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A B S T R A C T   

This paper is the first of three that overview the main mechanisms that drive the microstructure evolution in Fe 
alloys under irradiation. It focuses on pure α-Fe and compiles the parameters that describe quantitatively the 
mobility and stability of point-defects and especially their clusters, including possible reactions and criteria to 
decide when they should react. These parameters are the result of several years of calculations and application in 
microstructure evolution models. They are mainly collected from the literature and the parameter choice tries to 
reconcile different sets of values that, while being in general qualitatively similar, are often quantitatively not 
coincident. A few calculation results are presented here for the first time to support specific approximations 
concerning defect properties or features. Since calculations cannot cover all possible defect configurations, the 
definition of these parameters often requires educated guesses to fill knowledge gaps. These guesses are here 
listed and discussed whenever relevant. This is therefore a “hands-on” paper that: (i) collects in a single report 
most microstructure evolution parameters that are found in the literature for irradiated α-Fe, including a dis-
cussion of the most important mechanisms at play based on current knowledge; (ii) selects a ready-to-use set that 
can be employed in microstructure evolution models, such as those based on object kinetic Monte Carlo (OKMC) 
methods. This work also identifies parameters that are needed, but not known, hopefully prompting corre-
sponding calculations in the future.   

Introduction 

Object kinetic Monte Carlo (OKMC) models have been used since the 
late 1990s to simulate the microstructure evolution in α-Fe [1–14] and 
its alloys [6,15–23] when subjected to irradiation with either ions or 
neutrons. 

This simulation method requires that all the possible reactions be-
tween defects that drive the evolution of the microstructure be defined a 
priori. Parameters for these reactions are generally impossible to mea-
sure experimentally and should be obtained preferably from accurate 

calculation methods such as density functional theory (DFT), or 
empirical interatomic potentials (EIP), if DFT data are not available or 
accessible. Advanced microstructure evolution simulation methods that 
allow the on-the-fly calculation of the transition barriers, such as 
SEAKMC [24–26] or k-ART [27], which make systematic use of the 
activation-relaxation technique (ART) method [28] for saddle point 
search, do exist. These models do not require a predefined list of 
mechanisms and parameters to be compiled. However, they are affected 
by two serious limitations: firstly, the computational time is significantly 
increased and calculations that can be directly compared to the result of 

Abbreviations: A/OKMC, Atomistic/object kinetic Monte Carlo; DFT, Density functional theory; EIP, Empirical interatomic potential; MD, Molecular dynamics; 
NRT, Norgett-Robinson-torrens; PKA, Primary knock-on atom; SIA, Self-interstitial atom. 
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microstructural examination in irradiation experiments cannot be per-
formed with this approach; secondly, in most cases they still rely on 
EIPs, with the limitations that this imposes, especially when considering 
concentrated alloys, or alloys that contain several solutes [29]. It is in 
principle possible to apply these models using DFT calculations instead 
of EIPs [28], but then the required computing time becomes so long , 
that the possibility of using them to trace the evolution of the micro-
structure under irradiation conditions comparable with experiments is 
totally lost. Therefore, in order to simulate the behaviour of materials 
that are representative of real alloys, under irradiation conditions that 
are comparable with the experimental ones, the predefinition of the 
physical mechanisms and the relevant parameters to be implemented in 
the model remains a necessary, and difficult, task. In some cases, how-
ever, on-the-fly calculations can be used to determine some of the pre-
defined physical mechanisms and relevant parameters that can be used 
in models such as OKMC, for example the diffusion coefficient of clusters 
of point-defects or their dissociation frequency can be calculated using 
on-the-fly methods, provided that the computing time to do so remains 
affordable. 

OKMC models have been evolving over the years, by spanning 
increasingly larger timescales, and thus dose intervals, as well as 
including more details about the defect configurations [1–23]. Initially, 
only vacancies and self-interstitials, single and in clusters, were tracked, 
without making any distinction about their inherent characteristics. As 
more information arose from atomistic calculations, the models became 
more complex and different configurations of defects were distinguished 
and considered, so long as possible. This paper collects most of the state 
of the art of the information that is currently available on this subject. 
Importantly, some of the mechanisms and especially parameters pre-
sented in this work are of use also for cluster dynamics (or rate theory) 
models [30,31]. 

The fundamental physical processes that determine the evolution of 
the microstructure under irradiation can be reduced to a relatively small 
number:  

- Production of defects due to the interaction of energetic particles 
with the atoms of the material;  

- Diffusion of point-defects and their clusters, and their interaction 
with solute atoms distributed in the matrix, with the subsequent 
enhancement or induction of segregation and/or precipitation;  

- Formation of clusters of point-defects and complexes that involve 
both these and the solutes, as a result of the balance between ab-
sorption of new defects and solutes;  

- Emission of defects and solutes from clusters or other microstructural 
features; 

- Recombination of point-defects with opposite defects (self-in-
terstitials with vacancies and vice versa);  

- Annihilation of defects at sinks, which generally correspond to pre- 
existing extended microstructural features, such as dislocations and 
boundaries between crystallites with different orientation. 

The production of defects is the consequence of the collision of the 
impinging radiation particles with the atoms of the lattice and the 
sequence of atomic collisions that this can trigger (displacement 
cascade). These processes need to be studied using molecular dynamics 
simulations [32–34], of which microstructure evolution models take the 
outcome as an input, in terms of a spatial and generally localised dis-
tribution of point-defects and their clusters (primary damage state). 
Databases of cascades have been produced for several materials1 and can 
be used directly as input to describe primary damage as a function of 
cascade energy. 

For the purpose of correctly introducing the primary damage that is 
produced in the material, the primary knock-on atom (PKA) spectrum 

should be explicitly known or implicitly deduced from the knowledge of 
the energy spectrum of the impinging particles (neutrons, ions, elec-
trons, …). The PKA spectrum is the number of atoms per unit time and 
volume that receive a given energy (PKA energy) from the impinging 
particle in the specific irradiation that one wants to simulate. It can be 
calculated with suitable codes and approximations from the knowledge 
of the neutron [35] or ion [36,37] flux as a function of energy. By 
subtracting from the PKA energy the energy that goes into electron 
excitation, one can deduce the corresponding cascade energy, which is 
responsible for the number of defects that are created [38]. With this 
information, supposing that cascades of all possible energy values are 
available from the database1, the correct distribution of primary damage 
in space and time can be introduced. 

In practice, the knowledge of the number of displacements per atom 
(dpa) that have been accumulated and the irradiation time, or alterna-
tively the dpa-rate (dpa/s), are often sufficient to tune the cascade 
spectrum. When experimentalists evaluate the dpa that correspond to 
the irradiation they performed, they generally use the Norgett- 
Robinson-Torrens (NRT) model [39]. In [40] a revision of the dpa 
concept has been proposed, which will hopefully become commonplace 
in the future. In this revision, the dpa definition takes into account 
recombination and ion beam mixing effects that occur during the 
cascade, thereby making the dpa more physical. However for the 
moment the NRT model remains the most frequently used, which was 
definitely used in all past experiments. In this model, the number of 
displacements per cascade of given energy E, nd(E), is evaluated as: 

nd(E) =
0.8E
2Ed

(1) 

Here Ed is the threshold displacement energy, i.e. the minimum en-
ergy needed to produce a stable defect (Frankel pair), which is 40 eV by 
standard in α-Fe [40]. Even if now a more reliable value for this 
parameter has been obtained by DFT [41], if the results of the simulation 
are to be compared with experiments as functions of dpa, the latter 
needs to be estimated in exactly the same way as in the experiments. 
Thus, the knowledge of the experimental dpa and dpa/s can be used to 
select, from a database of previously simulated cascades, those that 
produce the equivalent damage (according to the NRT model) at the 
equivalent rate, even if not all energy values are covered in the database. 
The effect that a specific choice of cascade database and cascade energy 
may have on the results are discussed in [8,42,43]. These studies show 
that the specific description of the primary damage state does affect the 
microstructure evolution that the model predicts; however, the domi-
nant effect is clearly given by the parameters that govern the mobility 
and stability of defects [42], which are the focus of this review. For this 
reason, here we shall not deal any further with the issue of modelling 
damage production in microstructure evolution models, taking for 
granted that suitable molecular dynamics cascade databases are avail-
able and are used as correctly as possible. 

Cascades are almost instantaneous, strongly localised processes, also 
from a microscale standpoint (few picosecond duration, few nanometer 
extension), see e.g. [32–34,44] and references therein. In addition to 
producing point-defect clusters, cascades may also produce solute 
athermal redistribution and formation of complexes involving solutes 
and point-defects at the end of the cooling phase in alloys, partly driven 
also by thermodynamic effects [45], and enhanced in case of athermal 
cascade accumulation [46]. However, the diffusion of defects, the for-
mation of clusters and complexes with solutes, their dissociation and the 
absorption of defects at sinks occur mostly over a wide range of time and 
space scales [44]. Diffusion and dissociation are either thermally acti-
vated processes, with characteristic activation energy, or processes that 
occur spontaneously within a certain distance. As will be shown, 
assuming that the mechanisms that determine the details of these pro-
cesses are sufficiently well understood and reflected in the model, the 
parameters that determine quantitatively the rate of these processes are: 

1 https://cascadesdb.iaea.org/ 
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- Attempt frequency and activation energy for the migration of point- 
defects and their clusters, including the possibility that they form 
complexes with solutes that will influence their mobility;  

- Attempt frequency and activation energy for the emission of defects 
from clusters (or from other microstructural features, if relevant);  

- Distance of interaction between microstructural features and 
outcome of the interaction. 

The difficulty with assigning a value to these parameters is that they 
depend on several variables, namely nature and type of the defect, its 
geometrical features, its diffusion mechanism, its size and composition, 
and its local environment as well. Sometimes these parameters may also 
depend on temperature and be influenced by magnetic properties, 
although in general the temperature dependence and other effects are all 
included in the transition state theory approach and in effective 
parameter values. The phase space of possibilities, especially when 
including solute atoms, becomes quickly combinatorially large. How-
ever, in order for the model to be applied, a specific value needs to be 
assigned to all and each of these parameters, whether known thanks to 
intensive DFT calculations or estimated on the bases of educated 
guesses. It is therefore easy to understand that the endeavour of defining 
a set of parameters that is sufficiently complete, physically defendable 
and practically applicable is a tough one. Unsurprisingly, it took years of 
studies, developments and calculations to reach a level of detail in the 
accepted knowledge that allows reasonably reliable microstructure 
evolution models to be produced and applied to realistic situations, for 
materials of technological interest such as Fe alloys. Many of these 
studies will be referenced in the unfolding of this work. 

In this paper, we collect the sets of parameters that have been pro-
duced and used in the literature, putting them in a consistent frame-
work, explaining their origin and, as much as possible, assessing the 
related uncertainty. They are compared and discussed in order to eval-
uate the impact of the choice and to select ready-to-use sets (given in the 
Supplementary Material), accompanied by all the theoretical and prac-
tical recommendations for their use. This is done here by focusing on 

pure Fe. Future papers– parts II and III - will address the role of, and 
parameters for, some solute atoms of specific interest, and how they can 
be implemented. 

It is important to emphasise that the interaction of radiation defects 
with solutes, both of interstitial (e.g. C atoms) and substitutional (e.g. Cr, 
Cu, Ni, Si, Mn, P, …) nature, is crucial to properly understand and 
correctly simulate the microstructure evolution under irradiation in Fe. 
Pure Fe is indeed an abstraction: even in the purest material some im-
purities will exist and their presence will largely determine the kind of 
microstructure evolution that is observed with suitable experimental 
observation techniques. In purposefully alloyed Fe the presence of sol-
utes of specific nature is, on the other hand, well-known to influence 
significantly the microstructure evolution, as a result of the interplay 
between radiation-induced effects, especially interaction between radi-
ation defects and solutes, and thermodynamic driving forces. Thus a 
simulation in completely pure Fe, without any even simplified mecha-
nism of trapping of defects due to the presence of solutes and other 
microstructural features, is doomed to predict a wrong microstructure 
evolution, irrespective of how correct the mechanisms and parameters 
may be, because hardly any experiment can claim absolute purity. Yet, 
an appropriate set of parameters for the description of the mechanisms 
that occur in pure Fe remains the necessary prerequisite for correct 
microstructure evolution simulation, in either relatively pure Fe or in Fe 
alloys. 

The structure of this paper is as follows. We first describe the physics 
of radiation defects, with specific reference to iron (even though many 
aspects are general to other metals, particularly body-centred-cubic, 
bcc, metals), and introduce the fundamental equations that underlie 
OKMC-type microstructure evolution models, introducing the quantities 
of importance to parameterise the model. Next, we review for each class 
of parameters the values and choices that have been reported in the 
literature. As a conclusion, the areas where better parameters and 
further studies are needed are highlighted. In the Supplementary Ma-
terial, recommended parameter sets are proposed. 

Fundamental ideas to model radiation damage evolution in pure 
Fe 

Configurations and general properties of point-defect clusters in Fe 

Generally, the following are the defects considered in pure Fe: 

1. Vacancies and vacancy clusters: Vacancy clusters in Fe are consid-
ered to be voids, since these are the most energetically favourable 
configurations for most sizes, according to simulations with different 
empirical potentials at 0 K [2,47,48]. Simulations show that, when 
damage is produced very close to the surface (keV ion implantation) 
[49], as well as when denser cascades are formed [50], large (few 
nanometre diameter) 〈1 0 0〉 vacancy loops can be formed by cascade 
collapse, in the former case due to self-interstitial depletion towards 
the surface. Cascade overlap also seems to enhance this possibility 
[51]. This is consistent with the results of early experiments of 
irradiation with heavy ions [52]. Simulation also suggests that 
½〈1 1 1〉 vacancy loops, though unstable, may be formed and rapidly 
migrate to surfaces [48,53], before any transformation to voids oc-
curs. Moreover, small clusters of around 10 vacancies are more stable 
in planar than volumetric configurations [54,55]. However, all these 
are exceptions and the most common vacancy clusters are in practice 
cavities. The dissociation and migration of small vacancy clusters has 
been widely studied statically using DFT and EIP [55–58], while only 
the latter have been used in the case of large clusters [54]. Molecular 
dynamics (MD) simulations would take prohibitively long times to 
describe vacancy cluster diffusion and dissociation, but atomistic 
kinetic Monte Carlo models with EIP can be used for dynamic studies 
of this type, see [59,60] and references therein. Vacancy clusters 
migrate in 3D as a consequence of several vacancy jumps that lead to 

Fig. 1. Examples of the four different types of self-interstitial clusters in Fe: (a) 
〈110〉 self-interstitial cluster with 4 defects, from [72], reprinted with 
permission from Elsevier; (b) C15 cluster with 4 self-interstitials [72], also 
reprinted with permission from Elsevier; (c) a 37 self-interstitials ½〈111〉 loop, 
from [109], also reprinted with permission from Elsevier. (d) 〈100〉 loop, 
reprinted with permission from [26], copyright 2013 by the American Phys-
ical Society. 

L. Malerba et al.                                                                                                                                                                                                                                



Nuclear Materials and Energy 29 (2021) 101069

4

the effective displacement of the cluster centre of mass. In the limit of 
large sizes, the motion of vacancy clusters (approximately spherical 
cavities) proceeds via migration of the atoms and thus of the va-
cancies on the internal surface of the cavity. Dissociation occurs via 
emission of single vacancies and the energy values involved in 
cluster migration and vacancy emission are similar, as will be seen. 
Because of the low mobility of vacancy clusters, it is often implicitly 
or explicitly assumed that only those with up to 4 vacancies can 
migrate [1–9,12,14,57], even though, as will be seen, nowadays 
there is relatively good knowledge of vacancy clusters migration 
parameters up to large sizes and this knowledge is expected to be 
important for high temperature simulations.  

2. Self-interstitial atoms (SIA) and their clusters: Based on knowledge 
that was already widespread in the early 1990 s [61,62], two types of 
migration paths were considered since the early times of OKMC 
simulations, one-dimensional (1D) for self-interstitial clusters with 
planar loop shape and three-dimensional (3D) for the single self- 
interstitial, with different values for the migration energies in each 
case. Based on the most recent information, self-interstitial clusters 
in Fe can be grouped into four categories (Fig. 1 shows an example of 
each one of these groups of self-interstitial type defects): small 
clusters formed by parallel dumbbells, small clusters formed by non- 
parallel dumbbells, ½〈111〉 loops and 〈100〉 loops.  
A) Small clusters (<5 defects) are made of 〈110〉 parallel [63,64,65] 

or non-parallel [65,66] dumbbells. When in parallel configura-
tion, these small clusters migrate in 3D, with energy on the order 
of 0.3–0.4 eV, as suggested by static (DFT and EIP) 
[7,57,65,67,68] and MD studies [63,64], as well as from exper-
iments [62,69,70]. The non-parallel configurations, in contrast, 
some of which are often denoted as C15 clusters [71,72] (the non- 
parallel clusters include the C15 family, but there are non-parallel 
clusters that do not create any local C15 crystallographic struc-
ture), are largely, though not completely, immobile and still 
represent an open problem, because their properties are not 
satisfactorily well known, yet. The reason for this lack of 
knowledge is that they are correctly identified as the most stable 
configurations only in DFT calculations [66] and many possible 
configurations may exist [66,71,72], while interatomic potentials 
generally favour parallel dumbbell configurations [65]. This 
limits the reach of the studies that can be performed, so for 
example not all possible configurations are known, even less are 
the unfaulting energy values known (we call unfaulting the 
mechanism whereby the non-parallel cluster evolves to a parallel, 
glissile configuration). The only explicit calculation of this 
quantity seems to have been performed with an EIP and for only 
one cluster [73]. Finally, it is not entirely clear which fraction of 
self-interstitial clusters is produced in parallel and non-parallel 
configuration in displacement cascades [14,71,74,75,76] and 
which role cascade overlap may play [77]. As a consequence, it is 
not simple to introduce explicitly these cluster configurations in 
microstructure evolution models and their role is therefore so far 
most often introduced indirectly, through effective parameters.  

B) As clusters increase in size, the most stable configuration is that of 
½〈111〉 loops [78–81], which migrate almost athermally by 1D 
glide along the direction of their Burgers vector, i.e. with 
migration barriers of ~ 0.1 eV or less [3,53,63,64,68,81–84]. 
This glide occurs according to a mechanism that can be described 
either using the independent crowdion model [85], or as kink 
pair formation and propagation along the loop edge [81]. 
Experimentally, ½〈111〉 loops are regularly observed in iron 
under neutron [86–92] and also ion [93–98] irradiation. In 
addition, 〈100〉 self-interstitial loops are experimentally 
observed, as well [91–102]. The 〈100〉 loops represent the 
dominant majority whenever the irradiation is performed in 
relatively pure Fe, with neutrons, at or above 290 ◦C (operating 
temperature of most nuclear power reactors) [91,92,100–102]. 

However, contrary to their expected higher stability with 
increasing temperature [79], 〈100〉 loops are also observed to 
form at (very) low temperature under ion [91,98] and electron 
[103] irradiation. Very refined electron microscopy experiments 
[103,104] show that all loops exhibit 1D motion, but, while 
½〈111〉 loops start gliding at 450 K, 〈100〉 loops do so only above 
770 K, i.e. 〈100〉 loops have higher migration energy. Interest-
ingly, the experimentally-deduced migration energy of ½〈111〉
loops, ̴1.3 eV, is an order of magnitude higher than the simulation 
value, ̴0.1 eV. This difference is ascribed to the effect of the 
presence of impurities. A consistent estimate for the migration 
energy of 〈100〉 loops would be ̴ 2.0 eV or higher (see section 2.5). 
However, for these loops no reliable calculation of this migration 
energy exists to date, so 〈100〉 loops are often considered as 
immobile in models, which is likely to be a good approximation. 
This very different mobility, perhaps in combination with the 
stability reversal [79], may explain why 〈100〉 loops are more 
frequently observed at higher irradiation temperature, when 
½〈111〉 loops more effectively glide away to sinks. A gradual 
increase in the ratio between the two populations has been re-
ported based on ion irradiation experiments [105]. Several 
mechanisms have been proposed for the formation of the less 
stable 〈100〉 loops. Simulations have shown that, by growing in 
size, C15 non-parallel clusters can transform into 〈100〉 loops, as 
well as into ½〈111〉 loops [106,107], or perhaps mainly into 
½〈111〉 loops [76]. This is therefore a possible path for 〈100〉
loops formation. Another mechanism that may explain the 
appearance of 〈100〉 loops is the reaction between two ½〈111〉
loops [26,106,107,108]. Finally, spontaneous self- 
transformation with Burgers vector change has been observed 
experimentally [103]. Most OKMC models consider in practice 
only two types of self-interstitial clusters, 3D migrating clusters 
with sizes up to 4 defects, and fast 1D migrating clusters for larger 
sizes [1–11,15–21]. Sometimes the migration energy is tuned to 
effective values, which translate the existence of two types of 
clusters with very different mobility [10,11,15–21], occasionally 
assuming that self-interstitial clusters above size 4 are immobile 
[57]. Only a few models so far included explicitly the distinction 
between ½〈111〉 and 〈100〉 loops [12,14] and to our knowledge 
so far none explicitly treated C15 types of clusters. Overall, it is 
clear that there are still several unknowns concerning self- 
interstitial clusters, which too often oblige modellers to intro-
duce mechanisms and parameters for these defects that are based 
on educated guesses more than actual knowledge. 

Diffusion coefficient and its generalization to emission 

The diffusion coefficient of a defect can be expressed as an Arrhenius- 
type law in the following manner [110]: 

D(T) = D0exp(− Ea/kBT) (2)  

where D0 is the diffusivity pre-factor which includes the defect forma-
tion and migration entropy, Ea is the activation energy of the defect for 
diffusion, T is the temperature and kB is the Boltzmann constant. It is 
important to stress that, in the absence of irradiation, the activation 
energy includes also the formation energy of the defect, but here we 
assume that the defect has been already created, thus this contribution 
should be removed and only the migration energy remains. D0 can in 
turn be expressed in terms of the distance of a single jump, dj, the 
attempt frequency of migration, νm, and the correlation factor, fC, which 
may be temperature dependent if the diffusion mechanism changes with 
temperature (this might be true for self-interstitials or for point-defect 
clusters): 

L. Malerba et al.                                                                                                                                                                                                                                



Nuclear Materials and Energy 29 (2021) 101069

5

D0 = fc(T)
dj

2

2ζ
νm (3) 

Here ζ is the dimensionality of the migration (1, 2 or 3 for one-, two- 
or three-dimensional motion). In addition, 

Γ(T) = νmexp(− Em/kBT) (4) 

is known as the jump (or migration) frequency, with Em the migra-
tion energy of the defect and νm its attempt frequency of migration. In 
the case of pure random walk, there are no correlation effects, i.e. fc(T) 
~ 1; moreover, given that the defects have been already created, Ea ~ 
Em. Therefore, under the hypothesis of uncorrelated motion, the diffu-
sion coefficient for any defect can be considered for practical purposes as 
directly proportional to the jump frequency: 

D(T) ≅
dj

2

2ζ
Γ(T) (5) 

Some models use D(T), others use Γ(T), but eq. (5) allows the 
switching from one to the other and both can in practice be considered 
as known when the migration energy and the attempt frequency are 
known. Therefore, these two parameters, Em and νm, are all we need to 
describe defect mobility. In the case of point-defect clusters, both 
depend on the type of cluster (vacancy or self-interstitial), its configu-
ration (planar or volumetric, parallel or non-parallel dumbbells in the 
case of SIA clusters, Burgers vector for loops, …) and the number, n, of 
point-defects in the cluster, i.e. for a given type of cluster of defined 
configuration, Em = Em(n) and νm = νm(n). 

For practical use in OKMC models, the concept of diffusivity can be 
generalized to the process of emission of a defect from a parent cluster, 
typically emitting a single point-defect. This process is called dissocia-
tion and in this case the diffusion distance is very short, but it is useful to 
extend to this case the formalism of eqs. (2)-(5) for those models that 
work with diffusion coefficients rather than with jump frequencies. In 
the expression of this effective diffusivity, the activation energy of in-
terest, the dissociation energy Ed, can be approximated as the sum of the 
energy that is necessary for the defect to be detached from the cluster, 
Eb, binding energy, and the migration energy of the defect emitted, Em,e. 
While the last one only depends on the type of (single) point-defect 
emitted, the other two depend on the type and number of point de-
fects in the cluster, n, i.e. the size of the cluster: 

Ed(n) = Eb(n) + Em,e(1) (6) 

The corresponding effective diffusivity for emission is therefore: 

De(T) = De
0exp

(
−
(
Em,e + Eb

)/
kBT

)
= De

0exp(− Ed/kBT) (7) 

And the product: 

Γe(T) = veexp(− Ed/kBT) (8) 

is the frequency of emission, which is related to the effective diffu-
sivity for emission by an equation like eq. (5), the pre-factor D0

e being 
expressed in a similar way as in eq. (3), after replacing vm with ve, which 
is the attempt frequency of emission. Both Eb and ve are functions of the 
type, configuration and size n of the emitting cluster. These two are the 
functions that in practice we need to know to describe cluster 
dissociation. 

If other types of dissociations of a cluster are possible, in addition to 
the emission of a single point-defect, the corresponding reactions can be 
introduced and the definition of dissociation energy generalized, 
becoming a function also of the size of the emitted cluster. However, in 
general this possibility is disregarded as energetically unfavourable, 
except in the case of point-defect/solute complexes, which may emit a 
point-defect/solute pair (not relevant for pure Fe). 

Overall, migration and emission are thermally activated processes, 
that are described in a transition state theory framework [111], i.e. 
using Arrhenius-like functions to express the frequency of events, with 
characteristic activation energy values that are independent of 

temperature. 

Binding energy 

As explained above, the binding energy of point-defects to clusters of 
different types and configuration as a function of size is necessary to 
describe emission. If Ef(n) is the formation energy of a certain type of 
clusters of n point-defects, the binding energy Eb(n) of a single point- 
defect to it is defined as the difference between the energy of the clus-
ter after removing one point-defect and before doing so: 

Eb(n) = Ef (n − 1)+Ef (1) − Ef (n) (9) 

The name binding energy is also often used to denote the energy 
difference between all defects in a cluster and the same number of de-
fects isolated (explosion energy, or total binding energy): 

Eb,tot(n) = nEf (1) − Ef (n) (10) 

This total binding energy is generally not directly used as a param-
eter in OKMC simulations, but it is a useful quantity, because it is easy to 
see that the following relationship holds: 

Eb(n) = Eb,tot(n) − Eb,tot(n − 1) (11) 

In the limit of large n, therefore, one can write: 

Eb(n)→
dEb,tot(n)

dn
= Ef (1) −

dEf (n)
dn

(12) 

As shown later on, the formation energy of a cluster scales as a power 
2/3 or ½, thus the derivative is always positive and tends to zero for large 
sizes. This is so because the stability of a cluster implies that its forma-
tion energy should be less than the sum of the formation energy of each 
point-defect, i.e. Eb,tot(n) is always positive, meaning that the increase of 
Ef (n) must follow a less-than-linear trend. Thus eq. (12) shows that the 
binding energy of the single point-defect to a cluster is always less than 
the formation energy of the single point-defect. In the case of vacancies, 
for example, it is intuitive that the emission of a vacancy from an infi-
nitely large cavity, i.e. from a free surface, is equivalent to its formation, 
thus it makes complete sense that the asymptotic value of the binding 
energy should be the formation energy. 

Sinks, traps and capture radii 

As mentioned, under irradiation defects are produced, diffuse and, 
when meeting, may recombine (if of opposite type) or cluster. The 
recombination is the simplest reaction in which defects disappear, by 
being absorbed by each other, i.e. a vacancy disappears on a self- 
interstitial and vice versa. Defects can also disappear at microstruc-
tural features such as dislocations and grain boundaries, as well as any 
other type of interface between different crystal orientations (lath or 
twin boundaries), or between incoherent phases in alloys, or layers in 
multi-layered materials, or at free surfaces. These are classically called 
sinks for point-defects and their clusters. Differently from migration or 
dissociation events, events such as recombination, clustering and ab-
sorption at sinks have in common the feature of occurring spontane-
ously, athermally, whenever the two objects involved find themselves at 
a distance where they interact so strongly with each other that the re-
action becomes unavoidable. The detailed mechanisms of the reaction 
may be quite complex at the atomic level and occur through a series of 
strongly biased diffusion jumps and reconfigurations, in some cases with 
a delay that makes them not instantaneous. Yet, when the capture of an 
object by the other occurs, the outcome of their reaction is established. 
Because of this idea of one object irreversibly capturing another one, the 
distance below which the interaction spontaneously occurs is often 
called capture distance. Since, moreover, in most cases defects are 
assumed to have a spherical shape, or sometimes cylindrical or toroidal, 
this distance is generally a radius, hence the common expression capture 
radius. It is thus necessary to define capture radii for all possible 
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reactions of recombination, clustering or absorption by sinks. This 
capture radii will depend on the two interacting objects, their type, 
inherent configuration and, if relevant, their size. 

The concept of capture radius is clearly a strong simplification. In 
reality defects “see each other” from a certain distance, which can be 
fairly large, because of their strain field, i.e. because of the distortion 
they create in the lattice, which gives rise to attractive or repulsive 
elastic interactions that depend on the two defects involved, their ge-
ometry and their mutual orientation. Some OKMC schemes have 
therefore implemented elastic interactions, which enter as a bias in the 
migration energy, removing the need to define capture radii [112–118], 
at least for those defects for which an analytical expression of their 
elastic field and their elastic interaction can be obtained. In the 
description of how mobile defects interact with dislocations, for 
example, it is certainly crucial to introduce a description of the elastic 
strain field, which may be attractive or repulsive depending on type of 
dislocation and approaching defect in specific regions of space 
[119–121]. The explicit introduction of elastic interactions in an OKMC 
scheme allows in this case the formation of non-uniform distributions of 
dislocation loops, such as rafts or clouds around dislocations that are 
often observed experimentally [89,90,93,102], to be described in the 
simulation [112,114]. 

However, the introduction of elastic interactions has some short-
comings. First of all, it is not always obvious how to describe the elastic 
interaction between all types of radiation defects. Only fairly recently 
have closed form expressions been obtained for the elastic interaction 
between radiation defects (loops and cavities) located at larger distance 
than their size from each other [122] or for the stress and strain field 
evaluated at sufficiently large distance from a defect of any structure 
[123]. These elasticity theory expressions enable the removal of the 
concept of capture radius, but may fail at the atomic level or in alloys 
where complex defects that contain both point-defects and solutes, in a 
variety of irregular arrangements, are formed. In fact, even the sheer 
presence of solute atoms may introduce significant local deviations in 
the distributions of strains and stresses [124]. 

Another issue related with the introduction of elastic interactions in 
OKMC models is that they are of long range type, thereby obliging in 
principle to refresh the list of events of all defects in the whole box at 
each step. This introduces an unavoidable additional computational 
burden of some significance, especially when the density and size of 
mutually interacting defects is large. Moreover, the larger the simulation 
volume, the more significant this additional burden is expected to 
become. Since the actual interaction energy becomes negligibly small 
for large distances, it is possible to introduce a cut-off radius. This, 
however, is itself a sort of capture radius that needs to be chosen based 
on some more or less empirical criterion. Its introduction might even-
tually even offset the physical advantage of introducing elastic in-
teractions. Estimates made by one of the authors in a cubic simulation 
volume with side of 250 lattice parameters and including only disloca-
tion loops suggest that the computing time when the elastic interactions 
are switched on (with a cutoff) may be 6–7 times longer, although the 
difference reduced significantly with increasing loops size. For these 
reasons, so far elastic interactions have been introduced only to study 
very specific issues, for example the creation of heterogeneous distri-
butions of defects in presence of either locally high densities of defects 
(cascade ageing) [113] or dislocation lines/loops [112,114], or else the 
evaluation of the effect of elastic interactions on the sink strengths (the 
inverse of the square of the mean diffusion distance before a defect is 
absorbed by a sink) of extended defects [115–118]. These studies are 
useful because they allow convenient capture radii and relevant biases 
to be derived, for use in simpler models, so that these can implicitly 
embody, as correctly as possible, the extension and features of the elastic 
strain field associated with a given object, when interacting with the 
strain field created by other objects, as described below. 

Irrespective of whether or not a model includes a description of 
elastic interactions, there exists yet another problem. As well as clusters 

of point-defects do not only absorb, but also (re-)emit defects (generally 
only single point-defects), likewise complex microstructural features 
that act as sinks, such as dislocations and crystallite boundaries, may be 
such that certain types of defects do not disappear in them for good: they 
remain “parked” there and can be (re-)emitted later, at the price of a 
given activation energy (thermally activated processes). If this happens, 
it is customary to talk of traps, i.e. objects that temporarily stop defects 
that enter their orbit, until re-emission. However, the fact that extended 
sinks such as dislocations and crystallite boundaries may act both as 
sinks and traps and (re-)emit defects creates difficulties. In most if not all 
microstructure evolution models, the internal structure of these micro-
structural features is, on purpose, completely disregarded, due to its 
inherent complexity: they are simply sinks, i.e. places with a given ge-
ometry where objects disappear. Furthermore, the volumes used in 
OKMC-type simulations are generally much smaller than a grain, thus no 
grain can be fully included in the simulation box, while also introducing 
dislocation lines corresponding to sensible density values may be 
problematic [125]. The introduction of elastic interactions allows the 
model to describe how migrating defects approach these extended 
microstructural features, without the need to introduce a capture radius, 
but clearly this information is not enough. The final fate also needs to be 
known: will the defect be absorbed or trapped [119]? May the defect be 
eventually (re-)emitted? Small defects will likely be absorbed by dislo-
cations lines (up to which size? [119]), but larger defects, e.g. disloca-
tion loops, may be effectively trapped [112,114,126]. Trapped defects 
may later be absorbed (spontaneously or upon straining), or they may 
remain trapped, either forever or for a while if there is a possibility to be 
released. Grain boundaries create a less well defined and much more 
variable strain field than dislocations, but they also may be attractive to 
certain defects, inducing for example accumulation of loops close to 
them [127], or act as sinks/traps for point-defects and then re-emit them 
[128]. 

Thus, a proper description of the role of dislocations and grain 
boundaries requires a priori not only the introduction of elastic in-
teractions in OKMC, but also a detailed knowledge of how a specific 
extended defect interacts with an incoming migrating defect at the 
atomic level, through atomistic processes. On-the-fly [24–27] or hybrid 
[60,129] models are being developed to address among others these 
situations. This, however, is not the objective of OKMC models, and 
microstructure evolution models in general, which on the contrary try to 
detach themselves as much as possible from the atomistic details, in 
order to reduce the computing time and enable long irradiation pro-
cesses to be simulated. Finding a satisfactory compromise is not simple, 
but capture radius-based approximations are a way to do so, if associ-
ated with the use of classical expressions of sink strengths from the rate 
theory, for sinks of different geometries (absorbing spheres, arrays of 
parallel dislocation lines, loops, spherical grains, …) and for defects 
migrating according to 3D or 1D paths [125,130–137]. These sink 
strengths depend on the relative extension of the sink, for instance the 
sink strength of dislocations is proportional to their density 
[125,131,132], while the sink strength of a grain boundary is inversely 
proportional to the square of the grain radius (in a spherical grain 
approximation) [134,135]. 

Specifically, it is possible to “replace” the sink effect of dislocation 
lines of a given density with uniformly distributed spherical absorbers. 
Once the number density, ns, of these absorbers is fixed, their radius, rs, 
can be obtained in such a way that their sink strength is the same as the 
one of an array of parallel dislocation lines, with given density ρd; or else 
a reasonable density and radius can be traded off. This can be done by 
equating, for example: 

4πnsrs =
2πρd

ln
(

1
ρ

) (13) 

Hereρ = rd
̅̅̅̅̅̅̅πρd

√ , where rd is the capture radius of the dislocation. The 
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left hand side of eq. (13) is the simplest expression for the sink strength 
of a population of spherical absorbers [130,135], while the right hand 
side is the simplest expression for the sink strength of an array of parallel 
dislocation lines [132]; other, more complex expressions can also be 
used for the latter [125,130], however they are all equivalent in the limit 
of small sink volume fraction. The studies performed in [125,130] 
demonstrate that the sink strength theoretically deduced from the res-
olution of diffusion equations is well reproduced by OKMC type models, 
provided that certain care is taken with the simulation setup. The 
problem is the knowledge of the capture radius of the dislocation line, rd, 
a quantity that depends on the defect that is captured by the dislocation 
(for example it is larger for self-interstitials than for vacancies), as well 
as from other variables, including temperature. It needs to be chosen 
based on atomistic, dislocation dynamics or other types of calculations 
and considerations [114–119,138,139], or else suitably tuned, in all 
cases with a dose of arbitrariness. It is possible to work with an explicit 
bias, i.e. to set rδ

s = rsZδ, where δ = I,V (self-interstitial or vacancy), with 
ZV = 1 and ZI > 1, typically 1.15–1.2, although higher values are also 
possible. This bias is itself a way to account for elastic interactions be-
tween point defects and dislocations. It will thus be necessary to intro-
duce two families of absorbers, one for vacancy-type defects and one for 
self-interstitial-type defects. It must also be noted that, strictly speaking, 
the radius rs assumes a point-like migrating defect, without any associ-
ated radius or volume, thus a decision should be made to manage the 
fact that generally defects have an associated volume. In [11] the 
following, simplified equation was used to obtain rδ

s , which takes into 
account that the radius of the absorbed defect needs to be removed from 
the spherical absorber radius: 

rδ
s =

ρV
4πns

Zδ − rδ
1 (14) 

Here V is the volume of the simulation box (thus the radius of the 
spherical absorbers is simulation-volume dependent) and rδ

1 is the radius 
associated with either a single vacancy or a self-interstitial (see section 
3.5). In the same work it was also assumed that only single point-defects 
or small clusters thereof are absorbed by sinks, to mimic the fact that 
dislocations appear to be decorated by loops, which are thus most likely 
not absorbed in most cases, but trapped instead. However, clearly this 
approach does not allow non-uniform loop distributions to be simulated, 
it simply does not remove the loops that in the microscope appear close 
to dislocations and are counted in when determining their total density. 
A proper account of heterogeneous loop distributions requires either the 
generalized introduction of elastic interactions as discussed above, or 
attempts at treating in a simplified, but more realistic, way the sink role 
played by dislocations, as suggested in [119]. 

The sink strength of grain boundaries, on the other hand, is best 
taken into account assuming spherical grains and working with two sets 
of coordinates that should be associated with the defects. One set rep-
resents the actual position inside the simulation volume, generally with 
the shape of a parallelepiped, and is subject to periodic boundary con-
ditions (a defect that leaves the simulation volume re-enters it from the 
opposite side). The other set is a radial coordinate that represents the 
distance from the center of the grain. The radial coordinates are initially 
randomly assigned to any newly created defect and then updated 
without taking into account the periodicity. If and when the radial dis-
tance of a defect becomes more than the grain radius, this defect sud-
denly disappears. It has been demonstrated that this algorithm 
reproduces well the theoretical sink strength of grain boundaries, 
assuming spherical grains [130]. 

Finally, similarly to spherical absorbers, spherical traps may also be 
introduced in models to replace the effect of solutes, e.g. carbon atoms, 
when the detailed description of solute/defect interaction is not suffi-
ciently well known. Traps are also introduced to take care for the 
presence of unknown microstructural features that reduce the effective 
mobility of radiation defects by acting as traps, including impurities and 

Table 1 
Correspondence between activation energy, Ea (eV), and activation temperature, 
Ta (for convenience given in both K and ◦C), using as criterion two different 
critical frequencies, 1 and 104 s− 1.  

Ea (eV) Ta (K) Ta (◦C) 
Γc = 1.0 
s− 1 

Γc = 104 

s− 1 
Γc = 1.0 
s− 1 

Γc = 104 

s− 1 

0.3 (migration single SIA) 115 167 − 158 − 106 
0.6 (migration single 

vacancy) 
231 333 − 42 60 

0.9 (migration of C in Fe) 346 500 73 227 
1.2 (migration of void) 462 667 189 394 
1.5 (high activation*) 577 833 304 560 
*High with respect to processes of defect migration, typically corresponds to 

dissociation of highly stable defects  

Table 1a 
Migration energy, Em(n), for small point-defect clusters in pure Fe. Values are 
denoted as DFT, Exp (experimental) and EIP (empirical interatomic potential), 
using in the latter case an atomistic kinetic Monte Carlo model for clusters. 
Values in italics are assumptions.  

Species Em(n) (eV) Migration 
type 

Refs. 

V1 0.64 3D DFT [56] 
0.67 DFT [57] 
0.66; 0.68 DFT [58] 
0.54 DFT [55] 
0.55 Exp [141,142] 
0.57 ±
0.14 

Exp [143] 

0.63 EIP [59] 
V2 0.62 3D DFT[57] 

0.66 DFT-based AKMC [58] 
0.55 DFT [55] 
0.63 EIP [59] 

V3 0.35 3D DFT [57] 
0.36 DFT [55] 
0.58 EIP [59] 

V4 0.48 3D DFT [57] 
0.44 DFT [55] 
0.63 EIP [59] 

I 〈1 1 0〉 0.34 3D DFT [57] 
0.31 Exp [62,69,70] 
0.27 EIP [64] 

I 〈1 1 0〉 2 0.42 3D DFT [57] 
0.42 Exp. [62] 
0.36 EIP [64] 
0.55* DFT (P. Olsson, private comm. 

2012)* 
I 〈1 1 0〉 3 0.43 3D DFT [57]** 

0.16 EIP [64] 
I 〈1 1 0〉 4 0.43** 3D (?) [68]** 

0.16 EIP [64] 
0.8*** [10]*** 

*Migration energy of the non-parallel configuration of the di-interstitial, 
possibly coinciding with the unfaulting energy. 
**DFT calculations show that the threshold size for the cluster configuration to 
switch from a collection of 〈1 1 0〉 dumbbells to ½〈1 1 1〉 loops is 5 self- 
interstitials [68]. No information exists from DFT about the mobility of I 
〈1 1 0〉 4, so the same mobility as size I 〈1 1 0〉 3 is assigned, assuming that the 
migration mechanism is the same, i.e. rotation and translation of parallel 
dumbbells (the mobility of I 〈1 1 0〉 2 and I 〈1 1 0〉 3 is also very similar). Mo-
lecular dynamics studies with EIP provide the same energy for both, although its 
value is about half. 
***Here the assumption is that the effective migration energy for the tetra- 
interstitial is dictated by the unfaulting energy to transform the stable non- 
parallel configuration into the parallel dumbbell configuration. This energy, 
0.8 eV, is only known from an EIP calculation in the specific case of the tetra- 
interstitial [73]. Further discussions of migration energy values for small self- 
interstitial clusters can be found in [10]. 
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dislocations [2–11,15–21]. Clearly, however, the values of the trap 
capture radius and of the de-trapping energy that are involved suffer 
from a degree of arbitrariness and need to be calibrated. 

Correlation between activation energy and activation temperature 

It is useful to associate with thermally activated events of energy Ea a 
temperature of activation Ta, above which the event becomes actually 
activated, i.e. it does influence the evolution of the system. Along the 
lines of what is explained in [140], an event can be said to be activated 
when its frequency, Γc, is equal to, or higher than, a critical value. To 
take into account different situations, e.g. different dose rates, here we 
choose two representative critical rates, namely 1 Hz and 104 Hz. By 
imposing that the migration or dissociation frequency in eqs. (4) or (8) 
should equal these values, with attempt frequency ν = 1013 s− 1 (Debye 
frequency in Fe), a simple linear relationship is obtained between acti-
vation energy and temperature of activation, Ea = αTa, with α = 0.0026 

for Γc = 1 s− 1 and α = 0.0018 for Γc = 104 s− 1. Table 1 shows the cor-
respondence between activation energy and activation temperature 
using the two relationships and therefore criteria. 

The values of activation energy that have been chosen in Table 1 
roughly correspond to characteristic energy values for the migration of 
defects in Fe, as revealed by isochronous annealing recovery experi-
ments [62], or as later shown in this work. Interestingly, the criterion Γc 
= 1.0 s− 1 provides temperatures that correspond to the stages of re-
covery revealed in the mentioned experiments. The criterion Γc =

104 s− 1 is suitable to assess the impact of event when the dose rate is 
high or to state that an event is not only activated, but in fact signifi-
cantly frequent. 

Parameters to model radiation damage evolution in pure Fe 

In the following the data that exist on migration and binding energy 
values for different types of point-defect clusters in α-Fe, as well as the 
relevant attempt frequencies of migration and emission, are listed and 
discussed, providing functions for their dependence on size in view of 
extrapolation. The nomenclature used is as follows: Vn is a cluster of n 
vacancies and I-Tn is a self-interstitial cluster of type T (Burgers vector) 
that contains n self-interstitials. If no type label is included, it means that 
the same rule applies for all self-interstitial types (for example, binding 
energy of self-interstitial clusters). 

Migration energy values for point-defect clusters in Fe 

The migration energy of a cluster depends on its type, configuration 
and size, i.e. for a given type of cluster with a certain type of configu-
ration is Em = Em(n). Table 1a lists some values of migration energy of 
small clusters of vacancies and self-interstitials in Fe, as obtained from 
DFT calculations, including a few experimental values, as well. Here for 
the self-interstitials the reference configurations are parallel 〈110〉
dumbbells. Although it is known that these clusters are more stable in 
non-parallel configurations (some of which are denoted as C15 [71,72]), 
knowledge on mechanisms and characteristic energy values for non- 
parallel clusters is too limited to be able to describe them explicitly. 
Their existence is taken into account in an indirect way and how this is 
done changes on a case by case basis and is still evolving. 

A discrepancy exists between the migration energy for single va-
cancies and divacancies as obtained in relatively early DFT studies 
[56,57,58] and in [55], while there is agreement for V3 and V4. The 
value of [55] for the single-vacancy migration energy is closer to the 
experimental value [141–143] and stands out because most DFT and EIP 
calculations tend to provide values that are higher than 0.6 eV and often 
closer to 0.7 eV [58]. Using the precise value for the migration energy of 
single point-defects and small clusters is important if the model is ex-
pected to be compared with irradiation experiments performed at low 
temperature followed by annealing, for example resistivity recovery 
studies that identify the onset temperature of migration of single point- 
defects and their dimers, or other experiments of the same kind, such as 
in [62,69,70,141–143]. In contrast, for the simulation of radiation 
damage accumulation at room temperature, or higher, the description of 
the migration of large clusters, especially of self-interstitials, becomes 
the dominant factor, because single point-defect migration occurs with 
sufficiently high frequency to make the second figure after the comma 
essentially irrelevant. With this in mind, values can be rounded and one 
can say that, according to DFT and experiment, within uncertainty 
single and di-vacancy have essentially the same migration energy, ~0.6 
eV, while the tri- and tetra-vacancy migrate with lower energy, ~0.4 eV. 
The single interstitial migration energy is ~0.3 eV, while clusters of up 
to 4 self-interstitials are likely to migrate with an effective energy value 
~0.4 eV, although the doubt remains about the role of non-parallel 
configurations on this effective migration energy, which might be 
significantly higher (up to ~ 0.8 eV for the tetra-interstitial, I 〈110〉 4, if 
it coincides with the unfaulting energy). We here recommend the use of 

Table 1b 
Migration energy values (Em) typically adopted for large point-defects clusters in 
pure Fe.  

Species Em(n) (eV) Migration 
type 

Reference 

Vn, n > 4 Immobile 3D [57] 
Or AKMC values 
(Suppl. Mater.) 

EIP [59] 

I 〈1 1 1〉 n, 
n > 4 

0.06 + 0.11/n1.6 1D MD [3] 
0.2 (if invisible in 
TEM, i.e. n <
60–90)*; 

[11] 

0.1 (if visible in 
TEM, i.e. n >
60–90) 

[11] 

<0.1 eV, e.g. 0.05 
eV 

This work choice, based on  
[3,53,63,64,68,81–84] 

I 〈1 0 0〉 n, 
n > 5 

Immobile 1D Typical choice 
Or 0.9** [11] 

*TEM = Transmission Electron Microscope. Here the reasoning is that the nature 
of invisible clusters (〈111〉, 〈100〉, C15, …) is not known experimentally, thus 
the “average” migration energy will be higher than the migration energy of pure 
〈111〉 loops, given that 〈100〉 loops migrate with much higher energy and C15 
are immobile (but may transform into 〈100〉 and also ½〈111〉 [76,106,107]). 
However, the threshold energy for visibility is not unambiguously defined and 
can be taken between 60 and 90 self-interstitials. 
**The migration energy of 〈100〉 loops is controversial. The value 0.9 eV 
employed in [11] was privately communicated by Y.N. Osetsky (ORNL), who 
had done MD calculations that were, however, never published. 

Fig. 2. Vacancy cluster migration energy as a function of size. Most values are 
the results of AKMC studies from [59] (AKMC I), parameterised on the M03 
interatomic potential [146], as well as from [60] (AKMC II and III, which differ 
because based on different reference DFT data sets used for the parameteriza-
tion, respectively from [147;148]). The values from DFT for the first four 
clusters [55] are indicated, as well. Above size 250 a constant value 1.2 eV is 
used, which is the median of the AKMC I values between 10 and 250. 
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these values, because they describe the same type of clusters (parallel 
ones) and avoid for example peaks of concentrations for clusters that are 
given an especially high migration energy (0.8 eV), as happened in 
[10,11]. Ideally, non-parallel clusters should be treated as a separate 
class with their own properties (fraction in cascades, unfaulting energy, 
…), but this is currently not possible because of the knowledge gaps that 
still need to be overcome. One option to effectively take into account the 
existence of immobile, or slowly migrating, clusters is to increase arti-
ficially the effective migration energy of small clusters, however this 
requires some calibration to be performed versus reliable experimental 
data. This type of approach has been used in the case of invisible clusters 
in [11], where an effective migration energy of 0.2 eV was assigned to 
self-interstitial clusters that are large enough to take a loop configura-
tion, but are too small to be visible. 

Concerning point-defect clusters of more than four point-defects, the 
most common migration energy values used in microstructure evolution 
models are summarised in Table 1b. 

Most OKMC simulations assume that vacancy clusters with n > 4 are 
immobile. This can be an excellent approximation for simulations at low 
temperature, given that the migration energy of these clusters generally 
exceeds 1 eV (see Fig. 2). The advantage of assuming their immobility is 
that a whole lot of parameters can be forgotten about. This assumption 
also enables the use of computationally much faster rate equation 
models, which have difficulties to treat mobile species, to the extent that 
even the most advanced solving methods, which extend to large size 
defects and multi-component systems, in practice assume only single 
point-defects to be mobile, see e.g. [144,145]. It is, however, a very 
strong and questionable approximation, which becomes unjustified 
when temperatures of technological interest, from round 300 ◦C up-
ward, are considered. At these temperatures, the jump frequency of 
objects that migrate with ̴ 1 eV is well above the 104 s− 1 activation 
threshold (see Table 1). While these frequencies remain way too low for 
MD calculations, in [11] the values for migration energies of clusters 
were taken from atomistic KMC (AKMC) calculations [59]. These cal-
culations were performed by tracing the mean square displacement of 
vacancy clusters and applying the standard expression for the diffusion 
coefficient. This reference study, denoted as AKMC I, was conducted up 
to 250 vacancies for a discrete number of clusters, using a neural 
network to predict energy barriers as functions of the environment 
(other vacancies) [59]. The neural network had been trained on barriers 
calculated with an interatomic potential denoted as M03 [146] and the 
resulting discrete diffusion coefficient data points were then 

interpolated using splines. These values are shown in Fig. 2 and 
compared with similar AKMC studies that were conducted on a smaller 
number of relatively small clusters [60], using significantly different 
procedures for the calculation of the energy barriers. Namely, these 
AKMC models used a standard barrier definition based on energy dif-
ferences, calculated as sums of pair energy values fitted to available DFT 
calculations. Both earlier [147] and more recent [148] reference DFT 
values were used. These two AKMC models are denoted in Fig. 2 as 
AKMC II and AKMC III, respectively. In the same figure, also the most 
recent DFT values for vacancy cluster migration energy are indicated 
[55]. In the case of clusters of more than five vacancies, all AKMC 
models indicate that the migration energy oscillates in the range 0.9–1.6 
eV, meaning that the jump frequency of sizeable vacancy clusters is low, 
but not completely negligible above 300 ◦C, depending on the specific 
size. The oscillations become dumped above 60 vacancies. This suggests 
a trend towards a specific migration mechanism (most likely surface 
migration), with a single activation energy value. Thus, above 250 the 
migration energy has been equalled to 1.2 eV, which is the median of the 
AKMC I values between size 10 and size 250. It is noteworthy that the 
three AKMC models, although significantly different in the way the 
energy barriers are calculated, lead to extremely similar results. This 
gives a certain confidence that the values and the trends are robust. In 
particular, all predict the existence of at least one peak of migration 
energy values. These peaks correspond to specific cluster geometries 
that give high stability, typically fully filled shells of close neighbour 
vacancies, approaching the spherical shape, compatibly with the crys-
tallographic structure. Two models predict the same peak in exactly the 
same position along the size axis. Therefore, these calculations show that 
monotonically growing functions of size are not suitable to interpolate 
the migration energy of vacancy clusters, because some cluster config-
urations are more stable and migrate with higher energy than larger 
ones. For instance, a cluster of about 50 vacancies migrates with ~1.5 
eV, while a cluster of 90 vacancies with only ~1 eV. This depends on 
how easy it is for the atoms to migrate on the internal surface of the 
cavity, which depends strongly on the cluster configuration, until large 
sizes are reached that approximate free surfaces. It may be understood 
that clusters that, in their lowest energy configuration, complete a 
perfect sequence of (removed) atomic layers, thereby having facets on 
perfect crystallographic surfaces, will have more difficulty to migrate 
than clusters with extra vacancies on their facets. These types of pro-
cesses are caught correctly by AKMC models, because these are dynamic 
models, i.e. they include the fact that the effective migration of a cluster 
is the result of several jumps of the vacancies, which make the cluster 
continuously change configuration. This way of performing the calcu-
lations is thus more representative of the overall migration process than, 
for example, DFT studies, in which by necessity the migration path has 
to be found via “manual search” through different possibilities, irre-
spective of the higher reliability of the barrier calculation. However, for 
small clusters DFT values are certainly a better reference, especially 
because it appears that the AKMC study is not able to catch the low 
migration energy value in the case of tri- and tetra-vacancy (not because 
of the method itself, but because of the limitations of the Hamiltonian 
that is implicitly used). 

Even though DFT values are expected to be the best reference, in 
[10,11] for consistency the migration energy of small vacancy clusters 
was chosen to be the one coming from the interatomic potential, 
calculated by AKMC. Consistency may be important because often in 
OKMC simulations the relative difference between event frequencies 
plays a greater role than the absolute value, since it determines the 
relative rate of occurrence between competing processes. The corre-
sponding AKMC energy values for small clusters are included in 
Table 1a, denoted as “EIP”. The complete list of recommended migration 
energy values for vacancy clusters is given in the Supplementary 
Material. 

Concerning self-interstitial clusters, as mentioned, loops glide in 1D 
along the direction of their Burgers vector. Of these, ½〈111〉 loops 

Fig. 3. Different choices of migration energy versus self-interstitial atom (SIA) 
cluster size, Em(n). The squares correspond to the choice made in this work (see 
Supplementary Materials for the tabulation). The curve [a] corresponds to the 
law given in ref. [3]: a constant value of ~ 0.1 eV or smaller is an equivalent 
choice to using that law. The circles [b] correspond to the choice made in ref. 
[10], where, as described, all loops withmore than 90 SIA have been considered 
to have Burger’s vector 〈100〉 with migration energy 0.9 eV, while below this 
threshold an effective migration energy value of 0.2 eV has been chosen 
for loops. 
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migrate almost athermally [3,53,63,64,68,81–84], thus the law of 
migration energy versus size proposed by Soneda and de la Rubia [3] 
(see Table 1b) has been used [4,5,8,14,113], or equivalently values on 
the order of 0.1 eV or less are chosen. In contrast, 〈100〉 loops are often 
considered immobile as their migration energy is known to be high, 
although its value is currently not precisely known (in Table 1b the value 
0.9 eV is adopted based on a private communication of Yu.N. Osetsky, 
years ago). Models that use only one type of loop, without distinction of 
Burgers vector, assigned to these defects a sort of effective migration 
energy value. For example in [10] the migration energy for visible loops 
(n > 90) was set to 0.9 eV, because experimentally in Fe 〈100〉 loops are 
invariably observed in irradiation experiments performed at 300 ◦C or 
above [91,92,100–102,105], while for invisible clusters an effective 
value of 0.2 eV was found to provide good agreement with reference 
experiments. 

It is clear that the parameter sets used for self-interstitial clusters are 
much more rudimentary and overall affected by higher uncertainties 
than in the case of vacancies. In particular, the parameter set will be 
unavoidably characterised by discontinuities and questionably chosen 
size dependences. Fig. 3 shows three examples of choice of migration 
energy values as functions of size and illustrates that a constant value of 
~0.1 eV or smaller is an equivalent choice to using the law by Soneda 
and de la Rubia in Table 1b [3]. The parameters proposed in this work 
for small clusters and ½〈111〉 loops are tabulated in the Supplementary 
Material, for the 1–100 size range. 

Finally, it should be noted that in several articles the potential 
importance for microstructure evolution in Fe of Burgers vector flipping 
has been emphasised, because this type of event gives a partially 3D 
character to the migration of loops [149,150]; impurities may enhance 
this feature [151]. Unfortunately, very little if anything is known about 
the frequency of these events and the activation energy involved. In 
[10,11], following the approach devised in [6], self-interstitial clusters 
up to size 30 were assigned a progressively smaller probability of flip-
ping Burgers vector and therefore 1D direction of migration. This was 
not done by assigning a frequency, but rather a pure probability of 
rotation, e(− Erot/kBT) [6]. In this expression, Erot is a sort of “effective en-
ergy” for Burgers vector flipping. The chosen values are tabulated in the 
Supplementary Material. 

Whenever the model distinguishes between ½〈111〉 and 〈100〉
loops, different mechanisms are used for the formation of 〈100〉 loops. 
They can result from the interaction between two ½〈111〉 loops 
[26,106,107,108] (reaction model) or nucleate from C15 clusters 
[76,106,107] (nucleation model). Self-transformation as in [103] has 
never been implemented in a model to our knowledge, possibly for lack 
of knowledge of which conditions may trigger it and thus lack of rele-
vant parameters. The relative importance of the two mechanisms that 
are generally considered has been assessed in [14], concluding that the 
nucleation from C15 clusters seems to be more effective than the reaction 
between ½〈111〉 loops to produce 〈100〉 loops and obtain agreement 
with experimental values of loop density. However, the reference ex-
periments were thin film ion irradiations, where the proximity of free 
surfaces may have biased the results, because ½〈111〉 loops readily 
disappear there. 

When applying the reaction and/or the nucleation model to create 
〈100〉 loops, a number of choices need to be made and parameters 
assigned, on which knowledge is limited or lacking, so some arbitrari-
ness is unavoidable. In [14], following [26,108,151], the reaction model 
was applied to ½〈111〉 loops above size 20 and the effect of the choice of 
this threshold was studied. The interaction between two ½〈111〉 loops 
resulted in the formation of a 〈100〉 loop if two conditions were 
simultaneously fulfilled: (1) the sum of their Burger’s vectors must have 
a 〈100〉 direction and (2) the sizes of the two interacting loops are about 
the same (within a 5% margin of difference, as suggested by Marian et al. 
[108,151]). If these conditions were not fulfilled, the resulting loop was 
simply a larger ½〈111〉 loop, with the Burger’s vector of the bigger one. 

Once the 〈100〉 loops were formed, they were considered immobile and 
allowed to further grow by absorbing small SIA clusters (<5 SIA) or 
capturing smaller ½〈111〉 loops, as well as by coalescence with other 
loops of similar size and type. If interacting with a larger SIA loop, the 
final Burger’s vector is always the one of the larger SIA cluster, thus 
〈100〉 loops may be potentially lost in this way. The nucleation model 
assumed independent creation of the two types of loops. As soon as an 
SIA cluster reached size 5, it may become a 〈100〉 or a ½〈111〉 loop 
according to a predefined ratio. This 〈100〉 -to-½〈111〉 ratio was 
initially taken as 5%, following Marinica et al. [71], who consider this to 
be also the ratio of immobile C15 clusters formed in collision cascades, 
and assuming that all C15 clusters will grow into 〈100〉 loops [106]. This 
ratio is, however, uncertainly known, as well as the outcome of the 
growth of C15 clusters. Recent studies suggest a ratio between 5 and 20% 
and more frequent transformation of C15 into ½〈111〉 than 〈100〉 loops 
[26,76,107], without excluding contributions from the reaction model. 
It is also known that 〈100〉 loops become more stable as temperature 
increases [79]. This effect, however, has not been explicitly included so 
far in OKMC simulations, to our knowledge, among other reasons 
because this stabilising effect of temperature, which becomes the more 
visible the closer to the Curie temperature (1043 K = 770 ◦C), is likely to 
be experimentally indiscernible from the effect of the higher mobility of 
½〈111〉 loops. These will likely disappear much more efficiently at 
sinks, at high enough temperature, than the much more slowly 
migrating (or perhaps immobile) 〈100〉 loops, which will be hence “left 
behind” and thus observed in the microscope in larger amount. The 
overall balance between mechanisms should eventually lead to obtain 
the correct ½〈111〉-to-〈100〉-loop ratio, as experimentally observed, but 
it is easy to see that there can be many different paths and parameter 
choices to obtain the same result. 

The above consideration on mobility and disappearance of ½〈111〉
loops at sinks, leads to discussing another important point, i.e. the need 
to introduce traps that delay, or even completely hinder, their migra-
tion. Both models that include only one single effective type of loop 
(generally with properties closer to ½〈111〉 than to 〈100〉 loops) and 
models that include both will need to introduce traps of this type in 
order to have a chance to reproduce experimental results. Without traps, 
it is essentially unavoidable that all ½〈111〉 loops will be lost at sinks, if 
they are allowed to migrate with negligible energy (<0.1 eV). There is 
clear experimental evidence of the existence of traps that reduce the 
mobility of ½〈111〉 loops: Arakawa et al. [104] measured the diffusion 
coefficient of these loops, finding a migration energy of 1.3 eV, thus at 
least one order of magnitude larger than what simulations reveal. This 
has been interpreted as the result of the interaction of loops with im-
purities, especially interstitial solutes such as C and N, which are 
unavoidably present even in the purest specimen. Studies performed 
with interatomic potentials and DFT show that C atoms do indeed 
interact strongly with self-interstitial clusters and loops [152–155], as 
well as with vacancies [156–160]. In fact, C-vacancy complexes appear 
to be very efficient traps for dislocation loops [152,154], with binding 
energy that could explain the 1.3 eV measured by Arakawa and co- 
workers as effective migration energy of ½〈111〉 loops [104]. These 
data will be discussed in the follow up papers to this work, thus here no 
detailed discussion is included. Simpler schemes in which trapping en-
ergy values are selected, taking inspiration from known ones for C-defect 
binding energy, can be found in [10] or in [14]. In the former, different 
trap populations were introduced, to take into account the effect of the 
formation of C-vacancy complexes that are also acting as traps for 
gliding loops [154]; in addition, traps for vacancy clusters, also inspired 
to C atoms, were introduced as well. The bottom line is that if a model 
assigns a migration energy <0.1 eV to ½〈111〉 loops, then some mech-
anism to reduce their mobility, such as traps, needs to be introduced, 
otherwise in simulations at temperatures of interest for applications they 
will all disappear at sinks and none will remain in the volume, in clear 
disagreement with experimental evidence. 
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Binding and dissociation energy values for point-defect clusters in Fe 

According to eq. (6), the dissociation energy Ed(n) that is necessary 
for a single point-defect to be emitted from a cluster is the sum of the 
binding energy to the cluster, Eb(n), which is a function of the cluster 
size, (once the type of cluster is defined), with the migration energy of 
the emitted defect, Em,e(1). The latter is assumed to be independent of 
the cluster size and to coincide with Em(1), which can be taken from 
Table 1a for both single self-interstitial and vacancy. The functions Eb(n) 
are discussed in the following two sections for vacancy and self- 
interstitial clusters. 

Vacancy clusters 
Table 2a shows some of the values of binding energy obtained from 

DFT for single vacancies to vacancy clusters up to size 10 and indicates 
the values that can be used above this size. 

Most data in Table 2a come from the work of Kandaskalov et al. [55], 
which is especially useful and interesting, because it extends DFT cal-
culations to relatively large sizes, finding that planar clusters between 5 
and 10 vacancies are more stable than spherical (or rather “volumetric”, 
as they are never really spherical) ones. This result is consistent with an 
earlier Metropolis Monte Carlo study performed using two interatomic 

potentials for iron [54] and stems from the fact that small vacancy 
clusters can be built by adding perpendicular 2nd nearest neighbour 
pairs of vacancies. For sizes>10, however, volumetric clusters become 
again more stable than planar ones, in agreement with other DFT cal-
culations [47,48], as well as with [54]. Fig. 4 shows the value of the 
binding energy of a single vacancy to a cluster up to size 20, as calcu-
lated statically using three interatomic potentials (the configurations 
were selected using a Metropolis Monte Carlo method in [54]), as well as 
with DFT according to three different authors. This figure reveals that 
the results of the interatomic potentials are qualitatively, and often also 
quantitatively, in good agreement with DFT. In particular, the oscil-
lating values above size 5 appear to be a constant feature, which points 
to the existence of cluster configurations that are inherently more stable 
than larger ones. The values oscillate between ~ 0.8 and ~ 1.2 eV, 
suggesting dissociation energy values between ~ 1.4 and ~ 1.6 eV, i.e. 
already activated at temperatures round 300 ◦C, although relatively 
infrequent. The good agreement between values from DFT and inter-
atomic potentials enables the latter to be fairly reliably used to extend 
the set of DFT binding energy values. 

Fig. 4 also includes three sets of values obtained from AKMC calcu-
lations, the same studies that provided the migration energy values in 
Fig. 2 [59,60]. These AKMC calculations provided directly the 

Table 2a 
Binding energy (Eb) of a single vacancy to a vacancy cluster as a function of cluster size in pure Fe, for the reaction O → Oi + Oj, where O denotes an object that 
dissociates into two smaller ones, Ok=i,j.  

Species Product i Product j Eb (eV) Reference 

V2 V V 0.21 DFT [161] 
0.3 DFT [57] 
0.19 DFT [55] 

V3 V2 V 0.36 DFT [161] 
0.37 DFT [57] 
0.46 DFT [55] 

V4 V3 V 0.7 DFT [161] 
0.62 DFT [57] 
0.66 DFT [55] 

V5 (planar) V4 V 0.8 DFT [55] 
V6 (planar) V5 V 0.95 DFT [55] 
V7 (planar) V6 V 0.71 DFT [55] 
V8 (planar) V7 V 0.94 DFT [55] 
V9 (planar) V8 V 0.75 DFT [55] 
V10 (planar) V9 V 0.91 DFT [55] 
Vn n > 10 Vn− 1 V AKMC values (Suppl. Mat.); Alternatively use eqs. [15] and [16] or [17] in eq. [12] EIP [59]  

Fig. 4. Binding energy Eb(n) of a single vacancy to a 
cluster of n vacancies up to size 20, as obtained from a 
Metropolis Monte Carlo study using interatomic po-
tentials: LF98 [162], AB97 [163] and M03 [146]. The 
data points denoted as B&J67 are taken from a very 
early computational work by Beeler and Johnson, 
where a pair potential was used [164]. The data 
points denoted as AKMC I (M03) [59], AKMC II and 
AKMC III [60] come from the same work as in Fig. 2, 
see corresponding text. The three DFT data sets come 
from, respectively, [161]-1, [57]-2, and [55]-3. The 
smooth dotted line corresponds to applying the 
capillarity law (eq. (15)), with Eb(2) = 0.2 eV and 
Ef(1) = 2 eV, which provides a sort of upper bound.   
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dissociation energy, from the plot versus temperature of the dissociation 
time, i.e. this energy was not calculated as the sum of migration and 
binding energy, as in eq. (6). On the contrary, the binding energy has 
been obtained in Fig. 4 by subtracting the corresponding Em(1) value 
from the AKMC dissociation energy. As discussed, AKMC calculations 
are dynamic. Thus, while their reliability is limited by the use inter-
atomic potentials and/or by the hypothesis made for energy calculation 
when fitted to DFT, the way the dissociation energy is obtained inher-
ently allows for the continuous reconfiguration of the cluster while va-
cancies are moving. This is important because the emission of a point- 
defect is more likely to occur when the cluster is in a configuration 
that is not the most stable one, i.e. when the actual binding energy is 
temporarily lower. It is therefore expected that the dissociation energy 
obtained by AKMC calculation should be lower than the one stemming 
from static calculations, which implicitly assume that defect emission 
occurs starting from the most stable cluster configuration. Consistently, 
the data points from the most complete AKMC study [59] in Fig. 4 are 
significantly lower than the static ones (even those obtained from the 
same potential, M03). The other two AKMC studies, II and III, globally 
also follow the same trend, in particular AKMC III values are almost 
identical to AKMC I values, despite the very different way in which they 
were parameterised. AKMC II by chance provides for small clusters 
values that are identical to those obtained statically with M03. The 
complete tabulation of the AKMC I data is given in the Supplementary 
Material and is here recommended as parameter set to be used. 

The AKMC I calculations have been extended up to clusters of 250 
vacancies. In order to extrapolate beyond this size it is necessary to use 
appropriate equations. One that is often used to calculate the binding 
energy of a defect from a defect cluster, starting from vacancy n > 4, is 

the capillarity law [165]: 

Eb(n) = Ef (1) −
(n2

3 − (n − 1)
2
3)(Ef (1) − Eb(2))

22
3 − 1

(15) 

Here Ef(1) is the formation energy of the single point-defect. Ac-
cording to DFT the formation energy of a vacancy varies between 1.95 
and 2.15 eV, while the experimental values are lower and can vary be-
tween 1.5 and 2.0 eV [58]. The fact that experiments provide lower 
values may be due to the entropic effect at the high temperature that is 
needed to have a sufficiently high concentration of vacancies and allow 
their detection (see detailed description of the kind of experiment per-
formed - although the conclusions of the work are wrong - in [166], to be 
combined with the vacancy formation entropy calculations in [167]). 
Eb(2), the binding energy of a pair of point-defects, can be taken from 
Table 2a. In practice, two fair values for these parameters are:  

Eb(2) = 0.2 eV                                                                                       

Ef(1) = 2 eV                                                                                 (16) 

The Eb(n) function from eq. (15) with the above parameter values is 
shown in Fig. 4: opposite to the AKMC values, it provides a sort of upper 
bound, without of course reproducing any of the oscillations. The Eb(n) 
function can also be obtained from eq. (12), provided that a derivable 
expression for the formation energy versus size, Ef(n), is available. In 
[47] the following equation is proposed: 

Ef (n) = 4πσ
(

3nΩ
4π

)2/3

(17)  

where Ω = a0
3/2 = 11.82 Å3 is the formation volume of a vacancy in 

iron, a = 2.87 Å being the lattice constant, and σ = 1.7 J/m2 is the 
average surface energy. 

Fig. 5 compares the Eb(n) values obtained from eq (15) – capillarity 
law - and from the generic expression of eq. (12), with Eb(2) and Ef(1) as 
in eq. (16) and using eq. (17) to derive the formation energy Ef(n) in eq. 
(12). In the same figure, the AKMC I binding energy curve is plotted up 
to n = 200. Again, the AKMC calculation predicts significantly lower 
values for dissociation than any equation and this happens because the 
AKMC simulations implicitly take into account the fact that dissociation 
occurs from configurations that are not the most stable ones, which are 
temporarily created and correspond to the easiest starting point for 
vacancy emission. Thus neither analytical expression seems especially 
suitable to extrapolate the AKMC values, unless the Ef(1) and Eb(2) 
values are suitably fitted. The AKMC curve also reveals that oscillations 
continue to appear at irregular periods for sizes above n = 20, as well; 
these oscillations should be ascribed to the existence of sort of “magic 
numbers” that correspond to especially stable configurations: even 
though most likely not all of these “magic numbers” have been identified 
by the AKMC study, and they likely depend on the choice of the ap-
proximations that are inherent to the specific AKMC model, in principle 
the oscillations should be considered to have a physical origin. Thus the 
Eb(n) function is not a monotonically growing one, at least not for small- 
to-medium cavity sizes, and therefore strictly speaking the use of simple 
power functions, such as eq. (15) or eq. (12) with eq. (17), is not fully 
correct. However, extrapolation is necessary and it is here argued that it 
is best to extrapolate the AKMC data themselves beyond n = 250. The 
following expression provides a smooth extrapolation: 

Eb(n) = 1.71 − 2.76
[
(n + 1)0.73

− n0.73] (18) 

Here, 1.71 eV is the formation energy of the vacancy according to the 
interatomic potential used for the AKMC calculations, so this equation is 
formally of the same type as eq. (12). The corresponding curve is also 
shown in Fig. 5. 

Self-interstitial clusters 
Table 2b lists the DFT values for the binding energy as a function of n 

Fig. 5. Binding energy Eb(n) of a single vacancy to a vacancy cluster of size n 
up to 1000, obtained from different expressions: (a) the generic expression of 
eq. (12), using eq. (17) to express the cluster formation energy Ef(n) and with 
Ef(1) = 2 eV; (b) the capillarity law, eq. (15), with Eb(2) = 0.2 eV and Ef(1) = 2 
eV; (c) the dissociation energy results from AKMC [59] after subtracting the 
single-vacancy migration energy, Em(1) = 0.63 eV; (d) its extrapolation to large 
sizes as in eq. (18). 

Table 2b 
Binding energy (Eb) of a single self-interstitial to a cluster in pure α-Fe.  

Species Product 
i 

Product 
j 

Eb (eV) Reference 

I 〈110〉 2 I I 0.8 DFT [57] 
I 〈110〉 3 I2 I 0.92 DFT [57] 
I 〈110〉 4 I3 I 1.64 

0.96 
DFT [57] 
[12] 

In 〈100〉 or 
½〈111〉>4 

In-1 I Any equation as in Fig. 6 
or series of discrete 
values 
Or dissociation 
forbidden   

E.g. [57]  

E.g. [10]  
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in the case of small self-interstitial clusters. It is clear that the binding 
energy in this case grows faster than for vacancies, being as high as 1.6 
eV already for the tri-interstitial, according to DFT, which implies a 
dissociation energy close to 2 eV. Therefore, except for the very small 
clusters (2–3 SIAs), it is legitimate to consider that this dissociation is 
forbidden. 

As an alternative, for simulations at relatively high temperature, 
where thermal dissociation of (small) self-interstitial clusters may be 
activated, an equation is needed. Eq. (15) was used in [57]. The value of 
Ef(1) for the self-interstitial atom in Fe varies between 3.64 and 4.0 eV 
according to DFT calculations, while experimental estimates are higher 
and close to 5 eV [58]. Eb(2) can be taken from Table 2b (0.8 eV). 
However, strictly speaking the application of Eq. (15) is not totally 
legitimate for self-interstitial clusters, because it implicitly assumes a 
cluster with spherical shape (similarly to eq. (17)). It is therefore more 
physical to apply the generic eq. (12), using for example the following 
expression for Ef(n) [80]: 

Ef (n) = c0
̅̅̅
n

√
lnn+ c1

̅̅̅
n

√
+ c2 (19) 

This equation gives the formation energy of a loop of n defects. The 

values of the coefficients depend on the loop Burgers vector, as in 
Table 2c. 

Fig. 6 shows the curves Eb(n) obtained: (1) by applying eq. (15) to 
self-interstitial clusters (with Ef(1) = 3.64 eV and Eb(2) = 0.80); (2) by 
using eq. (19) to feed eq. (12) (for both ½〈111〉 and 〈100〉 loops), also 
with Ef(1) = 3.64. For comparison, the curves for vacancies of Fig. 4 are 
shown in Fig. 5, as well. It can be seen that the binding energy of self- 
interstitials to loops predicted by these equations is about twice as 
high as for vacancies, at equal size. The capillarity law gives the highest 
binding, while the binding to ½〈111〉 loops is stronger than to 〈100〉
loops, consistently with their stability that goes in the opposite order. 
Focusing on the small sizes, the curve obtained from the formation en-
ergy of 〈100〉 loops is the only one that predicts, for sizes 5 and 6, a 
lower binding energy for self-interstitials than for vacancies, at odds 
with DFT calculations, that suggest a value of binding energy of 0.8 eV 
already for the di-interstitial (which corresponds to a dissociation en-
ergy of 1.1 eV). Thus, except if demonstrated that the binding energy for 
clusters with 4 to 6 self-interstitials is actually lower than for di- or tri- 
interstitial, which seems unlikely, none of the curves can be used to 
extrapolate smoothly from the DFT data of Table 2b, with Ef(1) = 3.64. 
Ef(1) needs to be increased beyond its DFT upper limit of 4 eV in order to 
extrapolate (with the 〈100〉 loop curve) the (non-DFT) value of 0.96 eV 
for the tetra-interstitial from Table 2b, and needs to be increased beyond 
5 eV to intercept the DFT value of 1.64 eV. By doing so, all curves are 
shifted upward, providing dissociation energy values in excess of 2 eV 
even for clusters of 5–6 SIAs. Events of this type become activated only 
beyond 400 ◦C. In general, assuming no dissociation for self-interstitial 
clusters is therefore an acceptable approximation, except perhaps in the 
case of di- and tri-interstitial, the dissociation of which, however, has 
about the same activation energy as the migration of a large void and is 
therefore very unlikely. 

Attempt frequencies for point-defect clusters in Fe 

Attempt frequency for migration 
Eqs. (2), (5), (7), (8) show that the attempt frequency (or prefactor) 

needs to be known to obtain the diffusion coefficient of the defects. As a 
standard, the attempt frequency for single-point defect migration, 
henceforth denoted as νm(1), which corresponds to the vibration fre-
quency in the direction of the reaction path [110], is expected to be close 
to the vibrational frequency of the lattice (Debye frequency), which for 
iron is about 6.1⋅1013 s− 1.2 However, different values for νm(1) have 
been used by different authors, in a range between an order of magni-
tude smaller or bigger than the mentioned value, as exemplified in 
Table 3a. Except when stemming from MD calculations, no justification 
is generally given for the choice, but it is also implicitly assumed that the 
actual choice of the value of the point-defect attempt frequency is not 
overwhelmingly important, although to our knowledge no study has 
been performed on this issue. DFT calculations for single point-defects 
also exist [168,169], which have been included in Table 3a. 

Like most other parameters, the prefactor of the diffusion coefficient 
of a cluster depends on its size, type and configuration, which influence 
both dimensionality and mechanisms of diffusion. As mentioned, the 
dimensionality and also the inherent mechanism of diffusion are very 
different in the case of vacancy and self-interstitial clusters; they also 
vary depending on the configuration of the self-interstitial cluster. 

For 3D migrating vacancy clusters, a thorough study of attempt 
frequencies was performed using AKMC calculations [59], which pro-
vided values for the attempt frequencies for both migration and disso-
ciation (see section 3.3.2 for the latter), up to size 250. These values are 
shown in Fig. 7 in terms of ratios νm(n)/νm(1): the figure shows the 

Table 2c 
Coefficients ci for the application of eq. (19).  

Type of loop ↓ / ci (eV) → c0 c1 c2 

½〈111〉 1.60485  5.35226 − 0.147319 
〈100〉 1.77677  7.15951 − 5.81801  

Fig. 6. Binding energy Eb(n) of a single self-interstitial to a self-interstitial 
cluster of size n up to size 1000, obtained from eq. (12), or by combining eq. 
(16) and eq. (10), with Eb(2) = 0.8 eV and Ef(1) = 3.64 eV. For comparison the 
same curves as in Fig. 3, for vacancies, are also plotted. 

Table 3a 
Attempt frequencies for single point-defects, νm(1), and corresponding diffusion 
coefficient prefactor, D0, as chosen in the cited articles (except for DFT, the 
calculation method is not specified as it is not always given in the reference and 
it may be just a “reasonable choice”).  

Species (V ¼ vacancy, I ¼
self-interstitial) 

Reference νm(1) 
(1013s¡1) 

D0(1) (10-8 

m2s¡1) 

V DFT [168]] 11.6 116  
[2–5] 1.12 115.0 

I DFT [169] 0.44 37.5  
[2–5] 2.04 20.9 

V/I [6,10,11,15–23] 0.6 6.15 
V/I and all defects [7] 0.1 1.03 
V/I and all defects [8] 8.0 82.0 
V/I [14] 13.4 137 
V Recommended 1.0 10.25 
I Recommended 8.07 83.1  

2 https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental 
_Modules_(Materials_Science)/Electronic_Properties/Debye_Model_For_Specific 
_Heat. Accessed January 6th, 2020. 
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AKMC I values [59], together with the more limited AKMC II and III data 
[60]. It can be seen that, depending on the model, the values can vary by 
a couple of orders of magnitude, but only for relatively few clusters. The 
agreement between models is less satisfactory than in the case of the 
migration energy (Fig. 2), although the peaks are roughly in agreement. 

For clusters of n > 250 vacancies, the attempt frequency for migra-
tion as a function of size, νm(n), can be extrapolated using the following 
equation: 

νm(n)
νm(1)

≃
a
n4

3
(20)  

where a is a constant that has to be determined in order to smoothly 
extrapolate from smaller clusters’ values. Eq. (20) originates from the 
idea of vacancy migration along the internal surface of the void [170]: 
for a heuristic demonstration see Appendix A.1. In order to extrapolate 
correctly from other data, a constant value may need to be added. In 
Fig. 7 the AKMC I data points are joined with eq. (20) by setting a =
20.0. The Supplementary Material provides the full tabulation of the 
data points of Fig. 5 up to size 300. We recommend the use of the 
tabulated values and their further extrapolation according to eq. (20). 

For small self-interstitial clusters (up to size 7), MD simulations with 
an interatomic potential have provided fairly reliable values [64], even 
though they do not allow for the formation of non-parallel configura-
tions (C15). These are listed in Table 3b. 

For self-interstitial clusters of type ½〈111〉 and large size, a pre- 
factor obtained from early MD simulations [3] can be used [3–5]: 

νm(n) = 3.4Â⋅1012 +
1.65Â⋅1013

n1.7 (21) 

Using this expression, however, the attempt frequency becomes 
quickly a constant, equal to 3.4⋅1012 s− 1, because of the high exponent 
of n. Therefore, in practice most clusters will migrate with this attempt 
frequency, without any size dependence. 

Alternatively, in [10,11,15–23] a different scaling law was used for 
the migration of self-interstitial clusters with n > 7, namely: 

νm(n) ≃
b

n0.8 (22) 

The value 0.8 as exponent of n in the denominator has been deter-
mined experimentally by Arakawa and co-workers [104]. This exponent 
complies with the theory, given that it should theoretically lie between 
the two limiting cases 0.5 and 1: the former corresponds to migration 
purely via independent crowdion model [85], the second one to 
migration via kink pair formation along the edge of the loop [81]. The 
intermediate value of 0.8 suggests a mixture between these two mech-
anisms. MD simulations have confirmed similar trends, with coefficients 
that vary between 0.5 and 0.85 [63]. In order to use eq. (22) to 
extrapolate smoothly from the values of Table 3b, one can choose for 
example b = 8.11⋅1012 s− 1. In the case of large clusters, the attempt 
frequency obtained using eq. (22) can be more than one order of 
magnitude smaller than using eq. (21), thereby predicting a significantly 
slower mobility of large loops. Fig. 8 shows the prefactor for self- 

Fig. 7. Attempt frequency for vacancy cluster migration νm(n), normalised over νm(1), versus cluster size as obtained from AKMC simulations [59,60] and function 
used to extrapolate to any size according to eq. (20). 

Table 3b 
Attempt frequencies, νm(n), and corresponding diffusion coefficient prefactor, 
D0, for small self-interstitial clusters in pure Fe, as calculated in [64].  

Species Migration type νm(n) (1013s¡1) D0(n) (10-8 m2s¡1) 

I 〈110〉 3D  8.07 83.1 
I 〈110〉 2 3D  34.15 351 
I 〈110〉 3 3D/1D  1.18 12.1 
I 〈110〉 4 3D/1D  1.20 12.3 
I 〈111〉 5 1D  0.16* 1.56* 
I 〈111〉 7 1D  0.17 1.71 
*Used also for size 6  

Fig. 8. Attempt frequency for SIA cluster migration νm(n), normalised over 
νm(1), versus cluster size as obtained from MD simulations [64] and function 
used to extrapolate to any size according to eq. (22), as well as to eq. (21), the 
latter denoted as [a]. 
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interstitial cluster migration, normalised to the prefactor of the single 
interstitial (Table 3b), νm(1), as a function of size, joining eq. (22) with 
the values of Table 3b, which is the combination that we recommend, 
and compares it to eq. (21). 

Attempt frequency for dissociation 
We assume here that only one point-defect at a time is emitted from a 

cluster, so the dissociation frequency might a priori be considered equal 
to νm(1). Intuitively, however, the prefactor for emission, which em-
bodies the rate at which one point-defect makes an attempt to be emitted, 
should depend on the size n of the cluster, because the more point de-
fects, the more likely that one of them tries to jump away. In some OKMC 
codes, for example MMonCa [9,12,14], every defect in a cluster is 
individually defined. In this case, the solution that is naturally applied 
corresponds to assuming that: 

ve(n) = nvm(1) (23) 

This approximation is likely to be fairly correct for small point-defect 
clusters, which do not have a well-defined interface with the rest of the 
crystal. This is especially true for self-interstitial clusters, which do not 
have a volumetric configuration and can only emit when they are very 
small (2–3 SIAs). This is, however, an overestimation of the dissociation 
rate for the case of large clusters, since eq. (23) assumes that all point- 

defects in the cluster are equally likely to dissociate, which is clearly 
not true when only the point-defect located at the cluster periphery can 
in fact be emitted. The dissociation of self-interstitials from loops is 
effectively very unlikely, because of the high binding energy. However, 
if one wants to describe this dissociation process it seems intuitive to 
introduce a dependence on the number of self-interstitials located on the 
loop edge, such as: 

ve(n)
vm(1)

=
̅̅̅̅̅̅̅̅
6πn

√
/31/4 (24) 

Here, the right hand side is an estimation that can be obtained after 
attributing a circular shape to a hexagonal loop, having in mind ½〈111〉
loops. The switch between eqs. (23) and (24) occurs at n = 10, which is a 
reasonable size. This can be seen in Fig. 9. 

Similarly, in the case of sufficiently large vacancy clusters, one may 
think of considering the pre-factor for emission to be proprotional to the 
surface of the spherical cavity. However, in order to be consistent with 
the rate theory and guarantee that absorption and emission of single 
defects can reach steady state kinetic equilibrium, the vacancy emission 
rate must in fact be proportional to the radius of the cavity (assumed to 
be spherical), rather than to its surface [13]. Thus, ve(n) must scale as the 
power 1/3 of the number of vacancies, n; specifically, it can be shown 
(see Appendix A.2 for a heuristic demonstration) that: 

νe(n)
νm(1)

≃ 1.5n
1
3 (25) 

This equation provides the scaling of ve(n) in the limit of large va-
cancy clusters, or anyway defects that tend to have a spherical shape. 
Note that an equivalent calculation based on the equivalence of absor-
bed and emitted self-interstitial atoms from a self-interstitial loop should 
be done, as well, i.e. eq. (24) is actually not correct. However, given the 
unlikeliness of self-interstitial emission from loops, it is here assumed 
that the use of eqs. (23) and (24) with switch at n = 10 as in Fig. 9 is a 
sufficiently good approximation. For vacancy clusters of small and in-
termediate sizes, AKMC simulations have provided the emission attempt 
frequency, in terms of ratio νe(n)/νm(1), up to n = 250 [59]. Above this 
size, a function like eq. (22) has been fitted to extrapolate from the 
AKMC results, finding: 

νe(n)
νm(1)

= 15.84n1
3 (26) 

Fig. 10 shows the curve of this ratio as a function of size for vacancy 

Fig. 9. Attempt frequency for single SIA emission from a loop, νe(n), normal-
ised over νm(1), versus cluster size: note the switch from direct proportionality 
with size to proportionality with the number of peripheral SIAs at size 10. 

Fig. 10. Attempt frequency for vacancy emission from a cluster, νe(n), normalised over νm(1), versus cluster size as obtained from AKMC simulations [59,60] and 
function used to extrapolate to any size according to eq. (26). 
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clusters, joining the AKMC I values from [59] with eq. (23). The full 
tabulation up to size 300 is given in the Supplementary Material. In this 
case the data points obtained with other AKMC models denote that the 
dispersion can be significant and the actual attempt frequency may vary 
by a couple of orders of magnitudes, depending on the model used. 

Migration versus emission frequency: Thermal stability of point-defect 
clusters 

When used to calculate the frequency of key events, such as migra-
tion and dissociation of clusters, the set of parameters presented above 
quantitatively accounts for effects that, although qualitatively known, 
are useful to be looked into in some detail, to get an idea of the orders of 
magnitude involved. 

Fig. 11 compares the frequency of migration of vacancy clusters with 
the frequency of dissociation by emission of a vacancy at 300 and 
500 ◦C, as functions of size. 

It emerges clearly that at 300 ◦C only clusters of less than 15 va-
cancies will jump more than once per ms, some of them with very high 
frequency (the tri-vacancy will jump about 100 million times per ms), 
but most of them with rapidly decreasing frequency with increasing size. 
For essentially all sizes migration is significantly more frequent than 
emission. At 500 ◦C, in contrast, even clusters of more than100 va-
cancies may migrate with frequencies higher than once per ms, i.e. rapid 
and efficient migration of sizeable cavities becomes possible at this 
temperature. Migration enhances the possibility that clusters coalesce 
and thus helps the formation of large voids which, the larger, the less 
likely to emit and shrink (as well as to migrate). Thus void will tend to be 
larger and present in maller densitiy at higher temperature. However, 
the temperature increase affects more the dissociation than the migra-
tion. Namely, at 500 ◦C emission and migration have comparable fre-
quency in many size ranges and large cavities are more likely to 
dissociate than to migrate (the cross-over occurs for voids of about 1300 
vacancies). This corresponds to the widespread notion that vacancy 
clusters are thermally unstable and voids will dissolve at sufficiently 
high temperature. Interestingly, because of the jagged shape of the 
curves, there are some clusters that, because of their size, will rather 
emit than jump even at 300 ◦C. Even though it is far fetched to expect 
that this effect will have any significant impact on the microstructure 
evolution, as is to believe that the parameters used here correctly catch 
all the cases of this type, the use of monotonically growing curves for the 
migration and binding energy would never reproduce this feature. 

The situation is significantly different in the case of self-interstitial 
clusters. Their migration energy is lower than in the case of vacancy 
clusters: self-interstitial loops migrate with energy an order of magni-
tude lower than sizeable voids. On the other hand, as shown in Fig. 6, the 
energy for emission is about a factor two higher in the case of self- 
interstitial clusters than vacancy clusters, for all sizes. As a conse-
quence, these clusters will only migrate, with frequencies always higher 
than 10 million times per ms even for large sizes (except if trapped of 

Fig. 11. The frequency of migration (jump) and dissociation (emission of a 
vacancy) as functions of vacancy cluster size at 573 K (left) and at 773 K (right). 
The attempt frequency of the single vacancy, νm(1), has been chosen equal to 
1⋅1013 s− 1 (Table 3a). 

Fig. 12. Frequency of migration (jump) and dissociation (emission of a self- 
interstitial) as a function of self-interstitial cluster size at 573 K. The attempt 
frequency of the single self-interstitial, νm(1), has been chosen equal to 
8.07⋅1013 s− 1 (Tables 3a and 3b). 

Fig. 13. Jump frequency versus SIA cluster size, Γ(n), at 300 ◦C, using the 
migration energy choice made in this work, which applies to glissile ½〈111〉
loops, and as in [10], where effective values without loop Burgers vector 
distinction were used (effective loop). 
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course), and will basically never dissociate, as can be seen in Fig. 12 for 
the case of 300 ◦C. Increasing the temperature to 500 ◦C will not qual-
itatively change the situation, therefore these clusters, besides absorbing 
vacancies, will disappear by absorption at sinks or coalescing until 
forming dislocation networks, but will not dissolve under any circum-
stance. On the other hand, the lack of detailed information about the 
effective migration energy of the self-interstitial clusters, especially the 
small ones, and the type of choice that is made to describe loops (one 
generic type as in [10,11,15–23] or distinguishing between ½〈111〉 and 
〈100〉 ) leads to jagged jump frequency curves that may differ very 

Fig. 14. Illustration of the schemes generally used in OKMC models to define 
the distance at which two objects interact, leading to clustering or recombi-
nation (but also trapping or absorption if one of the objects is a sink). Scheme A 
associates a volume with each defect that only depends on the features of that 
defect: interaction occurs when two volumes overlap. Scheme B defines the 
distance of interaction based on the features of both defects and is therefore 
more general than Scheme A: any Scheme A can always be expressed as a 
Scheme B, but not necessarily vice versa. A special case of Scheme B corre-
sponds to checking the interaction between single point defects located in 
different clusters. 

Table 4 
Comparison of the loop radius obtained from eq. (30), with RFP = 3.3a0, to characteristic distances obtained from atomistic studies of loop strain fields [176,177].  

n rI(n)eq.  
(30)  

Radius at 
pressure peak 

Radius at 
zero pressure 

Distance at which the strain 
field vanishes normal to habit 
plane 

Distance at which hydrostatic 
pressure vanishes normal to habit 
plane 

Distance at which there is zero 
interaction with point-defect normal 
to habit plane 

Reference  

nm 
½〈111〉 loops 
19 0.93 1 1.5 4.5 4.5  [176] 
91 1.57     2.5–3.0 [177] 
127 1.78 1.75 3 10 8.0  [176] 
331 2.63 2.5 3.7 2.5–3.7   [177] 
469 3.06 3 5.25 >15 >20  [176] 
〈100〉 loops 
122 1.75     2.0–2.3 [177] 
442 2.98 2.9  2.9–4.3   [177]  

Fig. 15. Pictorial illustration of the strain fields 
associated with a dislocation loop, depending on 
size and description. On the left side, we illustrate 
the description that is implicitly assumed when 
using eq. (30) for the capture radius : the loop is 
represented by the blue area; the strain field 
associated with the loop is described by a sphere, 
the radius of which is somewhat smaller than the 
actual extension of the loop strain field in the 
radial direction, if associated with the radial 
distance where the pressure goes to zero. The 
sphere also underestimates the extension of the 
strain field in the direction normal to the habit 
plane, which is illustrated pictorially in the cen-
tral figure. On the right side, when the loop is 
large enough, the central part is not deformed 

and corresponds to a perfect lattice. When this limit is reached, the shape to be associated with the strain field is better described by a torus. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)   

Fig. 16. Extrapolation to approach zero of data points obtained as in [179] for 
the attractive and repulsive interaction energy between, respectively, a vacancy 
or a self-interstitial and a loop, when the former are located on the habit plane 
of the loop at the geometrical centre of it. The horizontal dashed line indicates 
the limit used to consider that the interaction energy becomes negligible. 
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significantly from each other, by several orders of magnitudes, as can be 
seen in Fig. 13, with unavoidably strong impacts on the results of the 
corresponding model. This clearly shows that our current knowledge on 
the migration of self-interstitial clusters, due to their different possible 
configurations, remains fairly rudimentary: more work would be needed 
to not only understand the physics, but importantly to produce reliable 
numbers that can be used with confidence in microstructure evolution 
models. 

Capture radii 

The definition and thus also the value used for the capture radii can 
vary significantly from one model and one code to another. In some 
cases, each defect has an associated radius that depends only on its type 
and size and defines a spherical volume around it. Other geometries can 
also be considered, as is explained below. In this scheme (henceforth 
Scheme A), two objects interact when the volumes around each of them 
overlap [6,10,11,15–23]. In other models, the capture radius, perhaps in 
this case better denoted as capture distance, is a function of the two 

objects involved and interaction occurs when the distance between the 
two is smaller than the established threshold distance [2–5,8,9,13,14] 
(Scheme B). A special case of Scheme B corresponds to models where the 
interaction is assumed to occur between single point-defects located in 
two different clusters. In this third scheme the capture distance does not 
depend explicitly on size: this is done e.g. in [9,14]. Fig. 14 illustrates 
the different schemes. Biases can be introduced by giving a larger cap-
ture radius for interactions involving self-interstitials than for in-
teractions involving vacancies. Whichever the criterion, capture radii 
definitions are always affected by a dose of arbitrariness. 

One crucial piece of information that is needed in order to define the 
scaling of the capture radius for recombination is the distance at which a 
vacancy and a self-interstitial (a Frenkel pair) recombine spontaneously, 
RFP. Experimentally, this recombination distance is reported to vary 
between 2.2 and 3.3 times the lattice parameter, a0, corresponding to 
100–300 atomic volumes in spherical approximation [171,172]. Choices 
of this order are generally made in rate theory models [165,173]. Early 
MD simulations with empirical potentials predicted smaller distances: 
1.7a0 [174] or 1.9a0 [1]. Recently, Nakashima et al. [175] have deter-
mined RFP using the SEAKMC method [24–26] and have obtained a 
value of 2.26a0. This value seems to be the intersection between 
experimental uncertainty and computational variability. Notwith-
standing, in [10,11] the choice RFP = 3.3a0 as in [172] provided very 
reasonable results. The value that is chosen for RFP is important because 
any expression used for the capture radius of defects as function of their 
size needs to yield this value when applied to Frenkel pair recombina-
tion, therefore it can be used to fit parameters that appear in the capture 
radius expression. Nakashima et al. [173] also calculated the interaction 
distance between a void and a self-interstitial atom, obtaining the 
following law: 

Rint− void/SIA = αn1
3 + δ (27)  

where n is the number of vacancies in the void, α = 0.86a0 and δ =
1.41a0. 

As an example of Scheme A, in [6] the capture radii were defined as 
follows: 

ri(n) = γi

[

(r0 + ε)+ a0

(
3

8π

)1
3

(n
1
3− 1)

]

(28) 

Fig. A1. The smallest perfect ½〈111〉 loop (7 SIA) represented on the {111} 
crystallographic plane, formed by SIA located on three atomic planes, indicated 
by different geometrical figures. The distances indicated on the figure are used 
in the text to calculate the radius of the loop. 

Fig. A2. Estimates of the radius of a ½〈111〉 loop according to the two approximations discussed in the text.  
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In this equation: the subscript i indicates the type of defects in the 
cluster, vacancies (i = V) or self-interstitials (i = I); γi is the bias and 
equals 1 in the case of vacancies (γV = 1), while it is>1 in the case of self- 
interstitials (e.g. γI = 1.15 or 1.2); ε is a small positive quantity that is 
used to avoid numerical round off problems; r0 is a fixed distance that is 
fitted by imposing that the Frenkel pair recombination distance should 
take a given value, for example 3.3a0 [10,11]. 

The idea behind eq. (28) is that a spherical shape is associated with 
any point-defect cluster. Its volume is estimated as a function of the 
number of defects n, assuming they fill a sphere. Namely, if r is the radius 
of the sphere, then 

4π
3

r3 = n
a3

0

2
→r(n) = a0

(
3n
8π

)1
3

(29)  

where a3
0/2 is the atomic volume in the bcc lattice. An extra spherical 

shell is then added, which accounts for the extension of the strain field 
around the cluster (after removing the volume of the outer defects in the 
cluster, which is otherwise counted twice). Thus each cluster migrates 
taking with it a spherical volume that strictly depends only on the size 
and type (through the bias) of the cluster itself, while is independent of 
the cluster with which it interacts. Interaction occurs, as mentioned, 
when two volumes overlap, i.e. when the distance between the centre of 
mass of the two clusters is less than the sum of the two capture radii 
(Fig. 14). 

In [10,11], eq. (28) was used only for vacancy clusters. In the case of 
self-interstitial clusters, it was replaced by the following expression: 

rI(n) = r0,I +
a0
̅̅̅̅̅̅̅̅̅
π
̅̅̅
3

√√
( ̅̅̅

n
√

− 1
)

(30) 

with r0,I = γ RFP
1+γ +ε (γ = 1.2 [10,11]). 

Using similar notation for consistency, the capture radius for vacancy 
clusters can be written as 

rV(n) = r0,V + a0

(
3

8π

)1
3

(n
1
3− 1) (31)  

where r0,V = RFP
1+γ + ε. This equation is identical to eq. (28) applied to 

vacancy clusters. 
The logic in eq. (30) is that in a self-interstitial cluster with the shape 

of a loop, the defects are not distributed in a sphere, but on a disc. Thus 
the radius of the sphere associated with the loop is equalled to the radius 
of the disc, where by radius of the disc we mean the actual radius (size) 
of the loop. 

The radius (in the sense of size, not capture radius) of a perfect, 
hexagonal ½〈111〉 loop can be calculated in two different ways, as is 
explained in Appendix A3, leading to the following two expressions: 

rI(n) ≅ 0.299a0n0.57 (32)  

rI(n) = a0

̅̅̅̅̅̅̅̅̅
n

π
̅̅̅
3

√

√

≅ 0.429a0n0.5 (33) 

The latter has been used to obtain eq. (30). Eqs. (32) and (33) give 
obviously different numerical values, but are overall very similar: the 
former yields slightly smaller values for small loops, but somewhat 
larger values for larger ones, because of the slightly larger exponent in 
the power law. 

In order to have an idea of what the radius from eq. (30) may 
represent physically, Table 4 compares with it a few distances from loop 
strain field atomistic calculations. 

The values in Table 4 suggest that the radius obtained from eq. (30) 
(with RFP = 3.3a0) gives a reasonable estimate of the radius of peak 
pressure, thus in this respect it is smaller than the extension of the strain 
field in the radial direction. The table also reveals that, despite vari-
ability between studies, most likely stemming from the interatomic 
potential used, as well as on the criterion used (vanishing pressure, 

vanishing strain, vanishing interaction with point-defects, ...), the 
extension of the strain field in the direction normal to the centre of the 
loop, along the direction that crosses the centre of the loop, is even more 
strongly underestimated by the radius given by eq. (30), by a factor 
between 1.5 and 5. The situation is pictorially illustrated in Fig. 15. 

Despite its obvious limitations, eq. (30) enabled very reasonable 
results to be obtained in comparison with experiments in [10,11] 
(setting RFP = 3.3a0); the same results could not be obtained using eq. 
(28) applied to self-interstitial clusters [10,11]. Moreover, the distance 
at which a single SIA spontaneously joins a loop when approaching it 
along the radial distance on the habit plane has been calculated for 
perfect loops from 61 to 331, by means of molecular statics techniques 
by one of the authors (Anento, N., details to be published), using the 
interatomic potential from [178]. The values thereby obtained were 
found to be nearly identical to the interaction distance obtained by 
applying eq. (30) to loops of 61 to 331 SIA, augmented by the value of 
the capture radius for the single interstitial (again with RFP = 3.3a0). 
This suggests that, at least along the radial direction, the approach 
leading to eq. (30) is reasonable, while pointing to the fact that the 
choice RFP = 3.3a0 is more appropriate than 2.26a0, despite the fact that 
the latter was obtained from atomistic calculations [175] and also agrees 
with one [171] of the two [171,172] experimental assessments that we 
have knowledge of. The use of eq. (30) for the description of 〈100〉 loops 
is questionable. However, as briefly discussed in Appendix A.3, since the 
concept of capture radius is itself an approximation, eq. (30) can be 
considered fairly acceptable in that case, too. In this context, the Sup-
plementary Material includes a brief discussion of the numerical dif-
ferences between capture radii for vacancy clusters and self-interstitial 
loops and proposes an approach that may be tested. 

Fig. 15 (right side) shows pictorially that, above a certain loop size, 
the inner region will remain unaffected by the presence of the loop and 
its strain field will thus become better described by a torus. It is however 
not obvious how to assign a threshold size above which the switch from 
a spherical to a toroidal shape should occur. This is because, in reality, 
with increasing size the strain field changes gradually from being 
elongated in the direction normal to the loop habit plane, to taking a 
progressively flatter shape. The latter becomes increasingly thinned at 
the centre for sufficiently large size, but without any clearcut threshold. 
The difficulty of defining a threshold is exacerbated by the variability of 
the results of strain field characteristic distance calculations depending 
on the atomistic details and on the criteria used, as emerges from 
Table 4. In [10,11] the threshold was arbitrarily set to 150 self- 
interstitials. Here we try an estimate by using calculations of the inter-
action energy between a single vacancy and a single self-interstitial and 
the loop, when the point defect is located along the normal to the loop 
habit plane that passes through the loop centre, as a function of the loop 
size. The details of how the calculations have been performed can be 
found in [179]. It should be noted that the interaction is attractive in the 
case of the single vacancy, because the region is compressed and 
compression is eased by this defect, while in the case of the single self- 
interstitial repulsion occurs, because this defect compresses the lattice 
like the loop does, at least in certain directions. However, for the present 
purpose this is irrelevant, as what we want to know is for which loop size 
either the attraction or the repulsion vanish, because at that point the 
centre of the loop can be considered as coincident with the perfect lat-
tice, i.e. the point defect could migrate through the loop without 
noticing its presence (and vice versa). Fig. 16 shows the moduli of the 
interaction energy data points as functions of loop size, extrapolated 
with a rapidly decaying exponential function. This figure suggests that, 
depending on which elastic interaction energy value is considered to be 
negligibly small (between 0.05 and 0.01), a vacancy would cease to feel 
the strain field at the centre of the loop only for radii that exceed 3–6 nm, 
i.e. containing well in excess of 500–2000 SIA. In the case of the inter-
action with a single SIA, the threshold size is even bigger. Thus, based on 
this argument, the toroidal shape would only be justified for signifi-
cantly large dislocation loops. 
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To conclude, we show examples from the literature of Scheme B. For 
instance in [8] the capture radius between two defects i and j, rij, is 
defined as: 

rij
(
ni, nj

)
= Zij[ri(n

i
‘) + rj

(
nj
)
+ dij] (34)  

where ri and rj are the geometrical radii of each defect, calculated 
assuming a spherical volume, as follows: 

ri(n) = a0

(
3ni

8π

)1
3

(35) 

Zij is the bias that effectively takes into account the elastic interaction 
between defects: the capture radius between self-interstitials will be 
larger, through a bias factor, than between vacancies, and intermediate 
in case of recombination, due to their more extended elastic field. The 
distance dij is fitted to RFP. While the concept behind eqs. (34) and (35) is 
very similar to the above example of scheme A from [6] (eq. (28)), here 
both involved defects enter the definition of capture radius, so this is an 
example of Scheme B. 

In [13] the capture radius was defined taking inspiration from eq. 
(27), thus a point-defect and a cluster will interact when their mutual 
distance is equal to, or less than: 

rij(n) = ri(n)+ δij (36)  

where ri(n) is given by eq. (35), as well, and δijaccounts for the bias, i.e. it 
can be chosen to equal the second nearest neighbour (2nn) distance in 
the case of interaction between a void and a vacancy, but the 3nn in the 
interaction between a loop and a self-interstitial. It is emphasised that 
any Scheme A can be easily translated into a Scheme B, by using the 
corresponding equations for rk(n) and tuning the dij or δij term; a priori 
the other way round is not guaranteed. No systematic sensitivity study 
has been performed so far to evaluate which scheme or choice work 
better when applied to specific cases, especially comparing with 
experiments. 

Concluding remarks 

In this paper we have explored the most important parameters that 
define the mobility and stability of radiation defects in α-Fe (vacancies 
and self-interstitials and especially their clusters), as well as their mutual 
interaction, as currently used in object kinetic Monte Carlo simulations 
of microstructure evolution under irradiation, based on the available 
literature and a few data and considerations of our own. We also spent a 
few words on how the main sinks and traps can be included in the model. 
In some cases the important mechanisms and parameters can be said to 
be fairly established. For example concerning the mobility and also the 
stability of vacancy clusters, the convergence of several different ap-
proaches gives a certain confidence that the parameters that we 
currently use are at least reasonable and fairly complete. However, 
especially for what concerns self-interstitials, but also extended sinks, 
many open questions remain; for instance:  

1. The fraction, unfaulting energy and effective mobility (if any) of 
small self-interstitial clusters in non-parallel configurations (C15) 
remain largely unknown. This lack of knowledge prevents models 
from including explicitly these defects and treating them as a sepa-
rate class of objects that may transform into other ones, as should be 
done in principle, thereby casting large and currently unquantifiable 
uncertainties on the description of the effective mobility of self- 
interstitial clusters that is adopted in existing models. Clearly the 
problem here comes from the fact that interatomic potentials do not 
manage to reproduce correctly the relative stability of the different 
possible configurations of small clusters (parallel and non-parallel). 
Hopefully, the increasingly widespread use of DFT-based molecular 

dynamics and in any case the augmentation of the number of atoms 
that can be affordably simulated will fill this gap in the near future.  

2. The mobility and mechanisms of formation of 〈100〉 loops remain 
only tentatively parameterised. In most models 〈100〉 loops are 
considered to be immobile, since they can be observed under TEM 
and are thus assumed not to migrate away. However, some experi-
mental observations seem to point to the possible migration of these 
defects at either high temperatures and/or high doses, at least for 
thin films. Therefore, more precise migration energy values for these 
defects are needed. Concerning the formation of 〈100〉 loops, it is 
established that there are at least two non-mutually excluding 
mechanisms, namely reactions between ½〈111〉 loops and trans-
formation of C15 clusters, but the introduction of these mechanisms 
involves many arbitrary decisions, such as the size range of reactions 
between ½〈111〉 loops leading to 〈100〉 formation or the fraction of 
C15 clusters that are created in cascades and the fraction of these that 
grows into 〈100〉 loops. In addition, other mechanisms are possible, 
such as direct transformation of a ½〈111〉 loop into a 〈100〉 loop 
[104], or even the unlikely, but not impossible, concomitant reaction 
of three loops [180], for which it is hard to imagine how to define the 
conditions of occurrence. The relative mobility of 〈100〉 versus 
½〈111〉 loops, together with the outcome of interactions between 
loops of similar and different type and the role of non-parallel con-
figurations, are all expected to be key to determine the experimen-
tally observed ratio between 〈100〉 and ½〈111〉 loop populations. 
On the other hand, one question that should be asked is how 
important it is to reproduce this ratio correctly, in connection with 
the assessment of the effect of the microstructure on macroscopic 
property changes such as hardening, embrittlement or swelling: at 
the current level of knowledge the opinions on this point can be very 
different.  

3. Which mobile defects are absorbed or trapped at dislocations in the 
absence of applied strain is also an important question that did not 
receive a lot of attention, except e.g. in [116]. (As a matter of fact, 
except for ref. [116], all studies of defect absorption by dislocations 
consider the case of a moving dislocation under applied strain). 
Allowing explicitly for elastic interactions can help several problems 
to be solved in terms of range of interaction and possibly also 
configuration taken by the defect [112–118], in a cost and benefit 
trade-off, but whether or not and in which size and temperature 
range absorption or trapping occur is likely to require dynamic 
atomistic studies. The problem here, like in the case of dislocation/ 
defect interaction when strain is applied, is the vast number of cases 
that should be hypothetically studied. Thus approximate solutions 
will be unavoidable still for some time. The spherical absorber so-
lution proposed here is of easy implementation, but severely limits 
the predictive capability of models, totally impeding the prediction 
of heterogeneous distributions of defects, which may have important 
consequences on the macroscopic properties of the material (e.g. 
source hardening [138]) 

These are not the only open questions, though. Grain boundaries and 
in general interfaces between crystals of several types, from twins to 
interlayers, are obviously not just insaturable sinks, as they are assumed 
to be in the vast majority of cases, but rather structures that may interact 
in a wide variety of ways with radiation defects [181]. These details are 
currently far from being introduced in any reasonable way in micro-
structure evolution models, at least not in models that cover a time and 
space range that allows direct comparison with experiments, such as is 
the case of OKMC or cluster dynamics models. 

Finally, it is quite clear that a possibly even larger complexity is 
introduced by the presence of (unwanted or unavoidable) impurities 
and/or (purposefully added) solutes:  

1. Formation, mobility and stability of carbon/point-defect complexes. 
These complexes are known to be formed, to be stable and to interact 
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with each other and with point-defect clusters [152–161]. (The same 
is also true in fact for other interstitial impurities, such as N and O 
[158,159]). This interaction has a very significant effect on the 
microstructure evolution: experiments and simulations alike suggest 
that, without these impurities, the accumulation of radiation damage 
would be very limited. Although there is a large list of values for 
different carbon-vacancy or carbon-self-interstitial complexes, a vast 
number of gaps remain in our knowledge. In addition, interstitial 
impurities such as C migrate on their own and thus redistribute 
themselves in a different way depending on both the pre-existing 
microstructure (ferritic, martensitic, …), characterized by different 
dislocation and grain boundary densities, and the possibility or not of 
forming carbides: these effects should be somehow accounted for in 
the model.  

2. Decoration of radiation defects with solutes in Fe alloys. It is by now 
established that several substitutional solute atoms are dragged to 
point-defect clusters by single point-defects [148,182–169] and 
accumulate there [23,109]. This mechanism not only leads to het-
erogeneous nucleation of solute clusters, that may evolve to pre-
cipitates, and to segregation at extended defects, but also influences 
enormously the microstructure evolution in terms of type of defects 
that should be observed under the microscope or with other exper-
imental techniques [23,182–169]. Number density and size distri-
bution of loops and voids change because of the presence of solutes 

and the properties of solute decorated loops and solute–vacancy 
clusters become crucial to understand several macroscopic effects. 
Paradoxically, it is possible that the formation of solute/point-defect 
complexes will reduce the need for a detailed knowledge of the 
properties of, for example, self-interstitial clusters and loops in pure 
Fe, because eventually the effect of the solute decoration will be 
dominant, thereby blurring other effects [23]. 

The current knowledge on these last two aspects will be the focus of 
the follow up papers to this work. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This work has received funding from the Euratom research and 
training programme 2014-2018 under grant agreement No. 755039 
(M4F project). This research also contributes to the Joint Programme on 
Nuclear Materials of the European Energy Research Alliance (EERA- 
JPNM).  

Appendix 

A1. Heuristic demonstration of the scaling of the attempt frequency for vacancy cluster migration with cluster size (eq. (20)) 

For a void, the jump frequency (eq. (4)) can be written as 

Γvoid = νvoid
m exp(

− Evoid
m

kT
) (A.1)  

where νvoid
m is the attempt frequency for the void to jump andEvoid

m is the migration energy of the void. Also, from eq. (5): 

Γvoid =
6Dvoid

d2
j

(A.2)  

where Dvoidis the diffusion coefficient for a void. Following Golubov et al. [168], the diffusion coefficient of a void can by written as 

Dvoid =
3

2πDs

(
Ω1/3

r

)4

(A.3)  

where Ds = D0
s exp

(
− Es
kT

)

is the surface diffusion coefficient, Ω =
a3

0
2 is the atomic volume and 

r = (
3NvΩ

4π )
1/3

= (
3Nv

8π )
1/3a0 (A.4) 

the mean radius of a vacancy cluster (void) with Nvvacancies. This comes from assuming that the volume of the vacancy cluster equals the volume 
of a sphere with radius r. The diffusion coefficient may now be rewritten as 

Dvoid =
3

2π(
4π
3Nv

)
4/3D0

s exp(
− Es

kT
) (A.5) 

and the jump frequency as 

Γvoid =
9

πd2
j
(

4π
3Nv

)
4/3D0

s exp(
− Es

kT
) (A.6) 

Assuming, now, that the migration energy of the void, Evoid
m , is in fact given by the migration energy of the surface of the vacancy cluster, Es, by 

identifying eqs. (A.2) and (A.6) one gets that 
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νvoid
m = 9

πd2
j
( 4π
3Nv

)
4/3D0

s ¼
9

πd2
j
(4π

3 )
4/3D0

s (
1
Nv
)
4/3 (A.7) 

Here, neglecting constants on the order of unities, the quantity = 9
πd2

j
(4π

3 )
4/3D0

s is an attempt frequency that, lacking better estimates, can be 

expressed in units of νm1, so it make sense to write that 

νm ∼
νm1

N4/3
v

(A.8)  

A2. Heuristic demonstration of the scaling of the attempt frequency for vacancy emission from a cluster with cluster size (eq. (25)) 

For any given first order reaction A + B ⇔ C, with k+ and k- the forward and backward reaction constants, the following relationship holds [183]: 

k− = k+Nsexp
(
− Eb

kT

)

(A.9)  

where Nsis the density of the material (8.46⋅1022cm− 3in Fe), Ebis the binding energy of the reaction, and: 

k+ = 4πrDV (A.10) 

(absorption rate, related to the sink strength for absorption of a 3D migrating defect; here a vacancy, thus the subscript V). This gives: 

k− = 4πrDV Nsexp
(
− Eb

kT

)

(A.11) 

And, using eqs. (2)-(5) 

DV = DV
0 exp

(
− Em

kT

)

(A.12) 

Which, once replaced in eq. (A.11), gives 

k− = 4πrDV
0 Nsexp

(
− Eb − Em

kT

)

= 4πrDV
0 Nsexp

(
− Ed

kT

)

(A.13) 

The atomic density is Ω =
a3

0
2 , thus: 

4
3

πr3 = nΩ =
na3

0

2
⇒r =

(
3n
8π

)1/3

a0 (A.14) 

The diffusion prefactor, eq. (3), is defined as 

DV
0 =

fcd2
j νm(1)

6
(A.15)  

where fc ≈ 1 is the correlation factor, dj =
̅̅
3

√

2 a0 is the single jump distance and νm(1)is known. Thus: 

k− = π
(

3n
8π

)1/3

fcνm(1)exp
(
− Ed

kT

)

(A.16) 

which equals 

k− = Γ(T) = νeexp
(
− Ed

kT

)

(A.17) 

from which: 

νe(n) = π
(

3
8π

)1
3

f νm(1)n1/3⇒νe ≈ 1.5νm(1)n1/3 (A.18)  

A3. Different ways to estimate the radius of an hexagonal ½〈111〉 dislocation loop in the bcc lattice 

The radius of a loop can be calculated in two different ways. One can be understood with the help of Fig. A.1, which represents on a {111} plane 
the smallest perfect ½〈111〉 loop, composed by 7 SIAs located on three different atomic planes, each identified by different geometrical shapes. 

It consists in taking as radius rl of the loop the distance AC between the centre and the vertex of the regular hexagon identified by the atomic 
positions on the crystallographic {111} plane in Fig. A.1. This procedure is unambiguous only in the case of the perfect loops (7, 19, 37, 61, 91. 127, … 
SIA), i.e. loops that really complete the external layer of the hexagon. If L is the number of complete hexagonal layers, the number of SIA in the 
corresponding perfect loop, npl, is 
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npl(L) = 1+ 6
∑L

1
k (A.19) 

which gives the above series of values. The corresponding radii, calculated as in Fig. A.1, as functions of the number of complete hexagonal layers 
L, are: 

rpl(L) = a0L
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
px2 + py2

√
=

̅̅̅
2
3

√

a0L (A.20) 

By interpolating the curve rpl(npl) with a power function one gets, for any n (number of defects in the loop): 

rI(n) ≅ 0.299a0n0.57 (A.21) 

Which concides with eq. (32). 
Alternatively, a specific surface SI is associated with each SIA in the loop. With reference to Fig. A.1, this surface equals the triangle ABC, the area of 

which is a0
2/

̅̅̅
3

√
. The radius of a loop of n SIA can then be obtained by identifying its overall surface to a circle (similarly to the identification between 

the sum of the volumes of vacancies in a cluster with a sphere): 

πr2
I = n

a2
0̅̅̅
3

√ →rI(n) = a0

̅̅̅̅̅̅̅̅̅
n

π
̅̅̅
3

√

√

≅ 0.429a0n0.5 (A.22) 

The latter expression has been used to obtain eqs. (30) and (33). Eqs. (A.21) and (A.22) give obviously different numerical values, but are overall 
very similar: the former yields slightly smaller values for small loops, but somewhat larger values for larger ones, because of the slightly larger 
exponent in the power law, as can be appreciated in Fig. A.2. 

The use of eq. (30) for the description of 〈100〉 loops is clearly questionable. In practice, however, since the concept of capture radius is in itself an 
approximation, eq. (30) can be considered fairly acceptable in that case, too. Following the same idea as in eq. (A.22), but with the area per SIA 
associated with a 〈100〉 loop, it turns out that the denominator 

̅̅̅̅̅̅̅̅̅̅
π
̅̅̅
3

√√
is replaced by 

̅̅̅̅̅̅
2π

√
, which numerically has very similar value, thus the main 

approximation consists in assigning a circular geometry to loop that are in fact rectangular. It is possible to take into account explicitly the rectangular 
geometry of 〈100〉 loops and to estimate their size in terms of its half-diagonal, and derive from there an equation equivalent to eq. (A.21). To our 
knowledge, however, the latter level of refinement has never been applied in any OKMC model that makes use of a capture radius approach. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nme.2021.101069. 
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[151] J. Marian, B.D. Wirth, R. Schäublin, G.R. Odette, J.M. Perlado, MD modeling of 
defects in Fe and their interactions, J. Nucl. Mater. 323 (2-3) (2003) 181–191, 
https://doi.org/10.1016/j.jnucmat.2003.08.037. 

[152] D. Terentyev, N. Anento, A. Serra, V. Jansson, H. Khater, G. Bonny, Interaction of 
carbon with vacancy and self-interstitial atom clusters in α-iron studied using 
metallic–covalent interatomic potential, J. Nucl. Mater. 408 (3) (2011) 272–284, 
https://doi.org/10.1016/j.jnucmat.2010.11.053. 

[153] D. Terentyev, N. Anento, A. Serra, Interaction of <100> loops with Carbon atoms 
and <100> dislocations in BCC Fe: An atomistic study, J. Nucl. Mater. 420 (2012) 
9–15, https://doi.org/10.1016/j.jnucmat.2011.08.037. 

[154] N. Anento, A. Serra, Carbon–vacancy complexes as traps for self-interstitial 
clusters in Fe–C alloys, J. Nucl. Mater. 440 (1-3) (2013) 236–242, https://doi. 
org/10.1016/j.jnucmat.2013.04.087. 

[155] R. Candela, N. Mousseau, R.G.A. Veiga, C. Domain, C.S. Becquart, Interaction 
between interstitial carbon atoms and a ½〈1 1 1〉 self-interstitial atoms loop in an 
iron matrix: a combined DFT, off lattice KMC and MD study, J. Phys.: Condens. 
Matter 30 (33) (2018) 335901, https://doi.org/10.1088/1361-648X/aad25d. 

[156] C.J. Först, J. Slycke, K.J. Van Vliet, S. Yip, Point Defect Concentrations in 
Metastable Fe-C Alloys, Phys. Rev. Lett. 96 (2006), 175501, https://doi.org/ 
10.1103/PhysRevLett.96.175501. 

[157] C.-C. Fu, E. Meslin, A. Barbu, F. Willaime, V. Oison, Effect of C on Vacancy 
Migration in α-Iron Solid State Phenomena, 139, 2008 pp. 157-164 DOI. 10.4028/ 
www.scientific.net/ssp.139.157. 

[158] C. Barouh, T. Schuler, C.-C. Fu, M. Nastar, Interaction between vacancies and 
interstitial solutes (C, N, and O) in α− Fe: From electronic structure to 
thermodynamics, Physical Review B 90 (2014), 054112, https://doi.org/ 
10.1103/PhysRevB.90.054112. 

[159] C. Barouh, T. Schuler, C.-C. Fu, T. Jourdan, Predicting vacancy-mediated 
diffusion of interstitial solutes in α-Fe, Physical Review B 92 (2015), 104102, 
https://doi.org/10.1103/PhysRevB.92.104102. 

[160] M.J. Konstantinovic, L. Malerba, Dissolution of carbon-vacancy complexes in Fe-C 
alloys, Physical Review Materials 1 (2017), 053602, https://doi.org/10.1103/ 
PhysRevMaterials.1.053602. 

[161] C. Domain, C.S. Becquart, Ab initio calculations of defects in Fe and dilute Fe-Cu 
alloys, Physical Review B 65 (2001), 024103, https://doi.org/10.1103/ 
PhysRevB.65.024103. 

[162] M. Ludwig, D. Farkas, D. Pedraza, S. Schmauder, Embedded atom potential for Fe- 
Cu interactions and simulations of precipitate-matrix interfaces. Model. Simulat. 
Mater. Sci. Eng. 6, 19-. 1998, DOI: 10.1088/0965-0393/6/1/003. 

[163] G.J. Ackland, D.J. Bacon, A.F. Calder, T. Harry, Computer simulation of point 
defect properties in dilute Fe—Cu alloy using a many-body interatomic potential, 
Philos. Mag. A 75 (3) (1997) 713–732, https://doi.org/10.1080/ 
01418619708207198. 

[164] J.R. Beeler, R.A. Johnson, Vacancy Clusters in α-Iron, Phys. Rev. 156 (3) (1967) 
677–684, https://doi.org/10.1103/PhysRev.156.677. 

[165] A. Hardouin Duparc, C. Moingeon, N. Smetniansky-de-Grande, A. Barbu, 
Microstructure modelling of ferritic alloys under high flux 1 MeV electron 
irradiations, J. Nucl. Mater. 302 (2-3) (2002) 143–155, https://doi.org/10.1016/ 
S0022-3115(02)00776-6. 

[166] A. Seeger, Lattice Vacancies in High-Purity α-Iron, Physica status solidi (a) 167 (2) 
(1998) 289–311, https://doi.org/10.1002/(SICI)1521-396X(199806)167: 
2<289::AID-PSSA289>3.0.CO;2-V. 
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