Oxidation of CuII to CuIII, Free Radical Production, and DNA Cleavage by Hydroxy-salen−Copper Complexes. Isomeric Effects Studied by ESR and Electrochemistry - Université de Lille Accéder directement au contenu
Article Dans Une Revue Journal of the American Chemical Society Année : 1999

Oxidation of CuII to CuIII, Free Radical Production, and DNA Cleavage by Hydroxy-salen−Copper Complexes. Isomeric Effects Studied by ESR and Electrochemistry

Résumé

A series of copper complexes of bis(hydroxysalicylidene)ethylenediamine (hydroxy-salens) have been synthesized. The hydroxy group in the ortho, meta, or para position on each salicylidene unit was added to reinforce the stability of the copper complex and to create a hydroquinone system cooperating with the copper redox system to facilitate the spontaneous formation of oxidizing CuIII species. Cyclic voltammetry and ESR spectroscopy in combination with electrochemistry and spin trapping experiments have been used to characterize the structure and the redox state of the hydroxy-salen−copper complexes and to evidence the production of oxygen-based free radicals. A complete set of magnetic values were determined. In addition, we studied the capacity of complexes 3a,b,c to cleave DNA in the absence of activating agents. The meta isomer 3b does not generate oxygen radicals, and as a result it cannot cleave DNA. In sharp contrast, the para isomer 3c and to a lower extent the ortho isomer 3a exhibit nuclease activities in relation to their capacities to produce oxygen radicals. Electrochemistry provides unequivocal evidence for the formation of CuIII species with compounds 3a and 3c, but not with 3b. The nuclease activity correlates well with the ability of the hydroxy-salens to form the oxidizing CuIII species. The redox properties and therefore the DNA cleaving activities of the complexes depend crucially on the position of the OH groups which contribute significantly to stabilize the square planar copper complexes. The present work supports the hypothesis that a hydroquinone system can cooperate with a redox metal system to trigger DNA cleavage. The design of metallo(hydroxy-salens) provides an original route for the development of self-activated chemical nucleases.

Dates et versions

hal-03420210 , version 1 (09-11-2021)

Identifiants

Citer

Eric Lamour, Sylvain Routier, Jean-Luc Bernier, Jean-Pierre Catteau, Christian Bailly, et al.. Oxidation of CuII to CuIII, Free Radical Production, and DNA Cleavage by Hydroxy-salen−Copper Complexes. Isomeric Effects Studied by ESR and Electrochemistry. Journal of the American Chemical Society, 1999, Journal of the American Chemical Society, 121 (9), pp.1862-1869. ⟨10.1021/ja982221z⟩. ⟨hal-03420210⟩
14 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More