The influence of some new 2,5-disubstituted 1,3,4-thiadiazoles on the corrosion behaviour of mild steel in 1M HCl solution: AC impedance study and theoretical approach
Résumé
The new 2,5-disubstituted 1,3,4-thiadiazoles were investigated as corrosion inhibitors of mild steel in 1 M HCl using AC impedance technique. Four of these compounds exhibit good inhibition properties, while two of them, 2,5-bis(4-nitrophenyl)-1,3,4-thiadiazole and 2,5-bis(4-chlorophenyl)-1,3,4-thiadiazole, stimulate the corrosion process especially at low concentrations. The experimental data obtained from this method show a frequency distribution and therefore a modelling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. Possible correlations between experimental inhibition efficiencies and quantum chemical parameters such as dipole moment (μ), highest occupied (EHOMO) and lowest unoccupied (ELUMO) molecular orbitals were investigated. The models of the inhibitors were optimised with the Density Functional Theory formalism (DFT) using hybrid B3LYP/6-31G (2d,2p) as a higher level of theory. The Quantitative Structure Activity Relationship (QSAR) approach has been used and composite index of some quantum chemical parameters were constructed in order to characterize the inhibition performance of the tested molecules.