which have displayed a good
to potent activity against C. auris. For each chemical class, a critical analysis based on its
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chemicophysical descriptors will be performed for comparison purpose. The first section is
devoted to compounds with potent in vitro activities, whereas the second section concerns
chemical classes with proved in vivo efficacy.

5.1. Small Molecules
5.1.1. In Vitro Evaluation

In 2018, in order to target virulence traits, Selam et al. described the screening of a
698 small-molecule collection against the invasive hyphal growth of C. albicans [75]. From
their data, niclosamide, an FDA-approved anthelmintic in humans and one of its analogue
(N1-(3,5-dichlorophenyl)-5-chloro-2-hydroxybenzamide), an halogenated salicylanilide
(1)—emerged as capable of inhibit both filamentation and biofilm formation. Based on
these preliminary results, they extended their work to a series of a dozen of compounds to
improve their biological activities. Therefore, they brought to light compounds 3 and 7,
which displayed both anti-filamentation and biofilm formation capacities (Figure 12). This
series of compounds are amide-based small molecules with balanced lipophilicity induced
by addition of halogenated substituents. They could be related to the previously described
amide-based repurposing drugs. As example, logP of Compound 1 was calculated at 4.10
and its topological polar surface area equal to 49.33Å, which is in accordance with the
values observed for repurposing drugs active against C. auris.
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In 2018, Genberg et al. also filed a patent concerning methods for treating fungal
infections using a cationic steroid antimicrobial (CSA) [76]. Some cationic steroid an-
timicrobials have been described and exhibited a broad-spectrum of activity against a
panel of fungi, including Candida spp. (Figure 13). In such structures, the steroid core is
highly lipophilic and the aminoalkyloxychains could bring a little hydrophilicity and also
protonable primary or secondary amino groups.

In 2019, Tetz et al. described the in vitro activity of a novel compound named MYC-
053 (Figure 13) against clinically significant multidrug resistant strains such as C. glabrata,
C. auris, C. neoformans and Pneumocystis spp. [77,78]. Under their screening conditions,
MYC-053 proved to be equally effective against both susceptible control strains, clinical
isolates, or resistant strains and exhibited MICs ranging from 0.125 to 4.0 µg/mL. The
profile of activity of MYC-053 is unique, because, unlike other antifungals such as azoles,
polyenes, and echinocandins, MYC-053 was effective against Pneumocystis isolates. The
compound is currently under development by TGV-Therapeutics. MYC-053, as a sodium
salt, is hydrophilic (logP = −0.60). Its topological polar surface area is equal to 78.76 Å.
The pyrimidine dione core (in grey) is quite similar to amide-based derivatives and the
2-hydroxy-3,5-dichlorophenyl moiety helped to increase the lipophilicity.
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In 2020, Soliman et al. described the chemical association of the essential oil cuminalde-
hyde and azole moieties (as present in sulconazole or voriconazole) in order to take advantage
of their individual previously reported anti-candidal properties (Figure 14) [79]. UoST series
was evaluated against C. albicans and C. auris. Only UoST5, UoST7, UoST8 and UoST11
displayed good activity against C. auris (MIC ranging from 2 to 15 µg/mL). Obtained by a
six-steps pathway, UoST5, their best designed hybrid molecule exhibited a 2 µg/mL MIC50
against C. auris where amphotericin B displayed MIC50 = 0.3 µg/mL. Compound UoST5
was then formulated into PLGA nanoparticles (NPs) and this formulation proved to enhance
and prolong the anti-candidal activities of UoST5. OsST5 is a very lipopholic triazole-based
compound (logP = 7.11) with moderate polar surface area (TPSA = 56.01).
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Montoya et al. reported that derivatives of the anti-malarial drug mefloquine have
broad-spectrum antifungal activity against pathogenic yeasts and molds [80]. These deriva-
tives were tested against a panel of fungal strains, including C. auris strain 0381 and
they revealed MIC from 2–4 µg/mL compared to MIC = 128 µg/mL for mefloquine itself
(Figure 15). From a chemical point of view, mefloquine and its derivatives belongs to
the quinoline chemical class. They displayed the three features defined previously: (i)
quinoline core; (ii) lipophilic moiety (halogenated aromatics) and (iii) piperidine protonable
nitrogen group. Mefloquine derivatives are quite lipophilic (logP from 4.36 to 4.72) with
moderate TPSA.

Orofino et al. reported in 2020 the potency of BM1, a macrocyclic amidinourea
active against azole-resistant Candida strains [81]. The authors conducted a complete
characterization of the in vitro and in vivo biological properties of BM1 and established its
good ADME and biochemical characteristics so as its high activity towards several Candida
species, including preliminary data against C. auris (Table 6). BM1 exhibited a logP of 3.38
and a very high topological polar surface area of 116.13 Å. From a chemical point of view,
it belongs to the guanidine derivatives.
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MIC and MBC Rage (µg/mL) against Candida Species
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MBC, minimum bactericidal concentration; MIC, minimum inhibitory concentration.

Seleem, Mayhoub et al. are widely involved in the development of polysubstituted
thiazoles as novel antibacterial agents. Based on structure-activity relationships studies,
they recently described oxadiazolylthiazoles as novel and selective antifungal agents [82].
Via a five-steps pathway, the authors obtained a series of oxadiazolylthiazole OXA1-21
(Figure 16) and evaluated them against a panel of fungal and bacterial strains. OXA11
proved to be selective towards fungal strains and the most active compound from this
series, with MIC = 2–4 µg/mL against C. auris strains. Moreover, OXA11 exhibited a
fungistatic behavior, a broad-spectrum activity against fungal pathogens, with capability
of disrupting biofilms but without harming the human normal microbiota. The OXA
derivatives perfectly respect the three common features: (i) an original oxadiazolylthiazole
core (in grey) coupled with (ii) a lipophilic moiety (in blue) and (iii) a protonable amine
group (cyclic or acyclic). OXA11, the most potent reported molecule from this series,
displayed logP equal to 4.44, a high topological surface area of 118.10 Å and no alert
concerning its drug likeliness.
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Seleem et al. also described the synthesis and biological evaluation of a small series
of new pyrazolo[5,1-c][1,2,4]triazines against a panel of fungal strains, including C. auris
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(Figure 17) [83]. Compound PYR4 was the most potent antifungal, with a moderate MIC
around 15–20 µg/mL. The chemical feature of PYR4 is composed of a pyrazolotriazine core,
a piperazine protonable nitrogen group and a lipophilic aromatic (see Figure 17). PYR4,
the most potent reported molecule from this series, displayed logP equal to 2.16, a medium
topological surface area of 49.56 Å and no alert concerning its drug likeliness. However,
compared to other series developed by Seleem et al., PYR derivatives are less powerful
than OXA or PHE series.
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Late 2020, Ishida and Stephani reported 2-aryloxazoline compounds, obtained from L-
threonine and aromatic carboxylic acid as promising antifungal compounds (Scheme 1) [84].
They discovered ArOX-1 and ArOX-2, which exhibited a strong in vitro antifungal activity,
with MIC lower than 0.25 µg/mL for all tested Candida species. Moreover, these two non-
toxic compounds were particularly active against C. auris CBS10913 (MICs = 0.06 µg/mL)
and CBS12766 (MICs = 2 µg/mL).
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Scheme 1. Synthesis of 2-aryloxazoline derivatives (ArOx) and the two most potent compounds ArOX-1 and ArOx-2.

Ganesh et al. discovered a series of α-iodonitroalkenes as potential antifungal and
antitubercular compounds. Based on a α-iodation on β-nitroalkenes, the authors obtained a
series of derivatives (Scheme 2) which exhibited interesting antifungal activity against C. auris
with MIC lower than 8 µg/mL for all compounds. It is notable than the furan and thiophene
derivatives were the most broad-spectrum antifungals devoted of cytotoxicity [85].
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Among 40 tested hydrazone derivatives, fluorinated aryl- and heteroaryl-substituted
hydrazone (FAH) have demonstrated broad-sprectrum fungicidal activities, antibiofilm
capacity coupled with low cytotoxicity and did not trigger the development of resis-
tance when exposed to C. auris (Scheme 3) [86]. Compounds FAH-1 to FAH-6 exhibited
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MIC < 1 µg/mL against nine of the 10 different C. auris strains. From a chemical point of
view, these compounds fit the previously described model for C. auris antifungals.
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(Figure 18) [40]. SCY-078 is a triterpene compound which differs from echinocandins by 
its oral bioavailability and its non-sensitivity towards the most common mutations within 
the protein target Fks. SCY-078 exhibited an MIC90 of 1 mg/liter against C. auris by inter-
rupting cell-division. Additionally, SCY-078 displayed powerful antibiofilm activity, by 
reducing metabolic activity and thickness compared to the untreated control. In parallel, 
Berkow et al. demonstrated the in vitro activity of SCY-078 on a collection of 100 isolates, 
representative of the four clades of C. auris. The overall mode of SCY-078 was 1 µg/mL 
with MIC50 and MIC90 equal to 0.5 µg/mL and 1 µg/mL, respectively. SCY-078 also showed 
very little variation in activity between the clades compared to micafungin, caspofungin 
or anidulafungin [94]. Due to its first encouraging data, SCY-078 was referred as a prom-
ising new compound by McCarthy and Walsh in their review about new strategies and 
challenges against emerging and resistant fungal pathogens [95]. Since its discovery, SCY-
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5.1.2. In Vitro Screening and In Vivo Validation

First described in 2008 by Mitsuyama et al. [87], T-2307, an arylamidine, exhibited
potent broad-spectrum activities against the majority of fungal pathogens [88], even against
echinocandin-resistant C. albicans and C. glabrata strains [89,90]. T-2307 is transported into
C. albicans by a high-affinity spermine and spermidine carrier regulated by Agp2 [91], and
causes collapse of mitochondrial membrane potential in yeast [92]. In 2020, Patterson et al.
reported that arylamidine T-2307 as very active in vitro and in vivo antifungal against
C. auris (Figure 12) [93]. In vitro MIC ranged from 0.125 to 4 µg/mL at 100% inhibition.
Moreover, 3 mg/kg subcutaneous once daily treatment with T-2307 revealed an improved
survival rate and reduced kidney fungal burden compared to control. In 2019, T-2307 was
acquired by Appili Therapeutics Inc. for development and is now called ATI-2307.

From a chemical point of view, T-2307 displayed the features defined in the previous
Figure 18. It exhibited two benzimidamide groups which are linked by a lipophilic propyl
chain to a protonable N-subtituted piperidine. From this structure, compound T-2307 is
rather like the guanidine sub-group.
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In 2017, Larkin et al. reported the effects of the orally available SCY-078, a novel 1,3-
β-D-glucan synthesis inhibitor, on growth morphology and biofilm formation in C. auris
(Figure 18) [40]. SCY-078 is a triterpene compound which differs from echinocandins by its
oral bioavailability and its non-sensitivity towards the most common mutations within the
protein target Fks. SCY-078 exhibited an MIC90 of 1 mg/liter against C. auris by interrupting
cell-division. Additionally, SCY-078 displayed powerful antibiofilm activity, by reducing
metabolic activity and thickness compared to the untreated control. In parallel, Berkow
et al. demonstrated the in vitro activity of SCY-078 on a collection of 100 isolates, represen-
tative of the four clades of C. auris. The overall mode of SCY-078 was 1 µg/mL with MIC50
and MIC90 equal to 0.5 µg/mL and 1 µg/mL, respectively. SCY-078 also showed very little
variation in activity between the clades compared to micafungin, caspofungin or anidula-
fungin [94]. Due to its first encouraging data, SCY-078 was referred as a promising new
compound by McCarthy and Walsh in their review about new strategies and challenges
against emerging and resistant fungal pathogens [95]. Since its discovery, SCY-078 (named
Ibrexafungerp) has been integrated in a dozen of clinical trials studies and patented [96].
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Concerning C. auris, one particular multicenter, open-label, non-comparator, single-arm
study to evaluate the efficacy, safety, tolerability and pharmacokinetics of oral SCY-078
as an emergency use treatment for patients with a documented C. auris infection is still
ongoing (ClinicalTrials.gov Identifier: NCT03363841). Recently, in 2020, Arendrup et al.
investigated the in vitro activity of SCY-078 against C. auris by applying EUCAST method-
ology and compared its potential against C. albicans and C. glabrata and in reference with six
control drugs (anidulafungin, micafungin, amphotericin B, fluconazole, voriconazole, and
isavuconazole) [97]. More than 150 strains with various resistance profile were screened
and proved to be uniformly susceptible to SCY-078. In parallel, Chaturvedi et al. reported
that Ibrexafungerp was efficient against pan-resistant (defined as in vitro resistance to two
or more azoles, all echinocandins and amphotericin B) C. auris isolates from the outbreak
in New-York [98] and Ghannoum et al. demonstrated that it was active to control skin
infection and colonization of hospitalized patients [99]. Recently, a review compiled data
on Ibrexafungerp, established it is a promising, new antifungal agent to treat C. auris
infections, as patients experienced a complete response after treatment [100].

From a chemical point of view, SCY-078 is based on a lipophilic tetracyclic-fused core
with addition of protonable nitrogen moieties (pyridine, triazole and primary amine). Its
structure is in accordance with the common defined scaffold.

SCY-247, a second-generation fungerp which differs from SCY-078 by two chemical
moieties (the 4-(1H-1,2,4-triazol-5-yl)pyridine and 2,3,3-trimethylbutan-2-amine moieties
in SCY-078 that have been replaced by a methylester and a 2-methylpropan-2-amine in
SCY-247, respectively (Figure 18) has been recently reported by Ghannoum et al. and
proved similar activities against a panel of Candida strains and enhanced potency against
C. auris strains. Moreover, SCY-247 retained its potential even when pH decreased [101].

First reported in 2018, APX001A (formely E1210, Amplyx) is an antifungal agent that
inhibits the fungal enzyme Gwt1 in the glycosylphosphatidylinositol (GPI) biosynthesis
pathway. APX001 is the prodrug of APX001A (Scheme 4). Both APX001A and APX001
have been shown to be effective against a variety of fungal species, including Candida
spp., Aspergillus spp. and other filamentous fungi. Compound APX001 has emerged as
a novel potent antifungal agent against C. auris. It has been successfully tested against
100 geographically distinct clinical isolates and exhibited high MIC50 and MIC90 in the
nanogram per liter range [102,103]. Extended evaluation of large panels of strains from
different origins has confirmed the interest of APX001 in the treatment of infection by C.
auris [104]. The compound APX001 has entered clinical trials and proved good efficacy
in mice model of candidiasis [105,106]. Fosmanogepix (APX001) is currently in Phase II
trials for invasive fungal infections. Both fosmanogepix and manogepix (APX001A) are
currently under investigation and proofs of their in vivo efficacy against C. auris infection
accumulate [105–109]. When analyzing its chemical structure, it appeared that APX001A
displayed protonable nitrogen moieties (primary amine and pyridine) coupled with a
lipophilic benzyl group. This balance gave a logP equal to 3.21 for compound APX001A
with TPSA of 87.06 Å which is in the range observed for repurposing drugs. Its prodrug is
much more polar (TPSA of 176.84 Å) and hydrophilic (logP = 1.70).
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Gepinacin is a pre-clinical Gwt-1 inhibitor which is structurally different from manogepix.
Despite high in vitro antifungal activity, gepinacin failed in in vivo trials due to its low
metabolic and serum stability. A series of analogues was then designed and evaluated by
Walsh and Cowen in 2020 (Scheme 5) [110]. A dozen of compounds have been obtained and
exhibited MIC in the range 0.625–10 µg/mL against C. auris. However, despite interesting
potency and promising single-dose pharmacokinetics, the identified lead (R1 = isobutyl;
R2 = 4-chlorophenyl) did not reveal any activity at the maximal dose in a neutropenic rabbit
model of disseminated candidiasis.
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In 2019, the group headed by Seleem discovered that phenylthiazole small molecules
possess dual antifungal and anti-biofilm activities against C. albicans and C. auris [111]. They
tested 85 synthetic phenylthiazole derivatives (Figure 19) and compound PHE1 emerged
as the most potent molecule, with MIC ranging from 0.25 to 2 µg/mL against a panel
of C. albicans and C. auris strains. The HIT compound also exhibited anti-biofilm ability,
fungicidal activity and ability to prolong survival in infected Caenorhabditis elegans model.
From a chemical point of view, PHE1 perfectly fit the previously defined scaffold with a
hydrazinecarboximidamide moiety (in red) which is a guanidine isostere, a thiazole core
(in grey) and a 4-butylphenyl lipophilic chain (in blue). PHE1 displayed a logP = 3.64 and
TPSA = 115.39 Å which are in accordance with the other reported drugs.
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The work by Wiederhold et al. described the evaluation of VT-1598, a fungal CYP51-
specific inhibitor against C. auris infections [112]. The tetrazole VT-1598, developed by
Viamet Pharmaceuticals (Figure 20) has demonstrated in vitro activity against various
fungi [113,114] and has also shown promising results in experimental models of inva-
sive fungal infections such as central nervous system coccidioidomycosis or cryptococcal
meningitis [115,116]. The authors demonstrated the in vitro and in vivo efficacy of VT-
1598 against C. auris infections. VT-1598 is currently on Phase I clinical trials for coccid-
ioidomycosis in order to evaluate its safety and PK of single oral doses in healthy patients
(ClinicalTrials.gov Identifier: NCT04208321). From a chemical point of view, VT-1598 is
a tetrazole-based compound which exhibited a protonable pyridine link and a lipophilic
aromatic chain (in blue). Its lipophilicity (logP = 5.12) and polar surface (TPSA = 109.74 Å)
are quite high and its gastrointestinal absorption is estimated as low.
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Still in 2019, Rudramurthy et al. described the activity of a novel topical triazole
named PC945 against C. auris (Figure 20) [117]. PC945, optimized for topical application,
proved to be 7.4-fold and 1.5-fold more potent than voriconazole and posaconazole against
a collection of more than 50 clinical isolates from India, UK, USA, Japan and South-
Korea. Three isolates were found to be cross-resistant to PC945 and other azoles but
with no clear evidence of involved mutations. The tolerability, efficacy, and safety of
PC945 were evaluated by four clinical trials in the frame of aspergillosis and candidiasis
recently (ClinicalTrials.gov Identifier: NCT03870841; NCT03905447; NCT03745196 and
NCT02715570). Three studies have been interrupted because of the COVID19 outbreak and
results are not available. From a chemical point of view, PC945 exhibited a triazole ring—
present in several antifungal references’ compounds—and an amide link. The integration
of a piperazine link resulted in easily protonable nitrogen groups and fluorinated aromatics
increased the lipophilicity. Its lipophilicity (logP = 5.70) and polar surface (TPSA = 84.75 Å)
are quite high and its gastrointestinal absorption is estimated as low. These values and the
presence of a 2,4-difluorophenyl moiety gave PC945 some similarities with VT-1598.

Overall, a dozen novel antifungal chemical families have been reported during the last
few years and some of the lead products are currently under clinical trials investigations.
From a chemical point of view, these compounds exhibited the same features as discovered
repurposing compounds, divided into three complementary parts: (i) core; (ii) protonable
nitrogen groups; (iii) lipophilic moieties (generally halogenated aromatics or fatty chains).

5.2. Echinocandins

In 2017, CD101 (then named rezafungin) was patented for the treatment of fungal infec-
tions (Figure 21) [118]. CD101 is a novel echinocandin with long-acting profile (Figure 21).
In 2018, another patent was filed for the use of CD101 alone or in combination with another
antifungal drug for the treatment of fungal infections [119]. Overall, CD101 shows encour-
aging activity against the emerging pathogen C. auris. In late 2017, Berkow and Lockhart
reported the activity of CD101 against 100 clinical isolates of C. auris [120].

They observed that the MICs values ranged from 0.03 to 8 µg/mL, the average MIC90
was 0.5 µg/mL. In particular, CD101 was investigated against C. auris strains resistant to
other echinocandins. The results showed a better activity of CD101 compared to other
echinocandins, excepted for isolates containing the S639P amino acid substitution in FKS1
hot spot 1 which is related to previously reported mutations linked to echinocandin resis-
tance in other Candida spp. A few months later, Hager et al. examinated the efficacy of
rezafungin (previously CD101) in the treatment of disseminated C. auris infection using an
immunocompromised mouse model [121]. Rezafungin proved to have significantly lower
average CFU/g of kidney tissue compared with amphotericin B, micafungin and vehicle
after ten days of treatment. The pharmacodynamics of rezafungin was then evaluated by
Lepak et al. in a neutropenic mouse invasive candidiasis model of C. auris infection [122]. In
2019, Majoros et al. extended the study on CD101 and determined the in vitro susceptibility
of 689 clinical isolates of 5 common and 19 rare Candida species, as well as Saccharomyces
cerevisiae [123]. Their results proved that rezafungin was an excellent antifungal against
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common and non-common Candida species, with results similar to other echinocandins
excepting caspofungin. In 2020, Helleberg et al. investigated the potency of rezafungin and
comparators against 1293 Nordic yeast isolates and 122 Indian C. auris isolates proving that
rezafungin had species-specific activity comparable to that of micafungin and anidulafun-
gin. Even if rezafungin was highly active against the majority of common Candida species,
it lacked activity against a significant proportion of C. auris isolates with mutations in fks tar-
get genes that conferred echinocandin cross-resistance. However, fks1 mutations increased
rezafungin MICs notably less than micafungin and anidulafungin MICs in C. auris [124].
Gathering all these results, rezafungin entered a Phase III multicenter, prospective, random-
ized, double-blind, efficacy and safety clinical trial in 2018 (ClinicalTrials.gov Identifier:
NCT03667690) which is still currently recruiting for comparative evaluation of Rezafungin
to caspofungin followed by optional oral fluconazole step-down therapy in subjects in
subjects with candidemia and/or invasive candidiasis [125].
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5.3. Selvamycin Analogues

In 2017, a patent, covering selvamicin and its analogues, was filed for the treatment of
fungal infections (Figure 22) [126]. Selvamicin resembles the reference antifungals nystatin
A1 and amphotericin B, but bears several distinctive structural features, impacting its
pharmacokinetics and cell target. The data compiled in the patent showed that selvamicin
and its analogues, compared to nystatin A1, are potent antifungal against Candida strains,
including C. auris.
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5.4. Polymers 
Recently, Arias et al. reported the in vitro and in vivo activity of chitosan against 
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The putative mode of action of chitosan could be mediated by the expression of a stress-
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5.4. Polymers

Recently, Arias et al. reported the in vitro and in vivo activity of chitosan against
planktonic and sessile forms of C. auris. In a galleria mellonella model of C. auris infection,
chitosan decreased the killing effects of C. auris infection without any toxicity to the larvae.
The putative mode of action of chitosan could be mediated by the expression of a stress-like
gene expression response, conducting to protection in the larvae [127].

However, in 2017, Chauhan and Loonker described the modification of chitosan to
integrate N-methyl piperazine moieties and the biological evaluation of the resulting polymer
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called CE-MP [128]. They realized the cross-linkage of the naturally occurring linear polysac-
charide matrix of chitosan with epichlorohydrin and then incorporated N-methyl piperazine
moieties (Scheme 6). The resulting artificial polymer was fully characterized and proved to be
active against some fungi but unfortunately displayed no activity against C. auris.
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Taken together, these results demonstrated that naturally derivated polymers such as
chitosan could be interesting alternatives to conventional antifungals.

5.5. Polyclonal Antibody

In 2018, Bujdakova et al. reported the activity of anti-CR3-RP polyclonal antibody
against biofilms formed by C. auris [129]. During biofilm formation, Candida species gener-
ally expressed the complement receptor 3-related protein (CR3-RP) as surface antigens. The
authors proved the presence of CR3-RP in C. auris cells within biofilms and the subsequent
activity of anti-CR3-RP polyclonal antibody to eradicate the formation of biofilm by C. auris.

Polymers and polyclonal antibody could represent exciting therapeutic alternatives to
small drugs but, for the moment, the number of works dealing with such strategies in the
frame of fighting against C. auris is significantly restricted.

6. Traditional Medicines and Natural Compounds

It is notable that the reported data mainly resulted from in vitro evaluation. Few
compounds experimented in vivo efficacy, unless specified.

6.1. Small Natural Compounds

Farnesol, an endogenous quorum sensing molecule, was reported in 2020 by Vartika
and Aijaz [130] for its ability to modulate development of biofilms and drug efflux in C.
auris. Farnesol also blocked efflux pumps and downregulated biofilm and efflux pump
associated genes at a concentration of 125 mM (Figure 23). In parallel, the effects of farnesol
were also reported by Kovacs et al. [131,132]. The authors studied the effects of 100–300 µM
farnesol on growth, biofilm production ability, production of enzymes related to oxidative
stress, triazole susceptibility and virulence towards C. auris strains. After 24 h, farnesol
was not able to inhibit the formation of biofilm but caused a significant growth inhibition
against C. auris planktonic cells. Moreover, farnesol decreased the metabolic activity and
increased the production of ROS. Used in combination with other antifungals, farnesol
displayed a synergistic behavior. In vivo, using an immunocompromised murine model
of disseminated candidiasis, daily 75 µM farnesol proved to lower the fungal burden and
could be a benefit as therapeutics or adjuvant for the treatment of candidiasis.

−

Figure 23. Structures of farnesol, [6]-shogoal and (−)-drimenol.

[6]-Shogoal, one of the pungent constituents of ginger, exhibited antifungal and an-
tibiofilm formation effects against C. auris [133]. The mode of action of [6]-shogoal was
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experimentally related to the reduction of the levels of aspartyl proteinases and downregu-
lation of the expression of the efflux pump-related CDR1-gene in C. auris. However, the
in vitro activity displayed by [6]-shogoal, even higher than fluconazole, is quite modest
with MIC80 ranging from 32 to 64 µg/mL.

Eight drimane sesquiterpenoids including (−)-drimenol and (+)-albicanol were syn-
thesized from (+)-sclareolide and evaluated for their antifungal activities. (−)-Drimenol
(Figure 23) proved to limit the growth of C. auris better than fluconazole in the same con-
centration [134]. This natural compound also protected C. elegans from death in a candiasis
model [134].

Traditional herbal monomers (THMs), mainly composed of sodium houttuyfonate
(SH), berberine (BER), palmatine (PAL), jatrorrhizine (JAT), and cinnamaldehyde (CIN),
were evaluated for their potential to induce cell wall modulations in C. auris (Figure 24) [135].
The authors proved that combination of these herbal monomers induced good antifun-
gal activity against C. auris isolates the most potent combinations being SH/CIN and
BER/PAL/JAT.
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Bark and leaf essential oils from Cinnamomum zeylanicum proved in vitro antifungal
activity against C. auris, by damaging the membrane and blocking the hyphae formation.
From a chemical point of view, the main components of C. zeylanicum leaf is eugenol (62%)
and C. zeylanicum bark is trans-cinnamaldehyde (66%), the other components being present
at less than 7% [136].

Even if the use of natural compounds is of great interest, the activity of farnesol,
[6]-shogoal, (−)-drimenol or common traditional herbal monomers is quite low compared
to synthetic drugs and they have to be envisioned as adjuvants or platform molecules for
drug chemical development.

6.2. Extracts of Natural Organisms

Marine sponges are among the richest sources of bioactive ingredients from marine
organisms. In 2017, Hasaballah et al. reported the biological evaluation of crude extracts of
marine sponges, Negombata magnifica and Callyspongia siphonella towards a large panel of
biological targets, including C. auris. In addition to their high insecticidal capacity, the two
sponge extracts also displayed high antibacterial and antifungal activities, with growth
inhibition of 15.3 ± 1.2 mm for N. magnifica and 13.7 ± 1.5 mm for C. siphonella compared
to 19.8 ± 0.63 mm for amphotericin B [137].

In 2020, Zhang et al. reported the identification of turbinmicin, a lead antifungal which
was identified from marine microbiome (Figure 25). Turbinmicin is highly interesting
because it functions through a fungal-specific mode of action, targeting Sec14 of the
vesicular trafficking pathway [138]. Moreover, the same team reported the striking ability
of turbinmicin to block biofilm formation. Indeed, turbinmicin acts by disruption of
extracellular vesicle delivery during biofilm growth [139]. Turbinmicin revealed as a
promising anti-biofilm and antifungal drug [140].
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6.3. Peptides and Derivatives

In 2015, Cm-p5, an antifungal hydrophilic peptide derived from the coastal mollusk
cenchritis muricatus was reported by Lopez-Abarrategi et al. [141]. Cm-p5 proved to have a
fungistatic activity against C. albicans with MIC around 10 µg/mL and moderate toxicity
toward mammalian cell lines. Following this first report, the same team obtained mutants
of Cm-p5 and then designed and synthetized a helical-stabilized, cyclic, and nontoxic
analogue of Cm-p5. This analogue displayed moderate antifungal activity against C.
auris [142]. In 2020, Rosenau et al. also reported that the same derivatives of the Cm-p5
were able to inhibit the development of C. auris biofilms in vitro [143].

Ramachandran et al. evaluated the efficacy of three novel cyclic lipopeptides of
the class Bacillomycin to limit fungal infection [144]. The lipopeptide analogues, bearing
the same peptide sequence Asn-Pro-Tyr-Asn-Gln-Thr-Ser, were purified from a cell-free
supernatant of Bacillus subtilis RLID 12.1. The three active lipopeptides exhibited MICs
from 3.5 to 8.5 µg/mL against 10 C. auris isolates.

Antimicrobial peptides (AMPs) constitute a key component of these innate immune de-
fences and AMPs from a variety of sources have shown potent antifungal activities [145–148].
Since they induce no or minimal MDR in target fungi, AMPs are considered strongly attrac-
tive as potential therapeutic drugs [149]. Pathirana et al. have investigated salivary Histatin
5 (Hst 5) for its ability to limit fungal infections [150]. Hst 5 is a well-studied salivary
cationic peptide. After treatment at a 7.5 µM dose, 55 to 90% of all C. auris cells were killed
by Hst 5, irrespective of the MDR-profile strains. The mode of action of Hst 5 is based on its
translocation to the cytosol and vacuole and the reported study suggested that it differed
from the one of fluconazole. Baso, Garcia et al. recently reported the antifungal properties
of θ-defensins, macrocyclic peptides expressed in tissues of old world monkeys [151]. The
mode of action of Rhesus θ-defensin 1 (RTD-1), the prototype θ-defensin, occurred by cell
permeabilization, correlated with ATP release and intracellular accumulation of killing
reactive oxygen species. Other natural defensins isoforms were evaluated and the most
promising proved to be more active than caspofungin and/or amphotericin B caspofun-
gin against fluconazole-resistant organisms, including C. auris. θ-defensin activity was
compared with Hst 5 and proved to be 200-fold more active and more stable to proteases.

Dal Mas et al. described the effect of Crotamine, a natural antimicrobial peptide
(AMP) isolated from a South American rattlesnake on C. auris [152]. Crotamine, which has
structural similarities with human defensins, exhibited in vitro activity against most isolates
tested, whereas these Candida isolates showed resistance to amphotericin B and fluconazole.

Cathelicidins are a class of epithelial antimicrobial peptides that are expressed in the
intestinal epithelium and kill microorganisms by membrane disruption. Haagsman et al.
recently obtained cathelicidin-inspired antimicrobial peptides and evaluated their anti-
fungal capacity [153]. These novel antimicrobial peptides termed ‘PepBiotics’, containing
between 21 and 37 residues, have been patented and showed a strong inhibitory activity
against a large panel of fungi and yeasts at low concentrations (≤1 µM). In particular, they
exhibited MIC = 0.6–1.3 µM against C. auris strains.
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6.4. Bioinspiration

With the goal to mimic AMPs, Savage et al. recently developed ceragenins (CSAs), a
class of non-peptide molecules, based on a common bile acid, that conserve the amphiphilic
morphology common to AMPs (Figure 26). They have then evaluated the susceptibilities of
C. auris isolates, in biofilm and planktonic forms, to CSAs. In addition, they also measured
the effectiveness of the most promising CSAs in gel and cream formulations in treated
infected tissue explants [154]. Lead CSAs led to activity comparable with reference drugs
and no cross-resistance was observed. In ex-vivo mucosal tissues, CSAs were able to
significantly reduce the fungal burden with 2% topical application.
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6.5. Necrotrophic Mycoparasitism

Necrotrophic mycoparasitism describes the ability of a fungal species to kill other
fungi [155]. In 2018, Junker et al. examinated the use of a predatory yeast, Saccharomy-
copsis schoenii, as a potential biocontrol agent against C. auris [156]. They investigated the
interaction between the two species by seeding equal quantity of dimorphic S. schoenii and
ovoid C. auris NCPF8985#20 cells on minimal media agar on microscopy slides. Using
specialized penetration pegs, S. schoenii attacked C. auris cells upon contact and killed 34%
of them within a period of 6 h. All isolates of Candida species tested, including several
drug resistant C. auris strains, were susceptible to predation by S. schoenii, opening new
possibilities to eradicate such multidrug resistant strains.

7. Metal, Metal Complexes and Metalloids

Recently, Goldman et al. evaluated the potential of gallium, already known for its
antibacterial activity, as antifungal [157]. They demonstrated that gallium nitrate had a
fungistatic action against fungi. Regarding C. auris, several strains (473/2015, 490/2015,
501/2015, and 502/2015) were completely inhibited by gallium at concentrations of
128–256 mg/L. However, others (strains 467/2015, 470/2015, and 484/2015) survived
the challenge at the higher concentration tested limiting the use of gallium as a broad-
spectrum antifungal agent.

In 2020, the team of Garneau-Tsodikova and Awuah explored the potential of linear
and square-planar gold(I)−phosphine complexes as antimicrobial agents against a panel
of 28 fungal strains [158]. Compounds GOLD1 and GOLD2 proved to be the most efficient
against C. auris, with MIC similar to caspofungin. Moreover, these two gold-complexes
displayed low cytotoxicity against a panel of cell lines (Figure 27).

The amount of data gathered on the use of metal and metallic complexes towards
C. auris is too low to ascertain the interest of such strategy, but the first data are encouraging.
Therefore, medicinal chemists should go further with this alternative area of research in
the fight against fungal resistant strains.
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8. Others Approaches
8.1. Probiotics and Postbiotics

The review by Zhang et al. described the recent reports that indicate that probiotics
may also contribute to protect against fungal infections [159]. Even if some publications
have evaluated the benefits of probiotics against fungal infections caused by C. albicans,
C. glabrata, A. fumigatus, T. tonsurans, M. canis, M. gypseum, or E. flocossum, no reports on C.
auris are presented in that review published in 2019.

Late 2019, Rao et al. exploited the probiotic properties of two novel, food-derived
yeasts, Saccharomyces cerevisiae (strain KTP) and Issatchenkia occidentalis (strain ApC). These
alternative approaches to combat widespread opportunistic fungal infections proved to be
effective to inhibit virulence traits such as adhesion, biofilm formation and filamentation of
Candida spp., especially C. auris [160,161].

In 2020, Campos-Junqueira et al. described the pro- and postbiotic activity of Lacto-
bacillus paracasei 28.4 against C. auris. It is notable that they conducted an in vivo study
with G. mellonella larvae infected with C. auris. Injections of LPCE and LPF1 (crude extract
and fraction 1 derived from L. paracasei 28.4 supernatant, respectively) prolonged survival
of these insects compared to a control group (p < 0.05) and modulated the host immune
response [162].

8.2. Nanoparticles and Coatings

In 2019, Philip and Kuriakose reported the synthesis of superparamagnetic Fe2O3
nanoparticles stabilized by biocompatible supramolecular β-cyclodextrin and their evalua-
tion against three strains of C. auris but with a moderate MIC = 500 µg/mL [163].

Chapman, Truong et al. reported in 2020 the fabrication of long-term microbicidal
silver nanoparticle clusters [164]. This silver nanoparticle cluster coating was constructed
on copper surface using an ion-exchange and reduction reaction. The resulting surface
was contaminated by C. auris and evaluated at extended periods. After seven days, 90% of
C. auris proved to be non-viable on the new designed surface.

In parallel, using a microwave assisted synthetic approach, Lara et al. reported the
synthesis of pure round silver nanoparticles (AgNPs) and their use to inhibit C. auris
biofilm formation on surfaces [165]. These AgNP-treated biofilms showed cell wall damage
mostly by disruption and distortion of the outer surface of the fungal cell wall. Moreover,
the AgNPs-functionalized fibers proved to be stable and kept their fungicidal potential
even after repeated thorough washes.

Very recently, Nosanchuck et al. described the effects of nanoparticles capable of
generating nitric oxide (NO) to kill C. auris [166]. This NO-nanotherapeutics were incubated
with six different C. auris strains and eradicated both planktonic and biofilm C. auris with a
10 mg/mL and emerged as a promising approach to fight against MDR-fungal strains.
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Bismuth nanoparticles (BiNPs) demonstrated strong antifungal activity against a
panel of C. auris strains, with MIC ranging from 1 to 4 µg/mL. Moderate effects of these
nanoantibiotics were also examined by scanning electron microscopy and showed the
disruption of the C. auris cell morphology and the biofilm structure [167].

8.3. Hydrogels

In 2019, Shukla and Vera-Gonzalez patented an aspartic protease-triggered antifungal
hydrogel able to locally deliver antifungal drugs that specifically respond to aspartic
proteases secreted by virulent and pathogenic Candida species [168].

In 2020, Rosenau et al. described a novel anti-infective multicomponent gatekeeper
hydrogel [169]. This bilayer hydrogel protected the patient from invasion by C. auris from
infected wounds, by combining to complementary layers. The first layer reduced the
loading of the pathogen C. auris by selective cell capturing within the affinity layer of the
gel followed by subsequent inactivation within the therapeutic gel layer.

In a similar manner, Gupta et al. reported similar antibacterial silver-nanoparticle
hydrogel for wound dressing applications [170]. The particularity of their design relied on
the green chemistry approach—based on natural curcumin as reducing agent-developed to
obtain the nanoparticles.

8.4. Irradiation

Candida spp. are the most common cause of fungal infections worldwide and the fifth
most common cause of nosocomial infections [171]. In particular, C. auris resists disinfection
with cleaning agents widely used in hospitals and long-term care facilities [31,172], is
frequently drug resistant, and can persist in the environment for months [173]. As a
consequence, new protocols to identify how to eliminate C. auris from surface and devices
drove several studies.

In 2018, Cadnum et al. stated about the relative resistance of C. auris to be eradicated
by ultraviolet light [174]. Before this study, it was not clear if mobile ultraviolet-C (UV-C)
light room decontamination devices efficiently cleaned healthcare facilities. From their
data, it appeared that C. auris was significantly less susceptible to killing by UV-C than
methicillin-resistant Staphylococcus aureus. This first statement brought to light the need
in understanding how efficiently eradicate C. auris using UV lights. Consequently, in
2019, Ponnanchan et al. evaluated the antifungal activity of ultraviolet C (UVC) light
using mercury vapour lamp with a peak emission of 254 ± 2 nm against 32 C. auris
isolates. Contaminated plates were held parallel to the UVC source throughout the period
of exposure. After 15 min of irradiation at this wavelength, all experiments demonstrated
complete inhibition of growth up to 72 h incubation for C. auris [35].

In a parallel manner, in 2019, Maslo et al. reported the efficacy of pulsed-xenon
ultraviolet light to eradicate C. auris [175]. After inoculation, each sample was exposed
during uninterrupted periods of 5, 10 or 15 min at distances ranging from 1 to 2 m. The
PX-UV mobile device killed 99.4% of C. auris CFU on the surface after 5 min irradiation
at 1 m-distance. The time and distance of exposure have also been quantified by de
Groot et al. [176]. The optimum for C. auris eradication was obtained after 30 min of
decontamination at 2 m. Dividing time by two or double the distance decreased the activity
by 10- and 50-fold, respectively.

In 2020, Lemons et al. also demonstrated the efficiency of ultraviolet irradiation to
kill C. auris [177]. Ultraviolet germicidal irradiation (UVGI) was investigated to inactivate
ten clinically relevant strains of C. auris. In order to determine dose-response curves, each
sample was exposed eleven times to range of UV-dose from 10 to 150 mJ/cm2. From these
data, C. auris required more energy than C. albicans to be eradicated. As a consequence, the
authors stated that UVGI could be applied against C. auris but the variation of susceptibility
would have to be considered.
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From these reports, irradiation could be a powerful tool to eradicate C. auris in medical
area. However, all parameters should be carefully estimated to avoid a lack of effectiveness
and propose tailor-made solutions to eradicate C. auris.

9. Conclusions and Perspectives

Through gathering all these data it appeared that the fight against C. auris is con-
tinuously increasing for the last five years, in parallel of its emergence and definition as
a fungus of concern. Even if most reports dealt with Candida species, some important
works focused only on C. auris and took in consideration its own particularities. No perfect
solution has been stated for the moment, but clear opportunities have been demonstrated
whether from drug repositioning, combination of drugs, or the design of novel antifungal
entities. From a medicinal chemist point of view, some molecular features seemed to
emerge as required for the design of potent antifungals against C. auris, and there is no
doubt that these preferred moieties should inspire the conception of novel effective drugs.
As always, nature is a great provider of active compounds and bioinspiration also drives
some exciting research works. Even if it is of great importance to treat patients, it is also
absolutely required to clean devices and surfaces to avoid contamination and proliferation.
Therefore, the emerging solutions based on the specific characteristic of C. auris in terms of
irradiation or antimicrobial surfaces are of particular interest. Such an approach could be
considered as tailor-made conception towards C. auris. To summarize, ongoing works are
very encouraging, but there is still an urgent need to propose therapeutic alternatives to
eradicate C. auris.
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