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Centrality Measures in Residue
Interaction Networks to Highlight
Amino Acids in Protein–Protein
Binding
Guillaume Brysbaert* and Marc F. Lensink

Univ. Lille, CNRS UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France

Residue interaction networks (RINs) describe a protein structure as a network of
interacting residues. Central nodes in these networks, identified by centrality analyses,
highlight those residues that play a role in the structure and function of the protein.
However, little is known about the capability of such analyses to identify residues involved
in the formation of macromolecular complexes. Here, we performed six different centrality
measures on the RINs generated from the complexes of the SKEMPI 2 database of
changes in protein–protein binding upon mutation in order to evaluate the capability of
each of these measures to identify major binding residues. The analyses were performed
with and without the crystallographic water molecules, in addition to the protein residues.
We also investigated the use of a weight factor based on the inter-residue distances to
improve the detection of these residues. We show that for the identification of major
binding residues, closeness, degree, and PageRank result in good precision, whereas
betweenness, eigenvector, and residue centrality analyses give a higher sensitivity.
Including water in the analysis improves the sensitivity of all measures without losing
precision. Applying weights only slightly raises the sensitivity of eigenvector centrality
analysis. We finally show that a combination of multiple centrality analyses is the optimal
approach to identify residues that play a role in protein–protein interaction.

Keywords: residue interaction networks, centrality, protein structure networks, structural bioinformatics, protein
binding, protein–protein interaction, protein complexes, protein assemblies

INTRODUCTION

Protein structures inherently contain an abundance of information, the extraction of which is often
performed in order to correlate feature with function. Many complementary approaches have been
developed to this end, based on a protein’s primary to quaternary structure. At the
primary—sequence—level, the approaches typically rely on comparison to annotated sequences.
This can lead to reliable predictions of backbone flexibility, secondary structure with phi and psi
angles, or even three-dimensional structural modeling (Kryshtafovych et al., 2019). Indeed, the
availability of the three-dimensional structure of a protein allows one to go a step further and extract
information related to its function. The positioning of amino acids and orientation of side chains
provide valuable information for the selection of residues for mutagenesis or to design drugs. In
addition to this, a protein rarely works alone and often engages in macromolecular complex
formation in order for it to execute its biological function. These complexes include homodimers at
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their simplest level but often reach dozens of molecules. The
wwPDB [(Berman et al., 2003)1] contains the experimentally
resolved structures of proteins, occasionally in complexes with
their binding partners. In the absence of such information,
molecular docking tools have been developed to predict the
interaction between protein partners with increasing reliability
(Lensink et al., 2019; Lensink et al., 2020).

Derived from structures of proteins, a graph approach was
developed roughly 20 years ago (Kannan and Vishveshwara,
1999; Vendruscolo et al., 2002). This approach consists of
generating a network (or graph) of residues from their
contacts in a PDB structure. These graphs are named residue
interaction networks (RINs) or residue interaction graphs
(“Amino Acid” may be used instead of “Residue”) but are also
called protein structure networks or protein structure graphs
(Amitai et al., 2004; Doncheva et al., 2011; Greene, 2012; Felline
et al., 2020), or even protein contact networks (Di Paola et al.,
2015). They show nodes as residues and edges as interaction
detected between them. These networks can be generated from a
single structure or a complex as long as the chains are available in
the same PDB file, for example, Brysbaert et al. (2018), de Ruyck
et al. (2018), and Vishveshwara et al. (2009). Although it is a
simplified representation of a protein structure, it brings with it
the availability of a myriad of tools developed for network
analysis. In the context of proteins, centrality calculations have
been shown to be effective in the identification of biologically
relevant residues and many centrality measures currently exist
(Vacic et al., 2010; Doncheva et al., 2012; Brysbaert et al., 2017;
Chakrabarty and Parekh, 2016; Newaz et al., 2020). But among
the more widely used ones, we find betweenness, closeness,
residue centrality analysis, and the degree (Amitai et al., 2004;
del Sol et al., 2006; Liu and Hu, 2011; Hu et al., 2014; Jiao and
Ranganathan, 2017). More recently, the eigenvector centrality
started to gain popularity (Chakrabarty and Parekh, 2016).
Choosing a centrality measure is not trivial largely due to the
lack of scientific consensus as to which measure performs better
than another, particularly in relation to the identification of the
more relevant binding residues. In this protein–protein
interaction (PPI) context, del Sol and O’Meara showed that
the betweenness centrality is a good measure to identify hot
spots on a set of 18 protein complexes (del Sol and O’Meara,
2005). They showed that high betweenness residues tend to be
located in regions where experimentally validated hot spots are
present, emphasizing the interest in using these types of measures
in a PPI context. However, their study was limited to the
betweenness centrality measure and to 18 complexes, although
of various types. Some works also used the betweenness centrality
and others used the closeness or degree (Di Paola et al., 2015; Stetz
and Verkhivker, 2017; Brysbaert et al., 2018; de Ruyck et al., 2018)
but always in specific PPI contexts and an evaluation of these
statistical metrics on a larger set is missing.

Here, we aim to fill two voids: we first evaluate the capability of
centrality measures to highlight residues that are essential for the
binding of two proteins on a large set, and second, we compare
these measures to show which ones are the best to use. For this
purpose, we used the SKEMPI 2 database, which is a benchmark
set of changes in protein–protein binding energy, in kinetics, and
in thermodynamics upon mutation (Jankauskaitė et al., 2019).
We generated one RIN for each complex in the dataset and ran 6
centrality measures: the 5 cited above and the well-known Google
PageRank (Brin and Page, 1998).We then evaluated the efficiency
of each measure to find the residues that disrupt the binding upon
mutation. We also considered water molecules and a
residue–residue distance weight to assess their relevance in the
centrality analysis. We further evaluated the benefit of combining
the results of centrality measures with unions and intersections in
order to improve the results. And we finally evaluated which
measure is preferred for use in the context of the location of the
residues of interest.

MATERIALS AND METHODS

Dataset
The SKEMPI version 2 dataset of April 8th, 2018 (Jankauskaitė
et al., 2019) was used for the evaluation of the centrality
measures, which represents a set of 7,085 mutations. The
majority of the dataset consists of single-point mutations
(5,112), while the remainder represents sets of mutations
(1,973). We considered only single-point mutations so that
we may associate a specific mutation to a change in binding.
For each mutation, a binding free-energy difference |ΔΔGbinding|
was computed from the affinity values listed in the SKEMPI 2
dataset. We considered both positive as well as negative values,
hence including mutations that lead to both an enhanced or
diminished binding. Since residue centrality analyses are
residue-centric, we kept only the mutation associated with
the largest |ΔΔGbinding| to avoid counting the residue
multiple times if it has been mutated to multiple other
residues. We thus ignored the lower values of |ΔΔGbinding|,
the maximum being sufficient to evaluate if a residue is
disrupting or not. This results in a total of 3,039 residues
subjected to mutation that were used for analysis. These
mutations are found in 323 complexes, which represents
93.6% of the total SKEMPI 2 dataset (345 PDBs in total),
ensuring sufficient conservation of the heterogeneity of the
full set (for a description of the full set, see Jankauskaitė
et al. (2019)).

We classified the residues according to their |ΔΔGbinding|,
considering 3 thresholds: 0.592, 1.184, and 2 kcal/mol; a
residue was considered as major if its |ΔΔGbinding| was
superior or equal to the threshold. The 2 kcal/mol threshold
was chosen because ΔΔGbinding ≥ 2 kcal/mol is a well-accepted
definition for hot spots (Moreira et al., 2007b; Moreira et al.,
2017a), that is, sites which show such a variation in binding free
energy upon mutation to alanine. The 1.184 kcal/mol and
0.592 kcal/mol thresholds were chosen because they
correspond to 2 and 1 kT levels of thermal fluctuation,

1Protein Data Bank: the single global archive for 3Dmacromolecular structure data
| Nucleic Acids Research | Oxford Academic [Internet] [cited 2021 Feb 26].
Available from:https://academic.oup.com/nar/article/47/D1/D520/5144142.
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respectively. The positives in the dataset are thus formed by 677
residues with a |ΔΔGbinding| ≥ 2 kcal/mol; 1,121 residues with |
ΔΔGbinding| ≥ 1.184 kcal/mol; and 1,675 with |ΔΔGbinding| ≥
0.592 kcal/mol. The remaining residues are considered as null
spots and form the negatives in the dataset. Table 1
summarizes the number of mutations retained (positives
and negatives) in function of the |ΔΔGbinding| threshold value.

Chain A of PDB 5DWU was removed from residue 107
onward because there were too many missing residues in the
structure, which led to disconnected RINs and errors in the RCA
calculation. We also removed the last residue (125) in chain A of
1H9D for the same reason.

Residue Interaction Network Generation
Residue interaction networks were generated for each PDB file
of the SKEMPI 2 dataset (wild-type structures) with in-house
software written in C. Contacts (edges) were generated if any
interatomic distance between two residues lay between 2.5�A
and 5�A, ignoring crystallographic water molecules. All the
residues of all the chains in a PDB file were considered for
contact detection, including both intra-chain and inter-chain
contacts; thus, we did not focus on the interface only for RIN
generation but considered the overall structure of individual
complexes.

A second set of RINs was generated with water molecules,
where a contact (edge) was created if the distance from the oxygen
atom to an amino acid lay between 2.5�A and 3.5�A. All water
molecules in a PDB were considered for the RIN generation. In
case multiple contacts were detected between the same two
residues or between the same residue/water pair, only the
shortest distance was used.

Centralities
We considered 6 different centralities that were run with the same
in-house software, which employs the igraph library (Csárdi and
Nepusz, 2006):

(1) BCA for betweenness centrality analysis
(2) CCA for closeness centrality analysis
(3) RCA for residue centrality analysis as defined by del Sol et al.

(2006)
(4) ECA for eigenvector centrality analysis
(5) DCA for degree centrality analysis
(6) PRA for PageRank analysis as defined by Brin and Page

(1998)

For each of these, a Z-score per node (Zk) was calculated like in
Brysbaert et al. (2017): Zk � Ck−C

σ , where k is a node, C is the
centrality, C is its average, and σ is the corresponding standard
deviation; except for RCA for which the Z-score is defined as:
Zk � ΔLk−ΔL

σ , where k is a node, ΔLk is the change of the average
shortest path length when node k is removed,ΔL is the corresponding
average, and σ is the corresponding standard deviation.

We considered the residues with a Z-score ≥ 2 as central. We also
optionally considered a weight based on the residue–residue and
water–residue distances in order to integrate them into the calculation
of centralities. Seven formulas were evaluated, which are as follows:

(1) W � 1
1+( r−r0

r1− r0)2 (adapted from Basu and Wallner (2016))

(2) W � 1
r (from RINalyzer (Doncheva et al., 2011) and NAPS

(Chakrabarty and Parekh, 2016))
(3) W � 1

1+( r−r0
r1−r0) (adapted from Basu and Wallner (2016))

(4) W � r+r0−2pr1
2p(r0−r1) (linear function from 1(r � r0) to 0.5 (r � r1))

(5) W � 1
1+r (adapted from weight formulas 2 and 3)

(6) W � rmax + 1 − r (from RINalyzer (Doncheva et al., 2011))

(7) W � rmax2+1−r2
rmax2+1 (adapted from RINalyzer (Doncheva et al.,

2011))

where r is the residue–residue or residue–water distance, r0 is
the minimum detection threshold, r1 is the maximum detection
threshold, and rmax is the maximum detected distance in the RIN.

To evaluate the capacity of each centrality measure to identify
major residues in binding, we computed true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) as follows:

- TP � card{|ΔΔGbinding| ≥ threshold and Zcentrality ≥ 2}
- TN � card{|ΔΔGbinding| < threshold and Zcentrality < 2}
- FP � card{|ΔΔGbinding| < threshold and Zcentrality ≥ 2}
- FN � card{|ΔΔGbinding| ≥ threshold and Zcentrality < 2}

where “card” stands for the cardinality or the number of
elements in the set.

We further computed the following:

- PPV (positive predictive value, also known as precision)
� PPV TP

TP+FP
- NPV (negative predictive value) � TN

TN+FN
- Sensitivity (also known as recall) � TP

TP+FN
- Specificity � TN

TN+FP
- Accuracy � TP+TN

TP+TN+FP+FN

TABLE 1 | Number and percentage of total positive and negative residues retained in function of the |ΔΔGbinding| threshold.

|ΔΔGbinding| threshold
(kcal/mol)

Number of
positive residues
(“significant”)

Percentage of
positives (%)

Number of
negative residues
(“insignificant”)

Percentage of
negatives (%)

Total number
of residues

2 667 21.9 2,372 78.1 3,039
1.184 1,121 36.9 1,918 63.1 3,039
0.592 1,675 55.1 1,364 44.9 3,039
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We also computed the F1 score as follows:

F1 � 2p
precisionprecall
precision + recall

.

The “venn” 1.9 R package was used to draw the Venn diagrams.
The “ggplot2” 3.3.2 (Wickham, 2016) and “precrec” 0.12.5 (2) R
packages were used to draw the precision–recall curves.

Location
For each mutation, we kept the annotation of the residue in the
SKEMPI 2 dataset, which follows Levy’s scheme (Levy, 2010): COR
for core (buried upon binding and mostly exposed to solvent when
unbound), RIM (partly buried residues upon binding), SUP for
support (entirely buried when binding and mostly buried when
unbound), SUR for surface residues, and INT for interior, with the
two last categories representing residues away from the binding site.

Availability of Data
The files used and generated for this work are available on the git
repository: https://gitlab.in2p3.fr/cmsb-public/rin-ppi.

RESULTS

Generation of Residue InteractionNetworks
and Centrality Runs
For each PDB file of the SKEMPI 2 dataset, we generated a residue
interaction network. Then for each RIN, we ran the 6 centrality
measures: 3 that are based on shortest paths (BCA, CCA, and
RCA) and 3 that are based on local interactions of nodes in the
network (ECA, DCA, and PRA). A Z-score was computed for
each of them, and a residue was considered as central when its
Z-score was superior or equal to 2. We then accumulated the
residues that were found as central and that showed a change in
the |ΔΔGbinding| superior or equal to a given threshold (true
positives), as well as other statistics as described in Materials
and Methods. We note here that the main statistics of interest are
the precision (PPV) and the sensitivity (recall): the precision

TABLE 2 | Number of identified residues and associated statistical measures for each centrality, applying a different threshold for |ΔΔGbinding|.

|ΔΔGbinding| ≥ 2 kcal/mol

BCA CCA RCA ECA DCA PRA

TP 194 74 156 156 61 39
TN 2,066 2,274 2,120 2,153 2,311 2,330
FP 296 88 242 209 51 32
FN 483 603 521 521 616 638
PPV 0.3959 0.4568 0.3920 0.4274 0.5446 0.5493
NPV 0.8105 0.7904 0.8027 0.8052 0.7895 0.7850
Sensitivity 0.2866 0.1093 0.2304 0.2304 0.0901 0.0576
Specificity 0.8747 0.9627 0.8975 0.9115 0.9784 0.9865
Accuracy 0.7437 0.7726 0.7489 0.7598 0.7805 0.7795

|ΔΔGbinding| ≥ 1.184 kcal/mol

BCA CCA RCA ECA DCA PRA

TP 291 118 234 229 83 51
TN 1,719 1,874 1,754 1,782 1,889 1,898
FP 199 44 164 136 29 20
FN 830 1,003 887 892 1,038 1,070
PPV 0.5939 0.7284 0.5879 0.6274 0.7411 0.7183
NPV 0.6744 0.6514 0.6641 0.6664 0.6454 0.6395
Sensitivity 0.2596 0.1053 0.2087 0.2043 0.0740 0.0455
Specificity 0.8962 0.9771 0.9145 0.9291 0.9849 0.9896
Accuracy 0.6614 0.6555 0.6542 0.6617 0.6489 0.6413

|ΔΔGbinding| ≥ 0.592 kcal/mol

BCA CCA RCA ECA DCA PRA

TP 366 140 298 287 97 57
TN 1,240 1,342 1,264 1,286 1,349 1,350
FP 124 22 100 78 15 14
FN 1,309 1,535 1,377 1,388 1,578 1,618
PPV 0.7469 0.8642 0.7487 0.7863 0.8661 0.8028
NPV 0.4865 0.4665 0.4786 0.4809 0.4609 0.4549
Sensitivity 0.2185 0.0836 0.1779 0.1713 0.0579 0.0340
Specificity 0.9091 0.9839 0.9267 0.9428 0.9890 0.9897
Accuracy 0.5285 0.4877 0.5140 0.5176 0.4758 0.4630

2Precrec: fast and accurate precision–recall and ROC curve calculations in R |
Bioinformatics | Oxford Academic [Internet] [cited 2021 Apr 30]. Available from:
https://academic.oup.com/bioinformatics/article/33/1/145/2525681.
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because it shows how well a centrality measure manages to
properly identify a residue of interest and the sensitivity
because it shows the proportion of the residues of interest that
were identified. A good prediction associates high precision and
high sensitivity, meaning the centrality manages to find the
majority of the major residues. Table 2 gives these results for
each threshold.

It shows that the accuracy of each measure increases when the
free-energy difference threshold is raised. This can be explained
by the fact that the measures generally succeed in identifying the
nonessential residues better than the residues of interest, keeping
specificity very high compared to sensitivity. The residues of
interest, on the other hand, are better identified when the
threshold is decreased to the lower value of 0.592 kcal/mol
since the PPV increases to more than 74% for all centralities.
In essence, it shows that the centralities identify residues that are
not necessarily so-called hot spots but still play a nonnegligible
role in the interaction. Consequently, the remainder of the article
focuses primarily on the results using the lower 0.592 kcal/mol
threshold, but all results are available in Supplementary Materials
if not present in the main article.

It is noticeable that BCA, ECA, and RCA find many more true
positives than CCA, DCA, or PRA. Of the three centralities that
are all based on shortest path lengths, CCA gives a lower number
of true positives, but its PPV is systematically higher. Of the other
centralities, DCA and PRA show a low amount of true positives
but their PPV are the highest of them all, culminating at 0.87
for DCA when considering the |ΔΔGbinding| threshold of
0.592 kcal/mol.

The sensitivity of every measure can be considered low. Its best
value of 0.29 is found for BCA when considering the highest
|ΔΔGbinding| threshold. This means that many of the residues of
interest fail to be detected by the centrality measures. However,
the relatively high precision for the 0.592 kcal/mol threshold
shows that whenever a residue is identified as central, it is
often a residue that is relevant to the binding.

Here, we considered a residue as central if its Z-score ≥ 2, a
definition commonly used for the identification of central
residues. In order to get a broader view, we drew the

precision–recall curve of each centrality measure for the 3
thresholds of |ΔΔGbinding| (see Figure 1). The graphs show
that at low recall, the precision is very high (≥ 0.75) for the
lowest |ΔΔGbinding| and then decreases smoothly, staying always
superior to 0.5 even at maximum sensitivity. The shapes of all
curves are similar but precision is lowered for higher |ΔΔGbinding|
thresholds. Themost precise centralities are CCA, DCA, and PRA
at low recall but DCA shows better results at slightly higher recall,
for every |ΔΔGbinding| threshold. BCA and RCA are less precise,
whereas ECA shows results comparable to those of the 3 most
precise centralities, for the lowest threshold of |ΔΔGbinding|. In
conclusion, increasing the Z-score threshold, which reduces the
sensitivity, allows to increase the precision to very high levels,
especially when considering the lowest threshold for |ΔΔGbinding|.
The commonly used threshold of 2 for Z-scores looks reasonable
considering these precision–recall curves.

Water Molecules Increase Sensitivity
We initiated our investigation into the role of water molecules in
residue interaction networks a few years ago (Brysbaert et al.,
2018). We then showed that the inclusion of water molecules in
RINs increased the number of central residues found in the 2
complexes treated. Here, we address the same question, namely,
whether it is preferable to consider water molecules in centrality
analysis, but now applied to the same selection of the SKEMPI 2
dataset as before, computing the exact same statistics.

Figure 2 shows the difference in number of residues found as
TP, TN, FP, and FN between results with water and without water
for |ΔΔGbinding| ≥ 0.592 kcal/mol (the results for the 2 other
thresholds are available in Supplementary Figure S1 and
Supplementary Table S1). For all centrality measures, the
number of positives increased, both true as well as false
positives. As a consequence, the number of negatives
decreased to the same extent. The shift is marginal for CCA,
DCA, and PRA, which can be explained by the low number of
central residues identified by these measures.

This shift in categories is due to a global rise of Z-scores for
protein residues in the presence of water in the network, an effect
already shown in Brysbaert et al. (2018). This raises the number of

FIGURE 1 | Precision–recall curves drawn for each centrality measure for the 3 thresholds of |ΔΔGbinding|.
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true positives but also that of false positives. This makes the PPV
to change slightly upon inclusion of water in the networks,
although it is slightly lowered for PRA (for the higher
thresholds for |ΔΔGbinding|, see Table 2, and Supplementary
Table S1), likely due to the fact that this centrality shows the
lowest number of true positives. The sensitivity, however, is
increased for all centralities on water-containing networks,
gaining up to 11.67% for ECA for the |ΔΔGbinding| ≥ 2 kcal/
mol threshold. The specificity is found to decrease slightly with
accuracy generally increasing, especially for the lowest threshold
for |ΔΔGbinding|.

In conclusion, by including water in the networks, the
centralities overall find the same ratio of relevant residues
among all detected central residues (precision), but the
absolute number of these is higher (sensitivity). It is therefore
recommended to include water molecules in RIN generation,
confirming our previous study of the colicin E2 DNase–Im2 and
barnase/barstar complexes (for any threshold of |ΔΔGbinding|).
For the specific case of PRA, which shows fewer results but with
higher precision (specifically for the higher |ΔΔGbinding|
thresholds), we advise investigating and comparing centralities
with and without water, notably because this PageRank shows the
lowest sensitivity of all measures.

Weighting Distances Increases Sensitivity
for Eigenvector Centrality Analysis
The RINs were generated including contacts in a binary mode: it
is only when the residue–residue contact distance was between
2.5 Å and 5 Å, that the two corresponding nodes were connected
via an edge (similar for water–residue contacts between 2.5 Å and
3.5 Å). These distances could be used to weight the edges in the
RINs. Thus, we tested 7 formulas of edge weights and calculated
the centralities (see Materials and Methods for formulas).
Figure 3 presents the difference (in number of %) of the

precision and sensitivity between weighted and unweighted
centralities for all 7 weights, for each centrality, and always
with water. The complete results for the 7 weights for RINs
with and without water and for the three thresholds are available
in Supplementary Materials in a single spreadsheet.

For the three global centrality measures BCA, CCA, and RCA,
weighting the distances worsens the results, whatever the
threshold for |ΔΔGbinding|. Indeed, integrating any weight
calculation lowers the number of true positives. Despite a
lower number of false positives, precision and sensitivity also
decreased, varying with the specific weight formula and threshold
for |ΔΔGbinding|.

For the other measures, however, the number of true positives
increases, but the number of false positives increases as well. With the
occasional exception, the overall precision is unchanged or lowered
upon the inclusion of edge weights. In the case of DCA and PRA, the
sensitivity values are so low that even small changes inTP, TN, FP, and
FN can have a large impact on the statistics. Integrating weights in
these centrality calculations is therefore not recommended.

The only constant that we observe is that ECA wins in sensitivity
whatever the weight formula and |ΔΔGbinding| threshold, up to 5.91%
for weight formula 7 with water. The disadvantage is that this
increase in sensitivity is often accompanied by a decrease in
precision. It is interesting to note, however, that this decrease in
precision is limited when water molecules are included in the
network (see Supplementary Materials), and this is applicable to
any threshold for |ΔΔGbinding|. The effect is observed for all weight
formulas and is optimal for weight formula 5.Weight formulas 6 and
7, which are based on a subtraction of the distance from a reference
value, show the highest increase in sensitivity but at a general cost of
precision.

In conclusion, using any 1 of the first 5 weight formulas is
essentially interesting for ECA in the presence of water because it
enables an increase in sensitivity without significant loss of precision.
The best compromise in these is weight formula 5, which shows a

FIGURE 2 | Change in number of true positives (TP), false negatives (FN), false positives (FP), and true negatives (TN) for the 6 centrality measures run on residue
interaction networks (RINs) with water versus those without water; a threshold of 0.592 kcal/mol was considered for |ΔΔGbinding|.
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FIGURE 3 | Differences in percent numbers for precision and sensitivity between weighted and unweighted centralities; water molecules are included in the
networks; for every centrality calculation, the 7 bars shown correspond to the weight formulas 1 through 7.
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slightly smaller increase in sensitivity but with little to no loss of
precision, regardless of the threshold for |ΔΔGbinding|.

Combining Centralities Improves Precision
or Sensitivity
These 6 centrality measures give heterogeneous amounts of true
positives: CCA, DCA, and PRA are the lowest and BCA, RCA, and
ECA are the highest numbers, of which BCA is the highest. We

asked ourselves if the residues identified were the same among the
various measures or if the results were complementary. Figure 4
shows the Venn diagram of the true positives, considering all
centralities using unweighted graphs, with water molecules, and
for a |ΔΔGbinding| ≥ 0.592 kcal/mol threshold. This diagram clearly
shows that a significant amount of true positives are found by several
measures but it also shows that some are only found by a single one.
In particular, BCA and ECA are able to identify many residues not
found by any other measure. RCA shows the largest amount of TP
that are also identified by BCA. To evaluate the relevance of
combining centralities, we computed all combinations of
intersection and all combinations of union of the 6 measures to
see if a specific one or a combination of several allowed to raise the
precision and/or sensitivity.

Because of the added value of including water molecules, we
further investigated these, but continued with unweighted
centrality calculations. Intersection between many measures
should increase the precision with a decrease in sensitivity.
Figure 5 shows the precision, sensitivity, and F1 score in
function of all combinations of intersections, arranged in
descending order of precision. This diagram indeed shows that
intersecting central residue sets found by multiple measures and
even going up to all 6 increases the precision tomaximum or close
to maximum. The highest values are obtained for the
intersections that involve CCA, DCA, and PRA but at the cost
of poor sensitivity. A large number of combinations of
intersections show very close precisions; thus, in order to limit
the loss of sensitivity but keep precision superior to 80%, the best
choice is certainly BCA ∩ ECA, which has the highest F1 score
compared to all other combinations for such a level of precision.
Results for the 2 other thresholds are shown in Supplementary
Figure S2; they show the same tendencies, including the fact that
BCA ∩ ECA shows the best compromise.

In order to improve the sensitivity, the union of centralities
should be considered. We ran the same calculations, this time
trying all the combinations of unions of centralities. Figure 6 shows
the results like Figure 5 but for unions instead of intersections.

FIGURE 4 | Venn diagram of true positives found for all the 6 centralities
performed on residue interaction networks considering water molecules and
unweighted edges for a |ΔΔGbinding| ≥ 0.592 kcal/mol threshold.

FIGURE 5 |Diagram of precision (blue), sensitivity (red), and F1 score (yellow), ordered in descending order of precision, for all combinations of intersections of the 6
centrality measures performed on residue interaction networks considering water molecules and unweighted edges for a |ΔΔGbinding| ≥ 0.592 kcal/mol threshold;
combinations cited in the text are underlined in red.
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Here, the results are arranged in descending order of sensitivity. As
observed in the intersections, the higher the sensitivity, the lower
the precision, but here the loss in precision is less drastic upon an
increase in sensitivity. Therefore, while intersecting the sets of
central residues from the 6 centralities gives among the highest
rates of precisions, the union of all gives the highest sensitivity
(0.454) for precision that stays relatively high (0.749). Nevertheless,
the results are quite stable for many combinations of unions and in
the neighborhood of the union of all 6 measures. Therefore,
considering only BCA ∪ ECA provides the close to best results,
even if precision is unchanged with respect to both measures
individually (equal for BCA and −0.035 for ECA), sensitivity
increases significantly ( + 0.143 for BCA and + 0.166 for ECA).
It should also be noted that because CCA, DCA, and PRA all
individually show precision superior to 0.8, considering the union
of these 3 keeps precision at that level (0.850) while doubling the
sensitivity (0.166) with the highest F1 score for such a level of
precision. Results are similar for the other thresholds of
|ΔΔGbinding| (see Supplementary Figure S3).

Finally, we considered all the same parameters for RIN
generation and centrality analysis except for ECA, which we
weighted using weight formula 5. Supplementary Table S2
shows the difference in precision and sensitivity when using
weight formula 5 for ECA or not. When considering unions
with weighted ECA (Supplementary Table S2A), the precision
does not significantly change, while sensitivity increases by up to
0.032 (+0.023 in the case of BCA ∪ ECA). For intersections
(Supplementary Table S2B), the results are relatively unchanged,
sometimes a bit lower, but BCA ∩ ECA allows an increase of 0.016
in precision and 0.014 in sensitivity. The intersection of all the
measures shows a very low decrease in precision and no change in
sensitivity (−0.004 and 0, respectively). These results recommend
the use of edge weights for ECA, particularly in the case of the
union with other centrality measures.

Altogether, these results show that if a high precision is
required, taking the intersection of the 6 centralities is the best

solution, while if the highest number of true positives needs to be
found, that is, a high sensitivity, the union of these centralities is
the best. Nevertheless, subsets of centralities can lead to good
results, such as CCA ∩ DCA ∩ PRA for high precision or CCA ∪
DCA ∪ PRA for slightly lower precision, but with higher
sensitivity. The results for BCA ∩ ECA are close to the latter
and could be run in parallel since they do not necessarily highlight
the same residues. For a high sensitivity at reduced effort, the
results for BCA ∪ ECA are comparable to the union of the 6
centralities. Furthermore, weighted edges in ECA allow for some
increase in sensitivity.

Centrality Measures Locate Relevant
Residues in Different Structural Regions
We further investigated the capacity of each measure to find
crucial residues in 5 structural regions as defined by Levy (2010)
and provided in the SKEMPI 2 dataset. Table 3 shows the
location of the TP found for each measure with or without
water and also with weight formula 5 for ECA, for a threshold
of |ΔΔGbinding| ≥ 0.592 kcal/mol. The tendencies are the same for
the 2 other thresholds (data not shown).

The table shows that all the measures preferentially find
central residues at the interface: in the SUP (support) and
COR (core) regions, followed by RIM, and then in the INT
(interior) region which is far away from the interface. The SUR
(surface) region is not favored, but the inclusion of water has an
effect of finding a few of them with BCA and RCA. Of all
centrality measures, ECA is the one that finds the highest
number of SUP residues, while BCA finds the highest number
of COR residues. For RIM, BCA and RCA are the best, while ECA
is the best for INT. Adding water has the effect of increasing the
number of residues in each category. The use of a weight for ECA
has the same effect. The 3measures that show a low sensitivity but
a high precision, which are CCA, DCA, and PRA, essentially
focus on SUP and COR residues.

FIGURE 6 | Diagram of precision (blue), sensitivity (red), and F1 score (yellow), ordered in descending order of sensitivity, for all combinations of unions of the 6
centrality measures performed on residue interaction networks considering water molecules and unweighted edges for a |ΔΔGbinding| ≥ 0.592 kcal/mol threshold;
combinations cited in the text are underlined in red.
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Nonetheless, even if a measure performs better in identifying
major residues in a specific location, other centralities may still
find some that were not identified by the preferred measure.
Consequently, the choice of the best centrality measure to identify
central residues depends on the structural area of interest but in
any case, considering intersections or unions is advised in order
to improve the precision through the former or the sensitivity
through the latter.

DISCUSSION

Identifying the major residues in the binding of 2 or more
proteins is a crucial task to understand their function, plan
mutagenesis experiments, or target drug design. Major
residues are understood here as residues which enhance or
weaken an interaction upon mutation. We evaluated the
capability of 6 centrality measures to identify these major
residues in residue interaction networks generated from the
three-dimensional structures of complexes. Our results
demonstrate that the CCA, PRA, and DCA show a high
precision, that is, have the highest probability that these
residues are in fact major binding residues, for any threshold
of |ΔΔGbinding| considered, but a low sensitivity. In contrast, BCA,
RCA, and ECA show a higher sensitivity, that is, they find the
maximum number of major binding residues, with lower
precision. Including water increases the sensitivity without
losing precision, while integrating a weight in centrality
computation increases sensitivity for ECA. Taking the
intersection of several centralities improves the precision, the
highest precision being obtained for the intersection of the results
of the 6 centralities but with lowered sensitivity. Unions increase
sensitivity at the cost of precision, with the highest sensitivity

found for the union of the 6 centralities. However, when
searching for relevant binding residues, we suggest proceeding
step-by-step using a combination of measures. The intersection of
selected centralities favors identification with highest precision,
while the union favors sensitivity. Figure 7 presents this step-by-
step approach that we propose from our results.

While RCA has shown its merit (Hu et al., 2014; de Ruyck
et al., 2018; Laulumaa et al., 2018), it is not the most important
one in a combined approach for the identification of relevant
binding residues. This is mainly due to the fact that its ensemble
of identified central residues is in a large part included in the
ensemble of central residues found by BCA. Nevertheless,
depending on the network, RCA can be preferred, for
example, for the unfavorable case of disconnected networks to
which BCA is more sensitive (Brysbaert et al., 2019). Related to
this, the inclusion of water molecules also has the effect of limiting
disconnections in an RIN.

TABLE 3 | Number of true positives found per centrality per region; the total number of residues of interest per region (with |ΔΔGbinding| ≥ 0.592 kcal/mol upon mutation) is
written behind the slash and the proportion is calculated for each; (W) means that water is included and the associated columns have a blue background; (W5) means
that water is included and weight formula 5 is used and its column has a green background.

FIGURE 7 | Recommended combinations of centrality analyses to
identify major binding residues from highest precision to highest sensitivity.
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Our work shows that a combination of centrality measures, or
even individual ones, can lead to good precision. However, even
in the best cases, with the union of all centralities, the sensitivity
hardly exceeds 45%. This means that these measures will never
find all the residues of interest, except lowering the Z-score
threshold which would lead to a loss in precision. Nonetheless,
one should realize that in reality, one rarely wants to find them all.
What is really needed is what the precision reveals, namely, that
whenever a residue is identified as central, this residue is indeed
relevant to the binding. For instance, for mutagenesis
experiments or drug design, the identification of anywhere
between 1 to 5 major binding residues is already of great
value, and that is something that the centrality measures
evaluated in this article can perform, thereby proving they are
an efficient tool to identify major binding residues.

The SKEMPI 2 list is obviously not exhaustive and the
structures therein most probably contain other major binding
residues. It is thus possible that some residues identified as central
by 1 or several of the 6 measures are major binding residues that
are not listed in the SKEMPI 2 dataset. An exhaustive knowledge
of all these disrupting residues would make the evaluation more
accurate. Nonetheless, the set of 3,039 residues is of sufficient size
to provide correct statistics.

The precision for the |ΔΔGbinding| ≥ 2 kcal/mol threshold is not
very good, lying between 38 and 55% depending on the centrality
measure and inclusion of water. Nevertheless, the number of
mutations leading to such a disruption in binding is roughly one-
fifth of the 3,039 residues (21.9%).When the proportions between
positives and negatives are almost equal, which is the case with
the lowest threshold of |ΔΔGbinding| ≥ 0.592 kcal/mol (55%
positives), all measures achieve good precision (between 74
and 89%). This means that a majority of the residues that are
found as false positives when considering the highest threshold
for |ΔΔGbinding| are residues that still show a |ΔΔGbinding| ≥
0.592 kcal/mol upon mutation and as such, are residues that
do disrupt the binding when mutated.

Our construction strategy of the RINs was based on distances
between all heavy atoms in the structure, setting an edge between
2 residues if an interatomic distance was between 2.5 Å and 5 Å.
We purposely kept this definition simple to put the emphasis on
the evaluation of centrality measures. It is also the definition used
in CASP and CAPRI to calculate inter-chain residue–residue
contacts (Lensink et al., 2019; Lensink et al., 2020). We are aware
that the manner to generate the RINs may have an effect on the
centrality results although Faisal et al. (2017) showed, for
instance, that choosing a threshold of 4 Å, 5 Å, or 6 Å between
any heavy atom or 7.5 Å between ∝-carbon has a minimal effect
on protein structural comparison accuracy. Generating various
types of residue interaction networks by considering different
definitions for creating a contact between two residues, for
example, as done by the RING program (Piovesan et al., 2016)
in function of the type of interaction or through more
sophisticated methods such as Voronoi tessellation (Cazals
et al., 2006; Olechnovič and Venclovas, 2019), might be an
interesting future avenue of investigation.

We finally checked the location of the major binding residues
identified by the 6 measures. We showed that the measures do not

systematically identify residues in the same region of the
structure. This correlates well with the fact that the sets of
central residues do not fully cover each other. Therefore, the
choice of a certain centrality measure to identify major binding
residues may depend on the area of research. In any case,
combining different measures is still a preferred approach. It
is interesting to note that the centralities find up to 10% of the
INT residues (for ECA), which are interior residues and thus not
easy to identify as they are not directly connected to the interface.
The advantage of RINs here is that we work with a network that
represents the whole complex and therefore may identify residues
that are indirectly involved in the binding. However, the surface
residues, which are also away from the binding site, are most
often not identified even if a few are anecdotally found by RCA
and BCA, both in the presence of water. This effect may be due to
the fact that water adds edges to the network at the surface,
essentially moving surface residues inwards. Indeed, SUR
residues correspond to nodes at the outer sides of the
network, away from the binding site; they possess fewer
connections than internal nodes in the network and fewer
shortest paths across these nodes. The main locations found
for residues of interest are SUP, COR, and RIM, which is not
surprising because these are directly connected to the binding
region.

To conclude, the 6 measures of centrality we evaluated show
good complementary performances to identify residues whose
mutation disrupts protein–protein binding. As their purpose is
not to identify all binding residues, they show excellent precision,
but do so with limited sensitivity. The sensitivity can be improved
slightly by including water molecules in the networks and using
weighted edges for ECA. Combining several centrality measures
through intersection or union generally leads to improved
precision or improved sensitivity, respectively. We believe that
these network-based measures could be further combined in a
more advanced way than the simple unions or intersections in a
machine learning approach for an improved prediction of major
binding residues. For an even better prediction, they could also be
integrated as features next to structure-based and sequence-based
ones like the PREVAIL tool does for the inference of catalytic
residues (Song et al., 2018). In any case, centrality analyses are
complementary to a visual inspection of the structure and to other
methods to find major binding residues like alanine scanning
(Kortemme et al., 2004), hot spot predictions (Moreira et al.,
2017), or prediction of mutation effects in 3D structures
(Ittisoponpisan et al., 2019).
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Jankauskaitė, J., Jiménez-García, B., Dapk�unas, J., Fernández-Recio, J., and
Moal, I. H. (2019). SKEMPI 2.0: an Updated Benchmark of Changes in
Protein–Protein Binding Energy, Kinetics and Thermodynamics upon
Mutation. Bioinformatics 35 (3), 462–469. doi:10.1093/bioinformatics/
bty635

Jiao, X., and Ranganathan, S. (2017). Prediction of Interface Residue Based on
the Features of Residue Interaction Network. J. Theor. Biol. 432, 49–54.
doi:10.1016/j.jtbi.2017.08.014

Kannan, N., and Vishveshwara, S. (1999). Identification of Side-Chain Clusters in
Protein Structures by a Graph Spectral Method 1 1Edited by J. M. Thornton.
J. Mol. Biol. 292 (2), 441–464. doi:10.1006/jmbi.1999.3058

Kortemme, T., Kim, D. E., and Baker, D. (2004). Computational Alanine
Scanning of Protein-Protein Interfaces. Sci. Signaling 2004 (219), pl2.
doi:10.1126/stke.2192004pl2

Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K., and Moult, J. (2019). Critical
Assessment of Methods of Protein Structure Prediction (CASP)-Round XIII.
Proteins 87 (12), 1011–1020. doi:10.1002/prot.25823

Laulumaa, S., Nieminen, T., Raasakka, A., Krokengen, O. C., Safaryan, A.,
Hallin, E. I., et al. (2018). Structure and Dynamics of a Human Myelin
Protein P2 portal Region Mutant Indicate Opening of the β Barrel in Fatty
Acid Binding Proteins. BMC Struct. Biol. 18 (1), 8. doi:10.1186/s12900-018-
0087-2

Lensink, M. F., Brysbaert, G., Nadzirin, N., Velankar, S., Chaleil, R. A. G.,
Gerguri, T., et al. (2019). Blind Prediction of Homo- and Hetero-Protein
Complexes: The CASP13-CAPRI experiment. Proteins 87 (12), 1200–1221.
doi:10.1002/prot.25838

Lensink, M. F., Nadzirin, N., Velankar, S., and Wodak, S. J. (2020). Modeling
Protein-protein, Protein-peptide, and Protein-oligosaccharide
Complexes: CAPRI 7th Edition. Proteins 88 (8), 916–938. doi:10.1002/
prot.25870

Levy, E. D. (2010). A Simple Definition of Structural Regions in Proteins and its
Use in Analyzing Interface Evolution. J. Mol. Biol. 403 (4), 660–670. doi:10.
1016/j.jmb.2010.09.028

Liu, R., and Hu, J. (2011). Computational Prediction of Heme-Binding Residues by
Exploiting Residue Interaction Network. PLoS One 6 (10), e25560. doi:10.1371/
journal.pone.0025560

Moreira, I. S., Koukos, P. I., Melo, R., Almeida, J. G., Preto, A. J.,
Schaarschmidt, J., et al. (2017a). SpotOn: High Accuracy Identification
of Protein-Protein Interface Hot-Spots. Sci. Rep. 7 (1), 8007. doi:10.1038/
s41598-017-08321-2

Moreira, I. S., Fernandes, P. A., and Ramos, M. J. (2007b). Hot Spots-A Review of
the Protein-Protein Interface Determinant Amino-Acid Residues. Proteins 68
(4), 803–812. doi:10.1002/prot.21396

Newaz, K., Wright, G., Piland, J., Li, J., Clark, P. L., Emrich, S. J., et al. (2020).
Network Analysis of Synonymous Codon Usage. Bioinforma. Oxf. Engl. 36 (19),
4876–4884. doi:10.1093/bioinformatics/btaa603

Frontiers in Bioinformatics | www.frontiersin.org June 2021 | Volume 1 | Article 68497012

Brysbaert and Lensink Centrality Analysis Highlights Binding Residues

https://www.frontiersin.org/articles/10.3389/fbinf.2021.684970/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2021.684970/full#supplementary-material
https://doi.org/10.1016/j.jmb.2004.10.055
https://doi.org/10.1371/journal.pone.0161879
https://doi.org/10.1371/journal.pone.0161879
https://doi.org/10.1038/nsb1203-980
https://doi.org/10.1038/nsb1203-980
https://doi.org/10.1016/s0169-7552(98)00110-x
https://doi.org/10.1016/s0169-7552(98)00110-x
https://doi.org/10.3389/fmolb.2018.00088
https://doi.org/10.1093/bioinformatics/btx586
https://doi.org/10.1002/cpbi.66
https://doi.org/10.1110/ps.062245906
https://doi.org/10.1093/nar/gkw383
https://doi.org/10.1093/nar/gkw383
https://igraph.org
https://doi.org/10.1002/prot.25578
https://doi.org/10.1038/msb4100063
https://doi.org/10.1002/prot.20348
https://doi.org/10.1002/prot.20348
https://doi.org/10.3389/fbioe.2015.00170
https://doi.org/10.3389/fbioe.2015.00170
https://doi.org/10.1038/nprot.2012.004
https://doi.org/10.1038/nprot.2012.004
https://doi.org/10.1016/j.tibs.2011.01.002
https://doi.org/10.1038/s41598-017-14411-y
https://doi.org/10.1093/nar/gkaa397
https://doi.org/10.1093/bfgp/els039
https://doi.org/10.1016/j.jtbi.2014.01.023
https://doi.org/10.1016/j.jtbi.2014.01.023
https://doi.org/10.1016/j.jmb.2019.04.009
https://doi.org/10.1016/j.jmb.2019.04.009
https://doi.org/10.1093/bioinformatics/bty635
https://doi.org/10.1093/bioinformatics/bty635
https://doi.org/10.1016/j.jtbi.2017.08.014
https://doi.org/10.1006/jmbi.1999.3058
https://doi.org/10.1126/stke.2192004pl2
https://doi.org/10.1002/prot.25823
https://doi.org/10.1186/s12900-018-0087-2
https://doi.org/10.1186/s12900-018-0087-2
https://doi.org/10.1002/prot.25838
https://doi.org/10.1002/prot.25870
https://doi.org/10.1002/prot.25870
https://doi.org/10.1016/j.jmb.2010.09.028
https://doi.org/10.1016/j.jmb.2010.09.028
https://doi.org/10.1371/journal.pone.0025560
https://doi.org/10.1371/journal.pone.0025560
https://doi.org/10.1038/s41598-017-08321-2
https://doi.org/10.1038/s41598-017-08321-2
https://doi.org/10.1002/prot.21396
https://doi.org/10.1093/bioinformatics/btaa603
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles
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