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Developmental up‑regulation 
of NMDA receptors in the prefrontal cortex 
and hippocampus of mGlu5 receptor knock‑out 
mice
Tiziana Imbriglio1†, Remy Verhaeghe1†, Nico Antenucci2, Stefania Maccari2,3, Giuseppe Battaglia1,2, 
Ferdinando Nicoletti1,2*   and Milena Cannella1 

Abstract 

mGlu5 metabotropic glutamate receptors are highly expressed and functional in the early postnatal life, and are 
known to positively modulate NMDA receptor function. Here, we examined the expression of NMDA receptor 
subunits and interneuron-related genes in the prefrontal cortex and hippocampus of mGlu5−/− mice and wild-type 
littermates at three developmental time points (PND9, − 21, and − 75). We were surprised to find that expression of 
all NMDA receptor subunits was greatly enhanced in mGlu5−/− mice at PND21. In contrast, at PND9, expression of the 
GluN2B subunit was enhanced, whereas expression of GluN2A and GluN2D subunits was reduced in both regions. 
These modifications were transient and disappeared in the adult life (PND75). Changes in the transcripts of interneu-
ron-related genes (encoding parvalbumin, somatostatin, vasoactive intestinal peptide, reelin, and the two isoforms 
of glutamate decarboxylase) were also observed in mGlu5−/− mice across postnatal development. For example, the 
transcript encoding parvalbumin was up-regulated in the prefrontal cortex of mGlu5−/− mice at PND9 and PND21, 
whereas it was significantly reduced at PND75. These findings suggest that in mGlu5−/− mice a transient overexpres-
sion of NMDA receptor subunits may compensate for the lack of the NMDA receptor partner, mGlu5. Interestingly, in 
mGlu5−/− mice the behavioral response to the NMDA channel blocker, MK-801, was significantly increased at PND21, 
and largely reduced at PND75. The impact of adaptive changes in the expression of NMDA receptor subunits should 
be taken into account when mGlu5−/− mice are used for developmental studies.

Keywords:  Interneuron related genes, NMDA receptor subunits, Prefrontal cortex, Hippocampus MK-801, Locomotor 
activity
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Introduction
One of the earliest discovery in the field of metabo-
tropic glutamate (mGlu) receptors was that glutamate-
stimulated polyphosphoinositide (PI) hydrolysis was 

prominent in the first 9–10  days of postnatal life, and 
then progressively declined to become negligible in 
the adult life [1]. Subsequent studies have shown that 
the large PI response to glutamate early after birth was 
mediated by the mGlu5 receptor, one of the two recep-
tor subtypes coupled to Gq/11 [2, 3]. mGlu5 receptors 
are highly expressed in the early postnatal life in most 
of the forebrain regions, and expression declines after-
wards [4, 5] with a developmental shift from mGlu5a 
to mGlu5b splice variants in the cerebral cortex, 
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hippocampus and corpus striatum [6]. This evidence 
suggests that mGlu5 receptors are involved in mecha-
nisms that shape the developmental trajectory of the 
CNS in the postnatal life. Of note, mGlu5 receptors are 
drug candidate targets for the treatment of neurode-
velopmental disorders, such as monogenic autism and 
schizophrenia [7–15]. mGlu5 receptors are expressed 
on cortical and hippocampal GABAergic interneurons, 
which coordinate network oscillations and feedback/
feedforward inhibition mechanisms [16, 17]. Genetic 
deletion of mGlu5 receptors causes alterations in the 
expression of interneuron-related genes in the prefron-
tal/frontal cortex and hippocampus of adult mice [18], 
and disrupted latent inhibition [19]. In addition, post-
natal ablation of mGlu5 receptors from parvalbumin 
(PV)-positive interneurons caused a schizophrenia-like 
phenotype in adult mice, characterized by impaired 
rhythmic cortical oscillatory activity and alterations in 
sensory-motor gating, learning and memory, and social 
recognition [20].

Little is known on how the absence of mGlu5 receptors 
affects the biology of interneurons across postnatal devel-
opment. We have found recently that the density of peri-
neuronal nets (PNNs), which are specialized formations 

of the extracellular matrix surrounding parvalbumin-
positive (PV+) interneurons, was largely increased in the 
somatosensory cortex of mice lacking mGlu5 receptors 
at PND16 [21], suggesting a role for mGlu5 receptors 
in mechanisms of developmental plasticity of cortical 
interneurons.

Here, we examined the expression of biochemical 
makers of GABAergic interneurons in the prefrontal 
cortex and hippocampus of mGlu5 receptor knock-
out mice at three time points of postnatal development 
(PND9, PND21, and PND75). In addition we meas-
ured the expression of the NMDA receptor subunits for 
the following reasons: (1) NMDA receptors are largely 
expressed in cortical and hippocampal interneurons, are 
constitutively active in fast-spiking PV+ interneurons, 
and are critically involved in the generation of gamma 
frequency oscillations and behavior [22–25]; and, (2) 
NMDA receptors are physically and functionally linked 
to mGlu5 receptors [26–32], and the cross-talk between 
the two receptors is regulated by the dynamics of the 
mGlu5/Homer protein complex in dendritic spines [33]. 
We report that all NMDA receptor subunits are over-
expressed in the prefrontal cortex and hippocampus of 
mGlu5 receptor knockout mice at PND21, but not in the 
adult life. Developmental alterations in the expression of 
NMDA receptor subunits were paralleled by changes in 
MK-801-induced locomotor hyperactivity, which reflects 
the inhibition of NMDA receptors expressed by GABAe-
rgic interneurons.

Material and methods
Animals
mGlu5 receptor knockout B6;129-Grm5tm1Rod/J 
(mGluR5−/−) mice [34] were purchased from The Jack-
son Laboratory (Bar Harbor, ME, USA). Wild-type 
and knockout mice were generated by mating male 
and female heterozygous parents, with the genotypes 
determined by PCR (Jackson lab protocol). We used 
mGlu5−/− mice and wild-type littermates of both sex 
at PND9, and exclusively male mice at PND21 and 
PND75. Mice were housed in an animal care facil-
ity at 23  °C on a 12  h light/12  h dark cycle with food 
and water provided ad  libitum. All mice that we used 
were sacrificed by cervical dislocation. Experiments 
were performed following the Guidelines for Animal 
Care and Use of the National Institutes of Health to 
minimize the number of animals and animal suffering. 
The experimental protocol was approved by the Ethical 
Committee of Neuromed Institute (Pozzilli, Italy) and 
by the Italian Ministry of Health. Animals at PND9, 
PND21, and PND75 were used for biochemical analy-
sis of interneuron-related genes and NMDA receptor 

Table 1  Primer sequences used for real-time PCR analysis

Name Primer Seq 5′– > 3′

Gad1 (GAD67) Forw GTA​CTC​CTG​TGA​CAG​AGC​CG

Rev GTA​TTA​GGA​TCC​GCT​CCC​GC

Gad2 (GAD65) Forw GAG​CTG​CAG​CCT​TAG​GGA​TT

Rev GCA​CTC​ACC​AGG​AAA​GGA​AC

Grin1 (GluN1) Forw AAC​CTG​CAG​CAG​TAC​CAT​CC

Rev GCA​GCA​GGA​CTC​ATC​AGT​GT

Grin2A(GluN2A) Forw TCT​CCG​CCT​TTC​CGA​TTT​GG

Rev TGG​CAA​AGA​TGT​ACC​CGC​TC

Grin2B (GluN2B) Forw CGC​TCT​CCA​CAC​CCT​GAG​AT

Rev TAG​AAG​CCA​AAG​CTC​TAG​GC

Grin2C (GluN2C) Forw CAT​TAG​GGA​TTT​CCC​CAA​ACGC​

Rev ACC​TTC​CTA​GTC​CAA​GCA​CA

Grin2D (GluN2D) Forw TCC​TGG​GGG​ACG​ATG​AGA​TT

Rev AGT​CGC​CAG​TAC​ACA​AGG​TG

Pvalb (parvalbumin) Forw GCT​TCT​CCT​CAG​ATG​CCA​GA

Rev CCA​CTT​AGC​TTT​CAG​CCA​CC

Reln (reelin) Forw CTC​GAC​AAG​CAT​CCA​GTC​TTC​

Rev AGG​TTG​GTT​GTA​GGC​AGG​TG

Sst (somatostatin) Forw CCC​AGA​CTC​CGT​CAG​TTT​CT

Rev CCA​GGG​CAT​CAT​TCT​CTG​TC

Tfrc (transferrin receptor) Forw CCA​GTG​TGG​GAA​CAG​GTC​TT

Rev GCA​CCA​ACA​GCT​CCA​AAG​TC

Vip (vasoactive intestinal 
peptide)

Forw GGA​GCA​GTG​AGG​GAG​ATT​CTG​

Rev CGT​GGT​TGT​TTT​CCT​TCG​AG
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subunits. Animals at PND21, and PND75 were used for 
the assessment of MK-801 induce locomotor activity.

Measurements of mRNA levels of interneuron‑related 
genes
Mice were killed by decapitation at PND9, PND21 or 
PND75. The brains were removed and the prefrontal 
cortex and hippocampus immediately dissected and 
frozen on liquid nitrogen. Total RNA was extracted 
using the Trizol reagent (Invitrogen, Carlsbad, CA) 
according to manufacturer’s instructions. The RNA was 
further treated with DNase (Qiagen, Hilden, Germany), 
and single strand cDNA was synthesized from 1.5 μg of 
total RNA using Superscript III (Invitrogen) and ran-
dom hexamers as previously described [35]. Real-time 
PCR was performed on 15  ng of cDNA by using spe-
cific primers and Power SYBR Green Master Mix (Bio-
rad, Hercules, CA) on an Applied Biosystems Step-One 
instrument.

Thermal cycler conditions were as follows: 10  min 
at 95  °C, 40 cycles of denaturation (15 s at 95  °C), and 
combined annealing/extension (1 min at 58–60 °C). The 
sequence of the specific primers is shown in Table  1: 
mRNA copy number for each gene was calculated from 
serially diluted standard curves simultaneously ampli-
fied with the samples and normalized with respect to 
the transferrin receptor (TFRC) mRNA copy number. 
Each sample was analyzed in duplicate together with 
two negative controls.

Western blot analysis of NMDA receptor subunits
GluN1, GluN2A, GluN2B, and GluN2D receptor sub-
type protein levels were examined in the prefrontal cor-
tex and hippocampus at PND9, PND21 and PND75. 
Tissue was dissected out and homogenized at 4  °C in a 
buffered solution and used for Western blot analysis as 
reported previously [35]. The following primary antibod-
ies were used: rabbit monoclonal anti-NMDAR1 (Abcam, 
Cambridge, UK #ab109182; 1:5000); rabbit monoclo-
nal anti-NMDAR2A (Abcam, #ab14596; 1:1500); mouse 
monoclonal anti-NMDAR2B (Abcam, #ab28373; 1:500); 
rabbit monoclonal anti-NMDAR2D (Abcam, #ab35448; 
1:1000); mouse monoclonal anti-GAPDH (Santa Cruz 
Biotechnology, Dallas, Texas, sc-32233; 1:1000).

Immunostaining was revealed by the enhanced ECL 
Western blotting analysis system (Hybond ECL, GE 
Healthcare Europe) and by the Chemidoc computerized 
densitometer (Bio-Rad). The Immunoblots signal was 
quantified by ImageJ software.

Assessment of MK‑801‑stimulated locomotor activity
(5S,10R)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]
cyclohepten-5,10-imine maleate (MK-801), was pur-
chased from Tocris Bioscience (Bristol, U.K.). MK-
801-induced hyperactivity was assessed in an open-field 
apparatus. The latter consisted of an unfamiliar cubic 
box (42 × 42 × 21  cm) with its top left uncovered and 
transparent plastic walls. The box was connected to an 
Activity Monitor equipped with infrared photobeam 
interruption sensor and animal movements were meas-
ured and recorded by a computerized analysis system 
(Open Field Activity System Hardware; Med Associates, 
Inc., St. Albans, U.K.). On the day of the experiment 
mice were transferred to the testing room and left in the 
open field apparatus to record basal locomotor activ-
ity  for 60  min. Afterwards, they were treated i.p. with 
MK-801 (0.32 mg/kg or 0.64 mg/kg) and positioned back 
into the box, where locomotor activity was recorder for 
additional 120 min defined as “hyperactivity phase”. The 
software was set to record the distance travelled by mice 
every 5  min for a total of 180  min. Locomotor activity 
was expressed as a function of time in 5 min beans (line 
graphs) or accumulated activity during the habituation 
phase and hyperactivity phase.

Statistical analysis
Statistical analysis of biochemical data was carried out by 
Student’s t test. Statistical analysis for locomotor activity 
was carried out by One-way ANOVA for repeated meas-
ures followed by Fisher’s Least Significant Difference 
(LSD).

Results
Developmental profile of interneuron‑related genes in the 
prefrontal cortex and hippocampus of mGlu5−/− mice
We first measured the transcripts of interneuron-related 
genes in the prefrontal cortex and hippocampus of 
mGlu5−/− mice and their wild-type littermates at three 
developmental stages (PND9, PND21, and PND75). We 
focused on GAD1 and GAD2, encoding the two isoforms 

Fig. 1  Influence of genetic deletion of mGlu5 receptors on the expression of interneuron-related genes in the prefrontal cortex and hippocampus 
across postnatal development. mRNA levels encoding interneuron-related proteins in the prefrontal cortex and hippocampus at PND9 -21 and -75 
are shown in a and b, respectively. Values are means ± S.E.M. of 5–9 mice per group. * p< 0.05 vs. the corresponding values of wild-type littermates 
(Student’s t-test). a PND9: Pvalb, t10 = 2.3; Reln, t10 = 5.6; Vip t10 = 5.6; PND21: GAD1, t11 = 4; Pvalb, t11 = 3.1; PND75: GAD2, t5 = 2.8, Pvalb, t5 = 3.2, Vip, 
t5 = 2.6. b PND9: Pvalb, t8 = 11.1; Reln, t7 = 3.5; PND21: Vip, t9 = 2.2; PND75: SSt, t6 = 6.2

(See figure on next page.)
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of the GABA-synthesizing enzyme, glutamate decarbox-
ylase (GAD67 and GAD65) respectively; Pvalb and SSt, 
encoding PV and somatostatin (SSt), which are expressed 
by the two major interneuron populations originating 
from the medial ganglionic eminence; and Reln and Vip, 
encoding Reelin and vasoactive intestinal peptide (Vip), 
as representative biomarkers of interneurons originating 
from the caudal ganglionic eminence [36].

a.	 Prefrontal cortex

	 Changes in Pvalb and Vip expression in mGlu5−/− 
mice were not uniform in the three selected devel-
opmental time points. Pvalb expression was signifi-
cantly increased at PND9 and PND21, and reduced 
at PND75, as compared to wild-type littermates 
(Fig.  1a). Similarly, Vip expression showed a sig-
nificant increase at PND9, a trend to an increase 
at PND21, and a significant reduction at PND75 
(Fig.  1a). Reln expression in mGlu5−/− mice was 
exclusively reduced at PND9, whereas SSt expression 
did not differ between the two genotypes at all devel-
opmental time points (Fig.  1a). GAD1 was reduced 
in mGlu5−/− mice at PND21, whereas GAD2 was 
reduced at PND75 (Fig. 1a).

b.	 Hippocampus
	 Changes in the expression of interneuron-related 

genes were less substantial in the hippocampus of 
mGlu5−/− mice compared to wild-type littermates 
across postnatal development. Similarly to the pre-
frontal cortex, Pvalb expression was significantly 
increased in mGlu5−/− mice at PND9, but did not 
change at PND21 and PND75 (Fig. 1b). Reln expres-
sion was reduced in mGlu5−/− mice at PND9, 
whereas Vip and SSt expression was reduced at 
PND21 and PND75, respectively (Fig. 1b). No other 
differences in gene expression between mGlu5−/− 
mice and wild-type littermates were found in the hip-
pocampus (Fig. 1b).

Developmental change in the expression of NMDA receptor 
subunits in mGlu5−/− mice
We studied the expression of NMDA receptor subunits 
in the prefrontal cortex and hippocampus of mGlu5−/− 
mice and wild-type littermates because NMDA recep-
tors are structurally and functionally coupled to mGlu5 

receptors, and are highly functional in GABAergic 
interneurons (see “Introduction” and References therein). 
We found substantial changes in the transcript and pro-
tein levels of NMDA receptor subunits in both brain 
regions of mGlu5−/− mice at PND9 and PND21 but not 
in the adult life (PND75).

a.	 Prefrontal cortex 

	 At PND9, there was only a partial correspond-
ence between transcript and protein levels of the 
five selected NMDA receptor subunits (GluN1, and 
Gln2A-D). Expression of Grin2A and Grin2C genes, 
encoding GluN2A and GluN2C subunits, respec-
tively, was largely increased in mGlu5−/− mice, as 
compared to wild-type littermates, whereas the 
other transcripts did not change (Fig.  2a). Immu-
noblot analysis showed a significant increase in 
GluN1 and GluN2B protein levels, whereas GluN2A 
and GluN2D levels were significantly reduced in 
mGlu5−/− mice (Fig.  2b). We were unable to detect 
the GluN2C subunit under our conditions (using 
three commercially available antibodies).

	 It was at PND21 that we found the largest changes 
in NMDA receptor subunits in mGlu5−/− mice. At 
this time point, expression of Grin1 and Grin2A was 
largely increased, whereas Grin2B expression was 
nearly suppressed (Fig.  2c). Remarkably, mGlu5−/− 
mice showed a substantial increase in GluN1, 
GluN2B, and GluN2D protein levels, and a smaller 
increase in GluN2A levels at PND21 (Fig. 2d). Again, 
all changes in the transcript and protein levels of 
NMDA receptor subunits between mGlu5−/− mice 
and wild-type littermates disappeared at PND75 in 
the prefrontal cortex (Fig. 4a, b).

b.	 Hippocampus
	 In the hippocampus, transcript and protein levels of 

NMDA receptor subunits were divergent at PND9 
and PND21. At PND9, Grin2A and Grin2C expres-
sion was significantly increased in mGlu5−/− mice, as 
compared to wild-type littermates (Fig.  3a). In con-
trast, GluN2B protein levels were increased, GluN2A 
and GluN2D levels were reduced, and GluN1 levels 
did not change in mGlu5−/− mice at this time point 
(Fig.  3b). At PND21 only Grin2C transcript lev-

(See figure on next page.)
Fig. 2  Expression of NMDA receptor subunits in the prefrontal cortex of mGlu5−/− mice and wild-type littermates at PND9 and PND21. mRNA and 
protein levels at PND9 and PND21 are shown in a, c and b, d, respectively. Values are means ± S.E.M. of 4–9 mice per group. *p < 0.05 (Student’s 
t-test). a Grin2A, t10 = 3.8; Grin2C, t9 = 2.8; b GluN1, t8 = 3.4; GluN2A, t9 = 9.4; GluN2B, t8 = 2.8; GluN2D, t9 = 9.4 c Grin1, t12 = 4.6; Grin2A, t13 = 2.5; 
Grin2B, t12 = 3.4 d GluN1, t 9 = 7; GluN2A, t8 = 4.1; GluN2B, t10 = 3.4; GluN2D, t9 = 7. Uncropped western blots are shown
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els showed a significant increase in mGlu5−/− mice 
(Fig.  3c), whereas protein levels of GluN1, GluN2B 
and GluN2D were largely increased (Fig.  3d). At 
PND75, no changes in transcript and protein levels of 
NMDA receptor subunits were found in mGlu5−/− 
mice as compared to wild-type littermates (Fig.  4c, 
d).

Changes in MK‑801‑induced hyperactivity in mGlu5−/− 
mice at PND21 that is inverted at PND75
Moving from the overexpression of NMDA receptor 
subunits found in mGlu5−/− mice at PND21, we exam-
ined whether this could be paralleled by changes in the 
behavioral response to the slow NMDA channel blocker, 
MK-801. Of note, MK-801-induced hyperactivity is 
widely used as an experimental animal model of psy-
chosis [37]. After 60 min of habituation to the open field 
apparatus, mice were injected with MK-801, and motor 
activity was recorded for additional 120 min. At PND21, 
mice did not respond to the standard dose of MK-801 
used in our laboratories (0.32 mg/kg, i.p.) (Fig. 5a), and, 
therefore, we decided to repeat the experiment dou-
bling the dose of MK-801. In response to 0.64 mg/kg of 
MK-801 both mGlu5−/− mice and wild-type littermates 
showed a significant increase in locomotor activity, 
which  lasted for at least 90 min. However, the response 
to MK-801 was much greater in mGlu5−/− mice, with 
no significant difference between the two genotypes in 
the habituation phase (Fig. 5b). As expected, adult mice 
(PND75) responded to 0.32  mg/kg of MK-801, but the 
increase in locomotor activity was less pronounced in 
mGlu5−/− mice, as compared to wild-type littermates 
(Fig. 5c). There was no difference between the two geno-
types when PND75 mice were challenged with 0.64 mg/
kg of MK-801 (Fig. 5d).

Discussion
Functional NMDA receptors are heterotetramers typi-
cally formed by two GluN1 subunits and two GluN2 
subunits. GluN2A, GluN2B; GluN2C, and GluN2D subu-
nits are encoded by four different genes (Grin2A-D) [38, 
39]. The GluN1 subunit is ubiquitously expressed with no 
major developmental changes, whereas the expression 
pattern of GluN2 subunits shows remarkable changes 
across postnatal development. The GluN2A subunit 

starts to be expressed early after birth and expression 
progressively increases afterwards, whereas the GluN2D 
subunit shows an opposite expression profile. Expres-
sion of the GluN2B subunit is ubiquitous in the first two 
weeks of postnatal life, and becomes restricted to the 
forebrain in the adult life. The GluN2C subunit begins 
to be expressed at PND10, and expression is mainly con-
fined to the cerebellum. The most remarkable develop-
mental change in NMDA receptor composition is the 
switch between GluN2B- to GluN2A-containing hetero-
tetramers at a time that coincides with synaptic matura-
tion, and circuit refinement [39].

Absolute levels of Grin1 and Grin2A-D transcripts 
in the prefrontal cortex and hippocampus of wild-type 
mice changed during postnatal development as reported 
previously [39], although we were surprised to find high 
expression levels of Grin2C mRNA at PND75. Expression 
of NMDA subunit protein levels was only studied com-
paratively between mGlu5−/− and wild-type littermates 
without comparing levels of the same strain at the dif-
ferent time points. Interestingly, we found a large over-
expression of the GluN2B subunit at both PND9 and 
PND21 in both prefrontal cortex and hippocampus of 
mGlu5−/− mice, as compared to wild-type littermates. 
This was associated with a significant reduction of the 
GluN2A subunit at PND9, but not at PND21. These 
findings suggest that the lack of mGlu5 receptors delays 
the developmental shift between the GluN2B and the 
GluN2A subunit, which normally occurs after the first 
7–10  days of postnatal life [40]. This is in nice agree-
ment with electrophysiological data showing that the 
developmental switch between GluN2B and GluN2A 
(formerly named NR2B and NR2A) is defective or absent 
in the hippocampus and visual cortex of mGlu5  recep-
tor knockout mice [41]. A leading hypothesis is that 
endogenous activation of mGlu5 receptors promotes the 
removal of GluN2B-containing NMDA receptors from 
the plasma membrane through a mechanism mediated 
by casein kinase 2 [39]. The lack of changes in Grin2B 
transcript levels between mGlu5−/− and wild-type mice 
at PND9 supports the hypothesis that mGlu5 receptors 
regulates the GluN2B/GluN2A balance at protein level 
[39, 41]. Our data also raise the interesting possibility 
that mGlu5 receptors critically regulate the expression of 
the GluN2D subunit, which was largely reduced at PND9 
and increased at PND21 in mGlu5−/− mice, with respect 

Fig. 3  Expression of NMDA receptor subunits in the hippocampus of mGlu5−/− mice and wild-type littermates at PND9 and PND21. mRNA 
and protein levels at PND9 and PND21 are shown in a–d. Values are means ± S.E.M. of 4–9 mice per group. *p < 0.05 (Student’s t-test). a Grin2A, 
t9 = 3.5; Grin2C, t 9 = 2.5; b GluN2A, t10 = 4; GluN2B, t9 = 2.7; GluN2D, t10 = 7; c Grin2C, t11 = 2.5; d GluN1, t10 = 2.8; GluN2B, t9 = 5.2; GluN2D, t10 = 5.2. 
Uncropped western blots are shown

(See figure on next page.)
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to wild-type littermates. The Grin2D transcripts did not 
change in both regions in the two time points, suggesting 
again that mGlu5 receptors act at post-transcriptional 
levels in regulating Grin2D mRNA translation and/or 
GluN2B protein stability. This hypothesis warrants fur-
ther investigation.

We could only measure the transcript of Grin2C, which 
was largely increased in the prefrontal cortex at PND9 
and in the hippocampus at both PND9 and PND21. The 
significance of these changes is uncertain because, at 
least in the hippocampus and cerebral cortex, GluN2C is 
not expressed by neurons but co-localizes with astrocytic 
markers [42].

At least in the prefrontal cortex, the general overex-
pression of NMDA receptor subunits might contribute 
to explain the unexpected increase in Pvalb transcript 
observed at PND9 and PND21. In fast-spiking PV+ 
interneurons NMDA receptors are constitutively active 
owing to membrane depolarization, which removes the 
Mg2+ blockade of the NMDA-gated ion channel (see 
“Introduction” and References therein). An increased 
expression of NMDA receptors in the prefrontal cortex 
of mGlu5−/− mice at PND9 and PND21 might cause a 
hyperactivation of PV+ interneurons with a result-
ing increase in Pvalb gene expression [43]. This might 
represent a compensatory mechanism aimed at buffer-
ing the increased influx of extracellular Ca2+ through 
the NMDA-gated ion channel. In the hippocampus, 
the increase in the transcript encoding PV was found 
at PND9, when an increase in GluN2B subunit was 
associated with a reduction in GluN2A and GluN2D, 
and no changes in GluN1 protein levels. In contrast, 
no changes in Pvalb transcript were seen at PND21, 
when GluN1, GluN2B, and GluN2D (but not GluN2A) 
protein levels were increased. It is possible that the 
presence of the GluN2A subunit is required for the 
regulation of Pvalb expression by NMDA receptors at 
PND21 (but not at PND9). This is supported by data 
obtained in cultured cortical neurons, in which selec-
tive blockade of GluN2A-containing NMDA receptors 
decreased PV and GAD67 immunoreactivity [43].

The transcripts encoding Vip and Reelin, which are 
two makers of interneurons originating from the caudal 
portion of ganglionic eminences [36], showed changes 
at PND9, with Reln transcript being  decreased in both 

prefrontal cortex and hippocampus, and Vip transcript 
increased in the prefrontal cortex. At PND75, there 
was a reduction in the transcript encoding PV, GAD65, 
and VIP in the prefrontal cortex, and a reduction in 
the transcript encoding SSt in the hippocampus. These 
results are partially consistent with a previous report 
[18] showing a reduction in PV mRNA levels in the 
prefrontal/frontal cortex (but not in the hippocampus), 
a reduction in SSt mRNA levels in the hippocampus, 
and a reduction in GAD65 and GAD67 mRNA levels 
in the prefrontal cortex/frontal cortex and hippocam-
pus of adult (PND > 80) male mGlu5−/− mice. In our 
study, protein levels of NMDA receptor subunits were 
normalized in mGlu5−/− mice  at PND75, and this 
might have disclosed an intrinsic defect in PV expres-
sion in the prefrontal cortex and SSt expression in the 
hippocampus caused by the lack of mGlu5 receptors. 
Changes in the Pvalb and SSt transcripts seen in adult 
mGlu5−/− mice are consistent with the view that these 
mice recapitulate some of the biochemical and behavio-
ral hallmarks of schizophrenia [18, 19, 34].

The most relevant finding of our study was that 
mGlu5−/− mice showed an impressive increase in 
GluN1, GluN2A, GluN2B, and GluN2D protein levels 
in the prefrontal cortex and hippocampus at the time of 
weaning (PND21), while levels returned back to normal 
in the adult life. This indicates that the lack of mGlu5 
receptors is compensated by an increased expression of 
its receptor partner (the NMDA receptor) during post-
natal development, to limit the potential abnormalities 
in network activity resulting from the absence of mGlu5 
receptors in interneurons. However, this compensa-
tory mechanism is transient and not sufficient to avoid 
the development of a pathological phenotype in the 
adult life. We reasoned that, if overexpression of NMDA 
receptors was a compensatory mechanism at PND21, we 
could unmask a psychotic-like behavioral phenotype by 
blocking NMDA receptors. For this reason, we assessed 
locomotor activity in response to the slow NMDA chan-
nel blocker, MK-801. MK-801-induced hyperactivity in 
rodents is widely used as a model for positive symptoms 
of schizophrenia [44], which is sensitive to both classical 
and atypical antipsychotic drugs [45]. Under our experi-
mental conditions, wild-type mice at PND21 did not 
respond to conventional doses of MK-801 (0.32 mg/kg) 

Fig. 5  MK-801-induced hyperactivity in mGlu5−/− mice and wild-type littermates at PND21 and PND75. Locomotor activity in response to 0.32 mg/
kg or 0.64 mg/kg MK-801 at PND21 and in response to 0.32 mg/kg or 0.64 mg/kg MK-801 at PND75 is shown in a–d. Mice were habituated to 
the environment for 60 min prior to the i.p. injection of MK-801. Values are means ± S.E.M. of 10 wild-type and 3 mGlu5−/− mice in a, 5 wild-type 
and 6 mGlu5−/− mice in b, 7 wild-type and 5 mGlu5−/− mice in c, 7 wild-type and 4 mGlu5−/− mice in d. Open bars = habituation phase; closed 
bars = response to MK-801. *p < 0.05 vs. wild-type mice (One-way ANOVA for repeated measures). b, F1,119 = 27.875; p < 0.001; c F1,119 = 44.692; 
p < 0.001

(See figure on next page.)
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[46], and, therefore, a double dose was required for the 
induction of hyperactivity in these mice. Interestingly, 
mGlu5−/− mice at PND21 displayed a large increase in 
MK-801-induced hyperactivity as compared to wild-type 
littermates, supporting the hypothesis that the overex-
pression of NMDA receptors represents an important 
compensatory mechanism in mGlu5−/− mice at this 
developmental stage. The situation was reversed in the 
adult life, when hyperactivity was largely attenuated in 
mGlu5−/− mice in response to 0.32  mg/kg MK-801. A 
possible explanation is that, in adult mGlu5−/− mice, 
normally expressed NMDA receptors are less active in 
supporting the function of fast-spiking, PV+, interneu-
rons because of the lack of the mGlu5 receptor partner. 
As a consequence, the behavioral response to NMDA 
receptor blockade was blunted in these mice.

Conclusions
In conclusion, our findings further demonstrate a close 
partnership between mGlu5 and NMDA receptors in the 
mouse prefrontal cortex and hippocampus, showing that 
the lack of mGlu5 receptors was compensated by a large 
but transient overexpression of NMDA receptor subunits 
during postnatal development. This may have important 
implications in the behavioral, biochemical, and electro-
physiological phenotype of mGlu5−/− mice, and should 
be taken into account when these mice are used for the 
study of mechanisms of developmental plasticity.
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