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Abstract Brain aging may be programmed by early-
life stress. Aging affects males and females differently,
but how perinatal stress (PRS) affects brain aging be-
tween sexes is unknown. We showed behavioral and
neurobiological sex differences in non-stressed control
rats that were strongly reduced or inverted in PRS rats.
In particular, PRS decreased risk-taking behavior, spa-
tial memory, exploratory behavior, and fine motor be-
havior in male aged rats. In contrast, female aged PRS
rats displayed only increased risk-taking behavior and
reduced exploratory behavior. PRS induced large reduc-
tions in the expression of glutamate receptors in the

ventral and dorsal hippocampus and prefrontal cortex
only in male rats. PRS also reduced the expression of
synaptic vesicle-associated proteins, glucocorticoid re-
ceptors (GR), and mineralocorticoid receptors (MR) in
the ventral hippocampus of aged male rats. In contrast,
in female aged rats, PRS enhanced the expression of
MRs and brain-derived neurotrophic factor (BDNF) in
the ventral hippocampus and the expression of glial
fibrillary acidic protein (GFAP) and BDNF in the pre-
frontal cortex. A common PRS effect in both sexes was
a reduction in exploratory behavior and metabotropic
glutamate (mGlu2/3) receptors in the ventral
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hippocampus and prefrontal cortex. A multidimensional
analysis revealed that PRS induced a demasculinization
profile in glutamate-related proteins in the ventral and
dorsal hippocampus and prefrontal cortex, as well as a
demasculinization profile of stress markers only in the
dorsal hippocampus. In contrast, defeminization was
observed only in the ventral hippocampus. Measure-
ments of testosterone and 17-β-estradiol in the plasma
and aromatase in the dorsal hippocampus were consis-
tent with a demasculinizing action of PRS. These find-
ings confirm that the brains of males and females dif-
ferentially respond to PRS and aging suggesting that
females might be more protected against early stress and
age-related inflammation and neurodegeneration. Taken
together, these results may contribute to understanding
how early environmental factors shape vulnerability to
brain aging in both sexes and may lay the groundwork
for future studies aimed at identifying new treatment
strategies to improve the quality of life of older individ-
uals, which is of particular interest given that there is a
high growth of aging in populations around the world.

Keywords Early life stress . Sex differences . Brain
aging . Behaviors . Hormones

Abbreviations
AMPA α-Amino-3-hydroxy-5-

méthylisoazol-4-propionate acid
BDNF Brain-derived neurotrophic factor
C Control
CNS Central nervous system
CONT Control
COVID-19 Coronavirus disease 2019
DOHaD Developmental Origins of Health

and Disease
E2 Estradiol
EPM Elevated plus maze
F Female
GFAP Glial fibrillary acidic protein
GR Glucocorticoid receptor
HPA Hypothalamic–pituitary–adrenal

axis
IL-6 Interleukin-6
ITI Intertrial interval
M Male
mGlu Metabotropic glutamate receptor
MR Mineralocorticoid receptor
NMDA N-Methyl-D-aspartate
OXTR Oxytocin receptor

P Perinatal stress
PC Principal component
PCA Principal component analysis
PERMANOVA Permutational MANOVA
PRS Perinatal stress
PSD95 Postsynaptic density protein 95
SNAP-25 Synaptosomal-associated protein, 25

kDa
SYP Synaptophysin
VAMP Vesicle-associated membrane

proteins
vGLUT1 Vesicular glutamate transporter 1
VGLUT2 Vesicular glutamate transporter 2
xCT Cystine/glutamate antiporter

Introduction

Aging is characterized by a progressive loss of physio-
logical integrity, leading to impaired function and in-
creased risk of death ([1]). Aging affects males and
females differently [2–4]. This is extremely important
if we consider, for example, the current global corona-
virus disease 2019 (COVID-19) pandemic, where aging
is known to be a key risk factor for severe COVID-19
[5]. Males have been found to be more vulnerable to
COVID-19 than females [6]. Furthermore, stress is well-
known to contribute to the variability of the aging pro-
cess and the development of age-related central nervous
system (CNS) disorders [7–9]. The stress hormones,
glucocorticoids, regulate a cohort of physiological func-
tions, such as intermediary metabolism and the immune
system, and influence development, growth, and aging
[10]. Excess of glucocorticoids, as occurs during chron-
ic stress, may alter physiological aging [11–13]. Studies
in animals and humans have shown that stressful events
during critical periods of brain development cause life-
long alterations in brain programming [14, 15]. Early-
life stress impacts cognitive processing during aging, as
demonstrated in middle-aged and aged male rodents
performing the Y-maze test and touch panel operant
task [16, 17]. Perinatal stress (PRS) affects other
aging-related processes in adult male rats, as indicated
by an increased expression of pro-inflammatory
markers [18], inhibition of neurogenesis in the hippo-
campus [19], and accelerated aging of the hypothalam-
ic–pituitary–adrenal (HPA) axis [16, 20]. Glutamate, the
most abundant excitatory neurotransmitter in the CNS,
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is deeply involved in stress-related disorders [21, 22].
Glutamatergic pyramidal neurons that mediate cortico-
cortical connections between the association cortices
and excitatory hippocampal connections are particularly
vulnerable to aging [23, 24]. Importantly, glutamate
plays a key role in the programming effects induced
by PRS. Indeed, PRS greatly reduces glutamate release
in the ventral hippocampus of adult male rats, an effect
associated with reduced expression of synaptic vesicle-
associated proteins [25–27]. Enhancing glutamate re-
lease through a cocktail of metabotropic glutamate re-
ceptor (mGlu)2/3 and GABAB receptor antagonists re-
verses the alterations in risk-taking behavior in PRS rats
[26], reinforcing the idea that impairment of the gluta-
matergic synapse in the ventral hippocampus lies at the
core of the pathological phenotype triggered by PRS.

The decline in gonadal hormones that occurs with
aging is associated with stress deregulation in males
and females [8, 28]. Furthermore, gonadal hormones
are altered by PRS, as demonstrated by increased
plasma dihydrotestosterone levels in adult male PRS
rats and lower plasma estradiol (E2) levels in adult
PRS females [29]. Interestingly, a decrease in estra-
diol levels was still observed in middle-aged female
rats, suggesting that PRS accelerates the aging-
related-disruption of the estrous cycle [30, 31].
These hormonal changes are associated with sex
differences in the behavior of adult PRS rats. For
example, PRS decreases risk-taking behavior (mea-
sured in the elevated plus maze) in males but not in
females [32] and differentially affects addictive be-
havior in males and females [29]. Other studies
using prenatal stress paradigms have shown disrup-
tions of sex differences in behavior, morphology,
sex hormones, and gene expression profiles
[33–37]. This suggests that the early perinatal period
represents a specific window of sensitivity during
which offspring are susceptible to the programming
effects of PRS combined with sex differences. Inter-
estingly, specific patterns of demasculinization have
already been reported in fetal and adult life at phys-
iological and behavioral levels [37–43]. However,
very little is known about the brain-gonadal axis.
For example, a possible link between plasma testos-
terone levels and glial fibrillary acidic protein
(GFAP) expression in the CNS has been shown. In
particular, previous studies have shown an inverse
correlation between plasma testosterone levels and
the age-dependent increase in GFAP messenger

ribonucleic acid (mRNA) levels in the rat and hu-
man brain [44]. In addition, testosterone replacement
lowered GFAP levels in the cerebellum of castrated
male aged rats [45]. However, most studies
concerning stressful perinatal events have been car-
ried out in adult males. To our knowledge, there are
no studies on the effects of PRS in elderly male and
female rats and the effect on the brain-gonadal axis.
Thus, we investigated the long-lasting programming
effects of PRS in both sexes on behaviors and bio-
chemical markers of glutamatergic transmission,
stress, neuroplasticity, and sex hormones. To this
aim, we used the PRS rat model, in which exposure
of pregnant mothers to restraint stress reduces ma-
ternal behavior, to study neuroplasticity in brain
regions sensitive to stress (ventral and dorsal hippo-
campus, prefrontal cortex and striatum), and cogni-
tive and motor behaviors in male and female rats
aged 21–22 months.

Materials and methods

Experimental design

The experimental timeline is shown in Fig. 1. After the
PRS procedure, which consisted of restraint stress of
pregnant mothers and the reduction of maternal behavior
in the first postpartum week, behavioral and biochemical
measurements in the hippocampus (ventral and dorsal),
prefrontal cortex, and striatum in both male and female
rats (21–22 months) were studied. Behavioral tests were
performed when the rats were 21 months old. One week
after the last behavioral test, the brain structures and
blood (plasma and serum) were collected. All experi-
ments followed the rules of the European Communities
Council Directive 86/609/EEC. The Local Committee
CEEA-75 (Comité d’Ethique en Experimentation
Animale Nord-Pas-de-Calais, 75) approved the experi-
mental procedures.

Animals

Thirty nulliparous female Sprague Dawley rats,
weighing approximately 250 g, were purchased from
Charles River (France) and housed under standard con-
ditions with a 12-h light/dark cycle. After group housing
(five females/cage) for 2 weeks, each female was indi-
vidually housed for 1 week with a sexually experienced
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male rat. Following this, a gain of at least 10 g was
considered to indicate pregnancy. For the offspring, 8–
12 animals per group were used for each behavioral test
and four to nine animals per group for biochemical
analysis (except for vesicular glutamate transporter 1
(vGLUT1) and GluA3 immunoblots in the ventral hip-
pocampus, n = 3–4 animals per group and n = 2–4
animals per group, respectively).

Stress procedure

The stress procedure was performed on one breeding
set, using 30 females (15 CONTs and 15 stressed dams).
PRS rats, that is, the adult offspring of dams exposed to
multiple episodes of restraint stress during pregnancy
causing reduced maternal care were obtained according
to our standard protocol [20], as shown in Fig. 1. Brief-
ly, from day 11 of pregnancy until delivery, pregnant
females were subjected to restraint in a transparent plas-
tic cylinder and exposed to bright light during three
daily sessions of 45 min. Control pregnant females were
left undisturbed in their home cages and were handled
once per week. After weaning, male and female off-
spring from the litter with a balanced sex ratio were used

for the experiments. Animals were housed in groups of
two or three and maintained under similar environmen-
tal conditions during their entire life span; 21–22-month
old rats were used in all experiments. The animals were
weighed at 21 months prior to the behavioral
assessment.

Maternal behavior

Maternal behavior was monitored for 24 h every day
during the first 7 postpartum days. Constant monitoring
was performed with small infrared cameras placed on
the animal cage rack where cages containing lactating
females were placed. Within each observation period,
the behavior of each mother was scored every minute
from postpartum day 1 to day 7 (60 observations/h with
2 h of observation per day, 1 h before lights off, and 1 h
after lights on). The active behavior of the mother (nurs-
ing behavior, grooming, licking, and carrying pups) was
scored, and the data obtained were expressed as percent-
ages with respect to the total number of observations.
Because gestational stress induces a reduction of mater-
nal behavior [46], we refer to the whole procedure as
perinatal stress (PRS).

Fig. 1 Experimental design and timeline. Induction of PRS and
maternal behavior analysis in the first postpartum week were
followed by behavioral and biochemical measurements in the

21–22 month old male and female progeny as indicated. Several
multidimensional analyses have been performed
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Behavioral studies

Risk-taking behavior in an elevated plus maze test
and exploratory behavior

Risk-taking behavior of PRS or control progeny [27]
was assessed in the elevated plus maze test (EPM) [47].
Briefly, the test was performed for 5 min early in the
afternoon (between 1 and 4 pm) and began with the
placement of the rat in the center of the maze with the
head facing a closed arm.We used a custom-made EPM
apparatus described by Vallée et al. [16], with closed
and open arms of 20 × 20 cm. The closed arms’ lumi-
nosity was approximately 25 lx, and the luminosity of
the open arms was approximately 50 lx. Behavior was
recorded by a video camera and manually scored by a
trained observer blind to the animals’ condition (PRS
and control) using a software package (Noldus, The
Observer®). The time spent in the open and closed arms
was measured, and the percentage of time spent in the
open arms was calculated and analyzed as risk-taking
behavior. The number of closed arms entries was ana-
lyzed as exploratory behavior.

Fine motor skills in the ladder rung-walking test

The horizontal ladder rung-walking test apparatus [48]
consisted of side walls made of clear plexiglass and
metal rungs (3 mm diameter), which could be inserted
to create a floor with a minimum distance of 1 cm
between rungs. The sidewalls were 1 m long and
19 cm high, as measured from the height of the rungs.
The ladder was elevated 30 cm above the ground with a
refuge (home cage) at the end. Varying the position of
the metal rungs modified the difficulty of the task. A
regular pattern of the rungs allowed the animals to learn
the pattern over several training sessions and to antici-
pate the position of the rungs. To increase the test’s
difficulty, after the training sessions, an irregular pattern
was created to analyze how rats managed to cross the
ladder. The test was recorded using two video cameras.
One video camera was placed in front of the first half of
the ladder at a slight ventral angle, and the other was
placed in front of the second half of the ladder at a slight
ventral angle to precisely analyze the misplacement of
the rat paw. Following the video recording, the foot
faults were scored. A score of one was assigned when
the rat’s paw was misplaced, and a score of two was
assigned when the rat’s paw severely slipped or missed.

Then, the percentage increase in errors between the last
training and the test with the irregular pattern was cal-
culated as follows: error score irregular pattern − error
score last training/error score last training * 100.

Spatial recognition memory in Y-maze and exploratory
behavior

Spatial recognition memory was measured in a two-trial
memory task in a Y-maze [16] made of gray plastic with
three identical arms (50 cm) enclosed with 32-cm-high
side walls and illuminated by dim light (40 lx). Each
arm was equipped with two infrared beams, one at each
end of the arm. The maze floor was covered with rat
odor-saturated sawdust, and the sawdust was mixed
between each session to eliminate olfactory cues. Visual
cues were placed in the testing room and kept constant
during the behavioral testing sessions. The task
consisted of two trials separated by a time interval. In
the first trial (acquisition phase), one arm of the Y-maze
was closed, and animals could visit the two other arms
for 5 min. During the intertrial interval (ITI), rats were
housed in their home cages, which were different from
the test room. During the second trial (retention phase),
animals had free access to the three arms and were again
allowed to explore the maze for 5 min. The time spent in
the novel arm (previously closed in the first trial) was
calculated as a percentage of the total time spent in all
three arms during the first 3 min of the second trial. This
time corresponds to the maximal exploratory activity in
the novel arm, which subsequently declines [49]. Time
spent in the novel arm above chance (i.e., 33%) indi-
cates spatial recognition. Memory performance was
tested with an ITI of 6 h. Total entries in the different
arms were analyzed for 5 min as a measure of the
exploration behavior.

Gross motor skills-locomotor activity in the open-field
arena

Exploratory behavior was evaluated by placing a rat into
a corner of an open-field arena (100 × 100 × 50 cm),
allowing the rat to explore the field for 10 min freely.
Lightning was approximately 60 lx inside the arena.
Activity and trajectory length in the open-field was
recorded and quantified by Video Track® (Viewpoint,
Lyon, France).
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Western blot analysis

The hippocampus (ventral and dorsal), striatum, and
prefrontal cortex of control (CONT) and PRS male
and female rats were rapidly dissected and immediately
stored at −80 °C. Glutamate-related proteins and synap-
tic vesicle-associated proteins were assessed in synap-
tosomes. To isolate synaptosomes, tissue was manually
homogenized with a potter in ten volumes of HEPES-
buffered sucrose (0.32 M sucrose, 4 mM HEPES pH
7.4). All procedures were performed at 4 °C. Homoge-
nates were centrifuged at 1000 × g for 10 min, and the
resulting supernatants were centrifuged at 10,000 × g for
15 min. The pellet obtained from the second centrifuga-
tion was resuspended in ten volumes of HEPES-
buffered sucrose [26]. This pellet contained the crude
synaptosomal fraction. BCA assay was used to deter-
mine protein concentration. Synaptosome lysates were
resuspended in Laemmli reducing buffer, and 20μg for
synaptosomal fraction or 35μg from the total homoge-
nates of each sample were loaded. The samples were
loaded in two different gels. One of the samples was
used as an internal control and was loaded in each gel to
ensure sample homogeneity between different gels and
compare samples from different gels.

Proteins were first separated by electrophoresis
on sodium dodecyl sulfate-polyacrylamide gels ac-
cording to their molecular weight and then trans-
ferred to nitrocellulose membranes (Bio-Rad). The
transfer was performed at 4 °C in a buffer contain-
ing 35 mM Tris, 192 mM glycine, and 20% metha-
nol. After transfer, blots were incubated in a
blocking solution containing Tris-buffered saline
and 5% (w/v) non-fat milk. All the following anti-
bodies were first tested with control samples to
determine the optimal conditions for use. To analyze
several proteins per membrane, membranes were cut
according to the molecular weight of the protein of
interest. We used the following primary antibodies
on synaptosomal fraction: mouse polyclonal anti-
synaptosomal-associated protein, 25 kDa (SNAP25),
rabbit polyclonal anti-synapsin Ia/b (1:4000; catalog
#sc-20780), rabbit polyclonal anti-synaptophysin
(1:8000; catalog #sc-9116), rabbit polyclonal anti-
syntaxin (1:4000, catalog #sc-13994), and rabbit
polyclonal anti-synapsin IIa (1:4000; catalog #sc-
25538), all purchased from Santa Cruz Biotechnol-
ogy; mouse monoclonal anti-rab3a (1:2000; catalog
#107111), mouse monoclonal anti-Munc-18

(1:2000; catalog #116011), and mouse polyclonal
anti-vesicle-associated membrane proteins (VAMP)
(1:1500; catalog #104 111) which were purchased
from Synaptic Systems; rabbit polyclonal anti-
mGlu5 receptors (1:1000; catalog #AB5675) and
rabbit polyclonal anti-mGlu2/3 receptors (1:1000;
catalog #06-676), all purchased from Millipore; rab-
bit polyclonal anti-GluN1 (1:2000; catalog
#ab109182); rabbit monoclonal anti-GluA2
(1/2000; catalog #ab206293), rabbit polyclonal
anti-GluN2A (1:500; catalog #ab14596), mouse
monoclonal ant i -GluN2B (1/1000; ca ta log
#ab28373), rabbit monoclonal anti-VGLUT1
(1/1000; catalog #ab180188), and rabbit polyclonal
anti-vesicular glutamate transporter 2 (VGLUT2)
(1/1000; catalog #ab84103) purchased from Abcam;
mouse monoclonal anti-GluA3 (1/800; catalog
#MAB5416) purchased from Merck; and rabbit
polyclonal anti-cystine/glutamate antiporter (xCT)
(1/500; catalog #KE021) purchased from TransGen-
ic Inc. We used the following primary antibodies on
total homogenates: rabbit polyclonal anti-GR
(1/1000; catalog #24050-1-AP), rabbit polyclonal
anti-GFAP (1/1500; catalog #16825-1-AP), and rab-
bit polyclonal anti-BDNF (1/1000; catalog #28205-
1-AP), all purchased from Proteintech; mouse
monoclonal anti-aromatase (1/500; catalog #sc-
7305) and rabbit polyclonal anti-oxytocin receptor
(OXTR) (1/500; catalog #sc-33209) purchased from
Santa Cruz; and rabbit polyclonal anti-MR (1/1000;
catalog #ab64457) from Abcam. To ensure that each
lane was loaded with an equivalent amount of pro-
teins, the blots were probed with a mouse monoclo-
nal anti-β-actin (1:5000; catalog #A5316, Sigma).
All primary antibodies were incubated overnight at 4
°C. Horseradish peroxidase-conjugated secondary
anti-mouse or anti-rabbit antibodies (purchased
from GE-Healthcare) were used at a dilution of
1:7500 and incubated for 1 h at room temperature.
Bands were visualized with an enhanced chemilu-
minescence system (ECL enhancer Thermo Fisher).
After immunoblotting, digitized images of bands
immunoreactive for target antibodies and actin were
acquired (FUSION®), and the area of immunoreac-
tivity corresponding to each band was measured
using ImageJ. Each blot was normalized to actin.
The ratio of target to actin was then determined, and
these values were compared for stat is t ical
significance.
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Measurement of the interleukin-6 (IL-6), oxytocin,
and sex hormones levels

IL-6 (pg/mL), oxytocin (pg/mL), testosterone (ng/mL),
and estradiol levels (pg/mL) were determined in the
plasma extracted from blood samples. Plasma was col-
lected using ethylenediaminetetraacetic acid (EDTA) as
an anticoagulant and centrifuged for 15 min at 1000 × g
at 4 °C. Plasma was stored at −20 °C until assessment.
All enzyme-linked immunosorbent assay (ELISA) kits
were used according to the manufacturer’s protocol. All
standards, blood samples, and controls were analyzed
concurrently in duplicate. The optical density of the
samples was determined at 450 nm using a microplate
reader (BioTek Instruments, Winooski, USA).

ELISA kit Manufacture Sensibility range

IL-6 CUSABIO (CSB-E04640r) 0.312–20 pg/ml

Oxytocin CUSABIO (CSB-E14197r) 7.5–600 pg/ml

Testosterone DEMEDITECH (DEV9911 rat) 0.066–25 ng/ml

Estradiol DEMEDITECH (DEV9999 rat) 2.5–1.280 pg/ml

Multidimensional analyses

To see how sex and stress affect protein quantities more
generally, we performed a multidimensional analysis on
sets of multiple proteins or behaviors. Proteins were
categorized as glutamatergic synapse proteins, synaptic
vesicle-associated proteins, or stress/anti-stress balance-
related proteins, and analyses were carried out for each
protein set in each brain region.

Since protein levels tended to be correlated with each
other, we used a principal components analysis (PCA)
to summarize the variation in a protein set and for
plotting. For the PCA, individuals who were missing
more than 50% of protein measurements were excluded.
Missing values were replaced with the mean of the sex-
by-PRS group. To quantify distances between groups,
we used the median of the Manhattan distances between
each individual in one group with the centroid of anoth-
er group. We created a “demasculinization score,”
which represents the phenomenon in which PRS causes
males to become more similar to females in various
aspects. The demasculinization score was the distance
from control males to control females divided by the
distance from PRS males to control females. A score
greater than one signifies that PRS males are more
similar to control females than control males. To test

the significance of demasculinization, a Mann–Whit-
ney–Wilcoxon test was used to determine if the differ-
ence between distances was significant.

Partial correlation

To determine significant relationships between the two
measures, we calculated the correlation between the two
measures after controlling for sex and group (PRS/
CONT) on both measures. Generally, Y is a behavior,
and X is a neurophysiological measure, such as protein
or hormone levels. Moreover, β1 ≠ 0 indicates a signif-
icant correlation between X and Y.

Statistical analysis

Behavioral and biochemical data were expressed as the
mean ± standard error of the mean (SEM) and analyzed
using a parametric analysis of variance (ANOVA) with
group (CONT vs PRS) and sex (male and female) as
independent variables. When group × sex interaction
was present, post hoc comparisons were performed
using the Fisher test. A p-value of < 0.05 was considered
statistically significant. A permutational MANOVA
(PERMANOVA) [50] was used to test differences be-
tween groups in ensembles of proteins.

Results

Sex-specific effects of PRS on behavior of aged rats

For the assessment of risk-taking behavior, we used
the EPM (Fig. 2a) to measure the latency to enter the
open arm and the time spent in the open arm. We
observed a sex-dimorphic profile that was inverted
by PRS (latency to open arm, group × sex effect,
F(1,35) = 19.184, p = 0.0001; % time spent in the open
arm, F (1 ,35) = 13.821, p = 0.0007; n = 8–12
rats/group). Unstressed (control) female rats showed
an increased latency to enter the open arm compared to
control males (Fisher, #p = 0.015). In contrast, PRS
females showed reduced latency and increased time
spent in the open arm compared to both PRS males
(###p = 0.00088) and control females (**p = 0.0056).
The opposite was found in males, in which PRS in-
creased the latency (**p = 0.0025) and reduced the
time spent (*p = 0.049) in the open arm compared to
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controls. Thus, PRS reduced risk-taking behavior in
aged males but caused the opposite effect in females.

The study of spatial recognition memory in the Y-
maze test showed a clear sex-dependent effect (group ×
sex effect, F(1,29) = 4.641, p = 0.04; n = 8–9 rats/group).
PRS reduced the recognition score in aged male
(23.24% recognition score) (Fisher, *p = 0.014) but
not in aged female rats (40.71%) as compared to control
rats (43.93% and 37.04% in control males and females,
respectively). There was a significant difference be-
tween PRS male and PRS female rats (Fischer,
#p=0.040) (Fig. 2b).

To examine fine motor skills, we used the ladder
rung-walking test (Fig. 2c). PRS increased the percent-
age of errors in both sexes (group effect, F(1,35)=5.235,

*p = 0.028, n = 8–12 rats/group), but males displayed a
higher percentage of errors than females (sex effect:
F(1,35) = 4.55, #p = 0.04).

Exploratory behavior was assessed in three different
tests (Fig. 2d). In the EPM, PRS reduced the number of
entries in the closed arm in both sexes (group effect,
F(1,35) = 5.147, *p = 0.04, n = 8–12 rats/group). In the
open-field test, PRS reduced the distance traveled in
both sexes (group effect, F(1,36) = 11.004, **p = 0.002;
n = 8–11 rats/group). Furthermore, females showed a
greater distance traveled than males (sex effect, F(1,36) =
20.823, ###p = 0.00005). The same profile was ob-
served in the Y-maze, where PRS decreased the total
arm entries (group effect, F(1,29) = 11.023, **p = 0.0024;
n = 8–9 rats/group), and females showed increased total

Fig. 2 Sex-specific effects of PRS on behavior of aged rats. Risk-
taking behavior in the EPM is shown in a. The latency to the open
arm and time spent in the open arm were the two parameters
analyzed. The spatial recognition memory was studied using the
Y-maze. The recognition score (%) is represented in b. The ladder
rung-walking test was used to study the fine motor skills. The
percentage of errors is shown in c. Exploratory behavior was

analyzed in the EPM test considering the closed arm entries, the
open-field with the distance traveled, and the Y-maze test, where
we analyzed the total arm entries (d). The weight of the animals
before behavioral assessment (21 months old) is represented in e.
Error bars represent the SEM. CONT vs PRS * = p < 0.05; ** = p
< 0.01. Males vs females # = p < 0.05; ## = p < 0.01; ### = p <
0.001
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arm entries compared to males (sex effect, F(1,29) =
4.251, #p = 0.048). Hence, PRS reduced exploratory
behavior in both sexes in all three tests.

The bodyweight of rats (Fig. 2e) was not modified by
PRS. However, we observed that female rats weigh less
than male rats (sex effect, F(1,36) = 79.565, ###p =
0.000001, n = 8–12 rats/group).

Effect of sex and PRS on glutamatergic synapses,
synaptic vesicle-associated proteins, and stress-/
anti-stress-related proteins in the ventral hippocampus
of aged rats

We assessed proteins related to glutamatergic synapses,
including metabotropic and ionotropic glutamate recep-
tors and glutamate transporters, synaptic vesicle-
associated proteins, and stress-/anti-stress-related pro-
teins in stress-related brain regions (ventral and dorsal
hippocampus and prefrontal cortex) and the striatum
region.

In the ventral hippocampus, PRS decreased mGlu2/3
receptor protein levels in both sexes (group effect, F(1,17)

= 8.472, **p = 0.0097; n = 5-6 rats/group) (Fig. 3a). In
addition, females, independently of the group, showed
reduced mGlu2/3 receptor protein levels compared to
males (sex effect, F(1,17) = 4.827, #p = 0.042). PRS
reduced mGlu5 receptors (group × sex effect, F(1,23) =
3.734, p = 0.063; n = 6–7 rats/group) in males compared
to control males (Fisher, *p = 0.049). In addition, con-
trol females showed reducedmGlu5 receptors compared
to control males (Fisher, #p = 0.034). Furthermore,
females showed a reduction in postsynaptic density
protein 95 (PSD95) (sex effect, F(1,19) = 6.919, #p =
0.016; n = 5–7 rats/group) (Fig 3a). The GluN1 subunit
of NMDA receptors was changed between groups
(group × sex effect, F(1,23) = 7.362, p = 0.012, n = 6–7
rats/group). The GluN1 was reduced in PRS males
(Fisher, **p = 0.0013) and control females (Fisher,
###p = 0.00018), as compared to control males. In
contrast, GluN2A protein levels were increased in fe-
males compared to males (sex effect, F(1,17) = 6.944, #p
= 0.017; n = 2–8 rats/group) (Fig 3b).

Interestingly, female PRS rats showed an opposite
profile of VGLUT1 and VGLUT2 expression (Fig 3c),
with VGLUT1 (n = 3–4 rats/group) being increased
(Fisher, #p = 0.04) and VGLUT2 (n = 5–8 rats/group)
decreased (Fisher, #p = 0.028) in PRS females com-
pared to PRS males. xCT protein levels showed signif-
icant changes in the ventral hippocampus (group × sex

effect, F(1,22) = 12.394, p = 0.0019, n = 5–7 rats/group)
and were increased in PRS males (Fisher, **p = 0.0026)
and control females (Fisher, ###p = 0.0008) compared
to control males.

For the synaptic vesicle-associated proteins (Fig 3d),
we observed a group × sex interaction for SNAP25
(F(1,23) = 6.879, p = 0.015, n = 6–7 rats/group), syntaxin
(F(1,23) = 14.301, p = 0.00096, n = 6–7 rats/group), and
Rab3a (F(1,23) = 5.981, p = 0.022, n= 6–7 rats/group)
protein levels. PRS decreased the expression of
SNAP25 (Fisher, **p = 0.0051), syntaxin (Fisher,
***p = 0.00014), and Rab3a (Fisher, **p = 0.0018),
specifically in males. Moreover, we found lower levels
of SNAP25 (Fisher, ###p = 0.00007), syntaxin (Fisher,
###p = 0.00012), and Rab3a (Fisher, ##p = 0.0034)
protein levels in control females compared to control
males. In addition, synaptophysin (SYP) protein levels
were reduced in females compared to males (sex effect,
F(1,22) = 7.73, p = 0.011, n = 6–7 rats/group).

Stress-/anti-stress-related proteins were modified by
PRS and sex (Fig 3e). GR protein levels showed chang-
es (group × sex effect, F(1,23) = 2.913, p = 0.101, n = 6–7
rats/group) and were reduced by PRS only in males
(Fisher, *p = 0.014). The same profile was observed
for MR (group × sex effect, F(1,22) = 7.703, p = 0.011, n
= 5–7 rats/group), where PRSmales showed a reduction
in MR compared to control males (Fisher, *p = 0.021).
Interestingly, PRS females showed higher GR (Fisher,
#p = 0.025) and MR (Fisher, #p = 0.031) protein levels
than PRS males.OXTR protein levels were also affected
(group × sex effect, F(1,23) = 8.325, p = 0.0083, n = 6–7
rats/group) and were higher in control females than in
control males (Fisher, ##p = 0.007), but PRS reduced
OXTR expression in females (Fisher, *p = 0.02). BDNF
levels were increased in females, independent of the
group (sex effect, F(1,22) = 6.354, #p = 0.019; n = 6–7
rats/group). Representative immunoblots of GR and
MR are shown in Fig. 3f. All immunoblots are shown
in Supplementary Figs. 1, 2, and 3.

Effect of sex and PRS on glutamatergic synapses,
synaptic vesicle-associated proteins, and stress-/
anti-stress-related proteins in the dorsal hippocampus
of aged rats

In the dorsal hippocampus (Fig. 4), we found no differ-
ence in the mGlu2/3 protein levels, whereas mGlu5
receptors were affected by PRS and sex (group × sex
effect, F(1,21) = 13.886, p = 0.0012, n= 5–7 rats/group).
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There was a large reduction in mGlu5 receptor pro-
tein levels in PRS males (Fisher, ***p = 0.00003)
and control females (Fisher, ###p = 0.000001) com-
pared to control males (Fig. 4a). GluN1 protein
levels were reduced in females (sex effect, F(1,23) =
10.308; p = 0.0039, n = 6–7 rats/group). The GluA2
subunit of AMPA receptors was reduced by PRS in
both sexes (group effect, F(1,22) = 6.179, *p = 0.021;
n = 5–9 rats/group). We also found a group × sex
interaction for GluN2B (group × sex effect, F(1,21) =
11.696, p = 0.0026, n = 4–9 rats/group), GluA3
(group × sex effect, F(1,22) = 4.964, p = 0.036, n =
five to nine rats/group), VGLUT1 (group × sex
effect, F(1,21) = 10.885, p = 0.0034, n = 4–9
rats/group), and xCT (group × sex effect, F(1,21) =
16.044, p = 0.00064, n = 5–7 rats/group). The post
hoc analysis revealed that PRS males displayed re-
ductions in protein levels compared to control males

for GluN2B (Fisher, ***p = 0.00023), GluA3 (Fish-
er, **p = 0.0091), VGLUT1 (Fisher, ***p =
0.00024), and xCT (Fisher, ***p = 0.00084). Simi-
larly, control females showed a reduction in
GluN2B (Fisher, ###p = 0.00022), GluA3 (Fisher,
#p = 0.037), VGLUT1 (Fisher, ###p = 0.00082),
and xCT (Fisher, #p = 0.014) compared to control
males (Fig. 4b, 4c).

PRS reduced SNAP25 protein levels in both
sexes (group effect, F(1,23) = 6.487, *p = 0.018; n
= 6–7 rats/group). In addition, SNAP25 (sex effect,
F(1,23) = 5.484, #p = 0.02) and SYP (sex effect,
F(1,23) = 4.956, #p = 0.036; n = 6–7 rats/group)
protein levels were reduced in females of both
groups (Fig. 4d).

MR protein levels were altered (group × sex
effect, F(1,23) = 10.853, p = 0.0032, n = 6–7
rats/group) and were higher in PRS males (Fisher,

Fig. 3 Effect of sex and PRS on glutamatergic synapses, synaptic
vesicle-associated proteins and stress-/anti-stress-related proteins
in the ventral hippocampus of aged rats. Immunoblot analysis of
the biochemical markers of glutamatergic synapses (a, b, c) and
synaptic vesicle-associated proteins (d) in synaptosomal fractions
collected from the ventral hippocampus of aged male and female

PRS and control (CONT) rats. Immunoblot analysis of stress-/anti-
stress-related proteins in total homogenates (e). Representative
immunoblots of GR and MR (f). Error bars represent the SEM
images. CONT vs PRS * = p < 0.05; ** = p < 0.01; *** = p <
0.001. Males vs females # = p < 0.05; ## = p < 0.01; ### = p <
0.001
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**p = 0.008) and control females (Fisher, ##p =
0.0011) than in control males. A sex-dimorphic pro-
file was observed for GFAP (group × sex effect,
F(1,22) = 8.690, p = 0.0074, n = 5–7 rats/group).
Indeed, PRS reduced GFAP expression only in
males (Fisher, **p = 0.0081), while GFAP expres-
sion was increased in PRS females (Fisher, #p =
0.034) compared to PRS males (Fig . 4e ) .
Representative immunoblots of GR and MR are
shown in Fig. 4f. All immunoblots are shown in
Supplementary Figs. 4, 5, and 6.

Protein levels of aromatase, an enzyme that converts
testosterone into estradiol [51], were analyzed in the
dorsal hippocampus by western blot (Fig. 4g). We ob-
served a sex-dimorphic profile induced by PRS (group
× sex effect, F(1,23) = 12.071, p = 0.0021; n = 6–7
rats/group). PRS increased aromatase levels in males
compared to control males (Fisher, **p = 0.0062) and

reduced levels in PRS females (Fisher, ##p = 0.0071)
compared to PRS males.

Effect of sex and PRS on glutamatergic synapses,
synaptic vesicle-associated proteins, and stress-/
anti-stress-related proteins in the prefrontal cortex
of aged rats

In the prefrontal cortex (Fig. 5), we observed a reduc-
tion in mGlu2/3 receptor protein levels in response to
PRS (group effect, F(1,22) = 13.858, **p = 0.0011, n = 6–
7 rats/group) and in female rats (sex effect, F(1,22) =
7.436, #p = 0.012, n = 6–7 rats/group). mGlu5 receptors
were also reduced (group × sex effect, F(1,22) = 3.093, p
= 0.093, n = 6–7 rats/group). In particular, we found a
reduction in PRS males (Fisher, *p = 0.02) and control
females (Fisher, #p = 0.035) compared to control males.
Moreover, PSD95 protein levels were decreased by PRS

Fig. 4 Effect of sex and PRS on glutamatergic synapses, synaptic
vesicle-associated proteins and stress-/anti-stress-related proteins
in the dorsal hippocampus of aged rats. Immunoblot analysis of
the biochemical markers of glutamatergic synapses (a, b, c) and
synaptic vesicle-associated proteins (d) in synaptosomal fractions
collected from the dorsal hippocampus of aged male and female

PRS and control (CONT) rats. Immunoblot analysis of the stress-/
anti-stress-related proteins in total homogenates (e). Representa-
tive immunoblots of GR and MR (f). Immunoblot analysis of
aromatase (g). Error bars represent the SEM images. CONT vs
PRS * = p < 0.05; ** = p < 0.01; *** = p < 0.001.Males vs females
# = p < 0.05; ## = p < 0.0; ### = p<0.001
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(group effect, F(1,22) = 25.134, ***p = 0.00005; n = 6–7
rats/group) and in female rats (sex effect, F(1,22) = 5.47,
#p = 0.029; n = 6–7 rats/group) (Fig. 5a). PRS also
reduced GluN1 protein levels in both sexes (group
effect, F(1,22) = 5.615, *p = 0.027; n = 6–7 rats/group).
A group × sex interaction was found for (GluN2B
(F(1,18) = 6.658, p = 0.019, n = 4–7 rats/group), GluA2
(F(1,20) = 3.494, p = 0.076; n = 6–7 rats/group), and
GluA3 (F(1,22) = 11.528, p = 0.0026; n = 5–7
rats/group). PRS males displayed a reduction in protein
expression compared to control males for GluN2B
(Fisher, **p = 0.0045), GluA2 (Fisher, *p = 0.016),
and GluA3 (Fisher, ***p = 0.00001). Similarly, control
females showed reduced GluN2B (Fisher, ###p =
0.00096), GluA2 (Fisher, ##p = 0.0059), and GluA3
(Fisher, ###p = 0.00004) protein levels, compared to
control males (Fig. 5b). Furthermore, females of both
groups showed an increase in xCT protein levels (sex

effect, F(1,19) = 5.76, #p = 0.027; n = 4–7 rats/group)
(Fig. 5c).

Few changes in the synaptic vesicle-associated with
the prefrontal cortex were observed (Fig. 5d). Syntaxin
expression was changed (group × sex effect, F(1,23) =
14.301, p = 0.067, n = 6–7 rats/group) and reduced in
PRS males compared to control males (Fisher, *p =
0.015). In contrast, synapsin IIa expression was in-
creased by PRS in both sexes (group effect, F(1,23) =
5.318, *p = 0.011; n = 6–7 rats/group).

MR protein levels were altered (group × sex effect,
F(1,20) = 6.486, p = 0.019, n = 6 rats/group) and were
increased in PRS females compared to PRSmales (Fish-
er, *p = 0.036) and control females (Fisher, #p = 0.028).
Furthermore, females of both groups displayed greater
OXTR protein levels (sex effect, F(1,19) = 8.829, #p =
0.01; n = 5–6 rats/group). Interestingly, we found a
higher expression of BDNF (sex effect, F(1,20) =

Fig. 5 Effect of sex and PRS on glutamatergic synapses, synaptic
vesicle-associated proteins and stress-/anti-stress-related proteins
in the prefrontal cortex of aged rats. Immunoblot analysis of
biochemical markers of glutamatergic synapses (a, b, c) and
synaptic vesicle-associated proteins (d) in synaptosomal fractions
collected from the prefrontal cortex of aged male and female PRS

and control (CONT) rats. Immunoblot analysis of the stress-/anti-
stress-related proteins in total homogenates (e). Representative
immunoblots of GR and MR (f). Error bars represent the SEM
images. CONT vs PRS * = p < 0.05; ** = p < 0.01; *** = p <
0.001. Males vs females # = p < 0.05; ## = p < 0.01; ### = p <
0.001
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13.705, ##p = 0.0014; n = 6 rats/group) and GFAP (sex
effect, F(1,19) = 16.466, ###p = 0.00067; n = 6
rats/group) in females of both groups (Fig. 5e). Repre-
sentative immunoblots of GR andMR are shown in Fig.
5f. All immunoblots are shown in Supplementary Figs.
7, 8, and 9.

Effect of sex and PRS on glutamatergic synapses
and synaptic vesicle-associated proteins in the striatum
of aged rats

In the striatum (Fig. 6), PSD95 protein levels were
reduced (group × sex effect, F(1,18) = 11.978, p =
0.0028; n = 4–7 rats/group) in PRS males (Fisher, **p
= 0.0013) and control females (Fisher, ###p = 0.00009)
compared to control males (Fig. 6a). Moreover, PRS
increased GluN1 (group × sex effect, F(1,23) = 5.24, p =
0.032, n = 6–7 rats/group) only in females (Fisher, ##p =
0.0056). GluA2 was decreased in females of both
groups (sex effect: F(1,18) = 4.872, #p = 0.04; n = 4–6
rats/group) (Fig. 6b). Concerning VGLUT2 protein
levels, we found a sex-dimorphic profile, which was
inverted by PRS (group × sex effect, F(3,18) = 9.119, p
= 0.0074; n = 4–7 rats/group). PRS decreased VGLUT2
in males (Fisher, *p = 0.035) but increased VGLUT2 in
females (Fisher, ##p = 0.0036) compared to control
male and PRS male rats, respectively (Fig. 6c).

Synaptic vesicle-associated proteins were modified
by sex and PRS (Fig. 6d). We observed a group × sex
interaction for the expression of SNAP25 (F(1,23) =
8.441, p = 0.008; n = 6–7 rats/group), Munc-18 (F(1,23)

= 4.26, p = 0.05; n = 5–7 rats/group), and VAMP (F(1,21)

= 11.51, p = 0.0027; n = 5–7 rats/group). PRS males
displayed a reduction in Rab3a (Fisher, *p = 0.016),
Munc-18 (Fisher, *p = 0.017), and VAMP (Fisher, *p =
0.015) protein levels compared to control males. More-
over, control females showed reduced SNAP25 protein
levels (Fisher, ##p = 0.0022). Similarly, protein levels
of synapsin Iab were modified (group × sex effect,
F(1,24) = 11.51, p = 0.074; n = 7 rats/group) and were
increased in PRS females (Fisher, *p = 0.02) compared
to control females. Representative immunoblots of
SNAP25 and Munc-18 are shown in Fig. 6f. All immu-
noblots are shown in Supplementary Figs. 10 and 11.

Multidimensional analysis

Consecutively with the western blot analysis, we per-
formed a multidimensional analysis with all the protein

data obtained in each structure to analyze the effect of
PRS and sex on the prote in data set more
comprehensively.

The multidimensional analyses revealed a
demasculinization profile of the glutamatergic synapse
induced by PRS in the ventral hippocampus (Fig. 7a;
demasculinization score, 1.41; Mann–Whitney–
Wilcoxon test, p = 0.002; n = 5–7 rats/group), in the
dorsal hippocampus (Fig. 7b; demasculinization score,
1.55; Mann–Whitney–Wilcoxon test, p = 0.0006; n = 5-
9 rats/group) as well as in the prefrontal cortex (Fig. 7c;
demasculinization score, 1.50; Mann–Whitney–
Wilcoxon test, p < 0.0001; n = 6–7 rats/group) but not
in the striatum (Fig. 7d; demasculinization score, 1.26;
Mann–Whitney–Wilcoxon test, p = 0.06; n = 6–7
rats/group). PRS did not induce a global defeminization
profile of glutamatergic synapses in any of the brain
regions studied. Of note, multidimensional analyses
performed on the stress-/anti-stress-related protein data
set revealed that PRS induced a defeminization profile
only in the ventral hippocampus (defeminization score,
1.71; Mann–Whitney–Wilcoxon test, p = 0.004; n = 5–7
rats/group) (Supplementary Fig. 12a) and a
demasculinization profile exclusively in the dorsal hip-
pocampus (demasculinization score, 1.73; Mann–Whit-
ney–Wilcoxon test, p = 0.001; n = 5–9 rats/group)
(Supplementary Fig. 12b). Thus, demasculinization
could be observed only for proteins related to gluta-
matergic transmission.

Effect of sex and PRS on sex hormones and peripheral
markers in aged male and female rats

We assessed plasma testosterone and estradiol levels
(Fig. 8a, 8b). We found a significant reduction in tes-
tosterone levels in response to PRS in both sexes (group
effect, F(1,24) = 5.882, *p = 0.023; n= 5–9 rats/group).
Moreover, females displayed lower levels of testoster-
one than males (sex effect, F(1,24) = 4.42, #p = 0.046; n =
5–9 rats/group) (Fig. 8a). Estradiol levels in the plasma
revealed a group × sex interaction (F(1, 21) = 5.3, $p =
0.032; n = 4–8 rats/group) where PRS females showed
lower levels of estradiol than control females (one-way
ANOVA, ***p = 0.00021) and PRS males (one-way
ANOVA, #p = 0.034) (Fig. 8b).

We alsomeasured plasma levels of IL-6 and oxytocin
as peripheral markers of inflammation and resilience to
stress, respectively (Fig. 8c, 8d). We found a group ×
sex interaction for IL-6 levels (group × sex effect, F(1,20)
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= 22.901, p = 0.00007; n = 5–9 rats/group). PRS largely
reduced IL-6 levels in females (Fisher, ***p = 0.00031)
but not males, which displayed higher IL-6 levels than
control males (Fisher, *p = 0.024). Furthermore, control
females showed an increase in IL-6 levels (Fisher, ###p
= 0.000003) compared to control males. We did not
observe changes in oxytocin levels by PRS (F(1,15) =
0.657; p = 0.43; n = 4–6 rats/group) or sex (F(1,15) =
0.059; p = 0.81).

We performed partial correlations to examine the
relationships between behavior and sex hormones
and two peripheral markers (IL-6 and oxytocin) in
relation to PRS and sex. We found a positive corre-
lation between exploratory behavior and testosterone
levels (p = 0.02; n = 5–7 rats/group). In addition, we
observed a negative correlation between risk-taking
behavior in the EPM and levels of IL-6 (p = 0.019; n
= 5–9 rats/group; Fig. 8f) and a positive correlation
with oxytocin levels (p = 0.006; n = 4–6 rats/group;
Fig. 8g).

Discussion

We showed that perinatal stress programs lifelong
changes in mechanisms that help to balance vulnerabil-
ity and resilience to stress. Indeed, non-genetic factors
such as stress occurring early in life are known to act as
perinatal “programming” because they critically con-
tribute to several aspects of the adult phenotype. This
concept is based on Barker’s theory of the evolutionary
origins of adult health and disease (DOHaD). This the-
ory defines the relationship between early developmen-
tal influences on health and disease in adulthood and
aging [52–54]. We observed that long-term program-
ming was sex-dependent in both non-stressed and PRS
aged rats. At a behavioral level, PRS increased risk-
taking behavior in females but decreased it in males.
These results are similar to those observed in adult (3–6
month old) rats [32], indicating that the sex-dependent
programming induced by PRS is persistent and uniform.
While PRS impaired spatial memory in males, no

Fig. 6 Effect of sex and PRS on glutamatergic synapses and
synaptic vesicle-associated proteins in the striatum of aged rats.
Immunoblot analysis of biochemical markers of glutamatergic
synapses (a, b, c) and synaptic vesicle-associated proteins (d) in
synaptosomal fractions collected from the striatum of aged male

and female PRS and control (CONT) rats. Representative immu-
noblots of SNAP-25 and Munc-18 (e). Error bars represent the
SEM images. CONT vs PRS * = p < 0.05; ** = p < 0.01; males vs
females # = p < 0.05; ## = p < 0.01; ### = p < 0.001
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changes were observed in females. These results are also
consistent with previous findings obtained in males [16]
and suggest that females are resilient to maladaptive
neuroplasticity changes caused by early-life stress. Mo-
tor performance declines with aging, as shown by in-
creased variability of movement [55], slowing of move-
ment [56], altered coordination [57], and difficulties
with balance and gait [58]. Using the ladder rung-
walking test, we showed that PRS increased the number
of errors predominantly in males, lending credit to the
hypothesis that aged females cope better with PRS, even
if PRS decreased exploratory behavior in the EPM, Y-
maze, and open-field tests equally in both sexes.

Impressively, these alterations were associated with
large reductions in biochemical markers of the gluta-
matergic synapse in the hippocampus (ventral and dor-
sal) and prefrontal cortex, which were exclusively seen
in males. PRS decreased both the mGlu5 receptor and
GluN1 subunit protein levels in male rats. A similar

scenario was reported in adult rats, in which PRS re-
duced hippocampal mGlu5 receptors only in males [32].
mGlu5 and NMDA receptors are physically linked by a
chain of scaffolding proteins and functionally interact in
the induction of activity-dependent synaptic plasticity
[59, 60]. Changes in mGlu5 and NMDA receptors
found in this study are in agreement with previous data
observed in adult PRS male rats [61] and suggest that
PRS impairs the receptor substrates of synaptic plastic-
ity in agedmale rats. Interestingly, the lowering effect of
PRS on mGlu2/3 receptor protein levels in the ventral
hippocampus and prefrontal cortex of aged rats was not
sex-dependent, whereas it was sex-dependent in non-
stressed control rats, with control females showing re-
duced mGlu2/3 protein levels as compared to control
males. Again, the PRS effects were similar to those
reported in the whole hippocampus of adult rats, where
PRS reduced mGlu2/3 receptor protein levels in both
sexes [32]. Activation of the mGlu2/3 receptors with the

Fig. 7 Multidimensional analyses. Multidimensional analysis of
the protein data set (markers of the glutamatergic synapse, synaptic
vesicles-associated proteins, and stress-/anti-stress-related

proteins) of the ventral hippocampus (a), dorsal hippocampus
(b), prefrontal cortex (c), and striatum (d). PCA, principal compo-
nent analysis
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agonist, LY354740, induces increased risk-taking be-
havior in male rats [62, 63]. mGlu2/3 receptors are
targets for drug treatment of anxiety and other stress-
related disorders in humans [64]. Here, reduced mGlu2/
3 receptor expression was associated with decreased
exploratory behavior in PRS rats of both sexes.
mGlu2/3 receptors are preferentially localized in pre-
synaptic terminals and are known to negatively regulate
glutamate release [65]. Using adult rats, we found that
PRS reduces glutamate release in the ventral hippocam-
pus [26]. Hence, the reduction in mGlu2/3 receptor
expression seen during early-life [66], adult life [32],
and aging (present data) could represent an allostatic
compensatory mechanism, which operates across the
entire lifespan. One of the most interesting findings
related to a possible hypofunction of the glutamatergic
synapse in PRS males was the reduction of NMDA and
AMPA receptor subunits. NMDA and AMPA receptors
are ligand-gated ion channels involved in the induction
and expression of long-term potentiation and long-term

depression of excitatory synaptic transmission, respec-
tively [67, 68]. In agreement with our results, it has been
reported that early-life stress impairs the development of
synaptic plasticity in the CA1 hippocampal region in a
sex-dependent manner, with males being more vulnera-
ble [69]. Furthermore, a decrease in GluN2B following
early-life stress has been reported in the hippocampus
[70]. Interestingly, xCT protein levels in PRS male rats
differed between the dorsal and ventral hippocampi.
xCT protein levels in male rats were increased in the
ventral hippocampus and decreased in the dorsal hippo-
campus in response to PRS. xCT is the catalytic subunit
of Xc

-, the cysteine glutamate antiporter that supports
the endogenous activation of presynaptic mGlu2 recep-
tors by enhancing glutamate efflux from astrocytes [71].
xCT in the hippocampal dentate gyrus has been impli-
cated in the mechanisms of resilience to stress [72], and
changes in glutamate homeostasis in response to stress
differ between the ventral and dorsal hippocampi [26,
72]. Hence, the differential expression of xCT in the

Fig. 8 Effect of sex and PRS on sex hormones and peripheral
markers in aged male and female rats. Plasma levels of testoster-
one (ng/mL) (a), estradiol (pg/mL) (b), interleukin-6 (pg/mL) (c),
and oxytocin (pg/mL) (d). Partial correlation between exploratory
behavior in the EPM and testosterone levels is shown in e. Partial

correlation between risk-taking behavior and IL-6 is represented in
f. Partial correlation between risk-taking behavior and oxytocin
levels is shown in g. Error bars represent the SEM. CONT vs PRS
* = p < 0.05; *** = p < 0.001.Males vs females # = p < 0.05; ### =
p < 0.001
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ventral and dorsal hippocampus of PRS rats could help
explain the greater involvement of the ventral hippo-
campus in the “pathological” phenotype triggered by
PRS.

Glutamatergic neurotransmission is also regulated by
the expression and function of synaptic vesicle-related
proteins involved in glutamate release [73, 74]. Synaptic
vesicle-associated proteins were decreased by PRS in
the ventral hippocampus and striatum of male rats,
suggesting that PRS predisposes to long-term dysfunc-
tion of the release machinery in aged rats. The
hypofunction of glutamate transmission observed in
the ventral hippocampus of aged male PRS rats is in
agreement with previous results obtained in adult male
PRS rats [26, 27, 75]. This supports the hypothesis that
long-lasting alterations in the glutamate synapse in the
ventral hippocampus lie at the core of the programming
triggered by PRS.

Compared to males, females showed reduced body
weight regardless of early-life stress. This may have a
potential impact on the sex-specific dimorphic profile
observed in aged rats. Indeed, it has been shown that
caloric restriction and subsequent weight loss during
aging could prevent the reprogramming of daily
rhythms in mice caused by aging [76]. The reduced
body weight in females, associated with increased levels
of BDNF and MR, supports neuroprotection. PRS did
not induce changes in body weight in both sexes during
aging. This was not surprising because we have previ-
ously shown that PRS induced caloric restriction and
reduced body weight at birth but not in adult life [77].
The recovery of body weight after early postnatal life in
PRS rats might reflect adaptive mechanisms driven by
growth-related metabolic alterations in these rats [30,
31, 77–79].

Glucocorticoids regulate glutamate transmission via
MRs and GRs [22, 80, 81]. A link between MRs and
mGlu receptors is suggested by evidence that glucocor-
ticoids, acting via MRs, decrease resilience to stress by
downregulating mGlu2 receptors [82]. The activation of
GRs by glucocorticoids mediates the negative feedback
of the HPA axis. Therefore, decreased GR and MR
expression contribute to the long-lasting dysregulation
of the HPA axis. Accordingly, prolonged corticosterone
secretion following acute stress associated with reduced
GR/MR protein levels in the hippocampus has been
found in male adult PRS rats [15, 20]. In addition,
circulating glucocorticoid levels in PRS middle-aged
male [16] and female [30, 31] rats were similar to those

of old non-stressed control rats, suggesting that PRS
accelerates the age-related dysfunction of the HPA axis
[16, 30, 31, 83, 84]. Here, we showed that PRS de-
creased GR and MR protein levels in the ventral hippo-
campus of male rats, whereas MR levels were increased
in female rats. This suggests that PRS female rats are
more protected than PRS male rats against the acceler-
ated age-related dysfunction of the HPA axis. Further-
more, impairment of the HPA axis in aged PRS rats may
be involved in the programming of a long-lasting
hypofunction of the glutamatergic synapse ([26]; and
present data). Oxytocin acts as an anti-stress hormone
[25, 85, 86]) and supports maternal care [46, 86, 87].
Although plasma oxytocin levels were unchanged by
PRS in both sexes, we observed increased oxytocin
receptors in the prefrontal cortex of female PRS rats,
indicating increased oxytocinergic transmission. BDNF
is another key factor in the stress response. Like oxyto-
cin, BDNF has anti-stress effects, as shown by evidence
that the overexpression of BDNF occludes the effects of
chronic stress [88] and chronic stress decreases BDNF
levels [89]. BDNF-mediated signaling is involved in the
structural effects of stress and plays an important role in
dendritic remodeling [90, 91]. In addition, BDNF ex-
pression is influenced by maternal separation early in
life [92]. GFAP levels in the dorsal hippocampus were
increased by PRS in females and reduced in males.
GFAP is an astrocyte-specific intermediate filament
protein [93, 94], which increases during reactive
astrogliosis associated with neurodegeneration.

Multidimensional analyses of the overall data on
protein expression showed that PRS in male rats in-
duced a “demasculinization profile” of glutamatergic
transmission and synaptic vesicle-related proteins in
the ventral and dorsal hippocampus and prefrontal cor-
tex, the main regions related to stress [95], but not in the
striatum. In contrast, PRS did not alter the profile in
female rats. That is, it did not induce defeminization.
These findings are consistent with previous data obtain-
ed in adult rats [42]. Thus, PRS demasculinizes rather
than defeminizes, and indeed male PRS rats exhibited a
profile similar to that of female PRS rats. Indeed, mas-
culinization or feminization allows for the capacity to
express sex-specific profiles in adulthood, and
demasculinization or defeminization eliminates or re-
duces the capacity to express sex-specific profiles in
adulthood. Demasculinization might reflect changes in
sex steroid hormones. Indeed, PRS males showed de-
creased testosterone and increased estradiol levels in
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plasma. A reduction in testosterone levels might repre-
sent a lifelong endocrine outcome of PRS in male rats
because it was observed in fetal and adult life after
maternal stress [29, 37, 43]. Thus, the sex hormonal
change induced by PRS could be taken into account in
relation to the demasculinization of the glutamatergic
system observed during old age. The higher GFAP
levels found in the prefrontal cortex of aged female rats
in both groups were associated with lower testosterone
levels compared to male rats. However, this association
was not found in the dorsal hippocampus of PRS male
rats, where GFAP levels were largely reduced despite
the reduction in plasma testosterone levels compared to
unstressedmale rats. Thus, changes in GFAP expression
driven by sex and PRS in aged rats appear to be brain
region-dependent and might reflect a complex interac-
tion between peripheral sex steroids and intrinsic brain
mechanisms. Interestingly, we found that aromatase, the
enzyme that converts testosterone to estradiol, was up-
regulated by PRS in males and downregulated in fe-
males in the dorsal hippocampus but not in the ventral
hippocampus or prefrontal cortex (data not shown),

supporting the region-specific regulation of GFAP by
sex steroids.

Glucocorticoids and the immune system are tight-
ly linked, and alterations in the immune system were
found to be induced by PRS in adult life, as shown
by a pro-inflammatory state [18]. Here, we found
that PRS increased IL-6 levels in males but caused
the opposite effect in females. It is known that IL-6
levels increase with age in both rats [96] and
humans [97]. Thus, our findings suggest that fe-
males are protected against systemic inflammation
during aging, which is caused by early-life stress.
Interestingly, rats with higher levels of IL-6 showed
reduced risk-taking behavior in the EPM test, and
this negative correlation is in line with the current
belief that inflammation highly contributes to behav-
ioral changes associated with age and age-related
disorders. Finally, the levels of the anti-stress hor-
mone, oxytocin, which corrects behavioral and bio-
chemical abnormalities caused by PRS in adult rats
[46], showed a positive correlation with risk-taking
behavior, supporting the view that oxytocin has a

Fig. 9 Graphical abstract. Aged male and female control rats
display sex differences in the brain. PRS induces brain
demasculinization, thereby abolishing sex differences. PRS does
not affect females as much as males during aging, suggesting that

females are protected against PRS. Males are represented in blue,
and females are represented in pink. E = embryologic day; P =
postnatal day
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protective effect against the increased vulnerability
to stress caused by PRS.

In conclusion, our findings provide the first evidence
that the effects of PRS are long-term programmed and
sex-dependent. PRS induces a demasculinization profile
of glutamate and synaptic vesicle-related proteins in
aged male rats but not defeminization in female rats.
The early-lifelong programming induced by PRS
strongly supports Barker’s hypothesis of adult health
and disease (DOHaD). In aged PRS females, the lower
systemic levels of the pro-inflammatory cytokine, IL-6,
and the higher levels of BDNF in stress-related brain
regions might be components of an adaptive mechanism
aimed at restraining age-dependent neuroinflammation
and neu r od egen e r a t i o n . A l ong t h i s l i n e ,
demasculinization observed in PRS male rats might
reflect an allostatic load reaction against PRS, as hy-
pothesized in Fig. 9. This kind of studies aimed at
understanding the mechanisms involved in the program-
ming of aging in both sexes may contribute to identify-
ing early environmental factors and pharmacological
treatment strategies involving glutamate transmission.
Finally, due to people living longer, and thus, the pop-
ulation of elderly growing worldwide, such studies
could help improve older adults’ quality of life.

Supplementary Information The online version contains sup-
plementary material available at https://doi.org/10.1007/s11357-
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