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Abstract
Five different interatomic potentials designed for modelling forsterite Mg

2
SiO

4
 are compared to ab initio and experimental 

data. The set of tested properties include lattice constants, material density, elastic wave velocity, elastic stiffness tensor, 
free surface energies, generalized stacking faults, neutral Frenkel and Schottky defects, in the pressure range 0 − 12 GPa 
relevant to the Earth’s upper mantle. We conclude that all interatomic potentials are reliable and applicable to the study of 
point defects. Stacking faults are correctly described by the THB1 potential, and qualitatively by the Pedone2006 potential. 
Other rigid-ion potentials give a poor account of stacking fault energies, and should not be used to model planar defects or 
dislocations. These results constitute a database on the transferability of rigid-ion potentials, and provide strong physical 
ground for simulating diffusion, dislocations, or grain boundaries.

Keywords Numerical simulation · Forsterite · Lattice defects

Introduction

Olivine (Mg,Fe)2SiO4 is the most abundant mineral in 
Earth’s upper mantle, as it constitutes more than 60% of its 
mass. As such, knowledge of its properties and response to 
mechanical solicitation is key to understanding the rheology 
of the Earth interior. Although the bulk properties of crys-
talline olivine are well constrained, the elementary mecha-
nisms associated with its deformation remain challenging 
to characterize, and the respective roles of various defects, 
dislocations, grain boundaries, vacancies and impurities, are 
still the matter of ongoing debates (Demouchy 2021).

In complementarity with experimental work, numerical 
simulations at the atomic scale are a powerful tool to inves-
tigate the individual role of defects. However, modelling 
defects often requires large-scale models counting from a 
thousand to several millions of atoms, a scale that is out of 
reach of ab initio methods, and will remain so in the foresee-
able future. Faster methods have to be considered, such as 
classical molecular dynamics simulations using empirical 

potentials. Such methods are reputed less accurate than ab 
initio methods, and of variable accuracy depending on the 
properties they were fitted to. This is why it is critically 
important to assess the domain of validity of an empirical 
potential, and make sure that it describes accurately the 
key properties of the material, before using it in large-scale 
simulations.

Over the years, various empirical interatomic potentials 
were developed for modelling silicate minerals and glasses. 
In this work we compare five different interatomic potentials 
parametrized over the last 40 years either specifically for 
forsterite, or for various silicate phases. Using experimen-
tal and ab initio data from literature as reference, we test 
the ability of the interatomic potentials to reproduce cor-
rectly some target properties of forsterite, such as the lattice 
parameters, elastic constants, stacking fault energies, and 
Schottky defects energies. The goal of this work is to pro-
vide physical ground justifying the usage of such empirical 
potentials for modelling defects and deformation of forst-
erite, in particular point defects and diffusion, dislocation 
glide, or grain boundaries.
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Methods and models

Forsterite crystallography

Forsterite Mg2SiO4 is an orthorhombic crystal, thermody-
namically stable from ambient pressure up to about 12 GPa 
(Ringwood 1975; Hazen 1976). In the following, we describe 
it in the Pbnm space group, where the three shortest lattice 
vectors are such that [100] < [001] < [010] . The unit cell 
counts four formula units, i.e., 28 atoms, and is represented 
in Fig. 1. As noticed by Bragg and Brown in their determina-
tion of the olivine structure in 1926 (Bragg et al. 1926), the 
oxygen ions form an approximately hexagonal close packed 
(hcp) sublattice. Silicon ions sit at the center of oxygen 
tetrahedra, and magnesium ions occupy two different sites 
labelled Mg1 and Mg2. Oxygen ions occupy three differ-
ent types of sites labelled O1, O2, O3, such that the Si− O1 
bonds are aligned with [100], the O3− O3 bonds with [001], 
and the O2 ion occupies the last corners of the tetrahedra. As 
the starting structure, we use the lattice parameters and ions 
positions determined by Baur in 1972 using X-ray diffrac-
tion (Baur 1972), which are available at the crystallography 
open database as a crystallographic information file (CIF 
entry 9000267). This initial structure is then relaxed using 
the empirical potentials as explained below.

Semi‑empirical potentials

We consider semi-empirical potentials published in lit-
erature and relying on physically sensible functions. All 
potentials rely on the Coulomb interaction, and differ in the 
charges attributed to the ions (formal or partial charges), and 
in the functions used to describe short-range interactions 

(Buckingham, Morse, 3-body...). In order to model charge-
neutral defect clusters, we consider only potentials, where 
the charge of ions is an integer multiple of the charge of an 
oxygen ion, i.e., qMg = qSi∕2 = −qO.

In 1987 Price, Parker and Leslie proposed a three-body 
potential for forsterite named THB1 (Price et al. 1987). It 
relies on formal ion charges ( qO = −2e ), and describes short-
range interactions with a Morse function and an additional 
three-body term to account for the covalency of Si− O bonds. 
Oxygen ions are treated in the framework of a polarizable 
shell model, where the core and shell of each ion do not 
interact through the Coulomb force, but only through a para-
metrized harmonic spring force. The potential parameters 
were obtained from Hartree–Fock calculations and experi-
mental elastic data on rock-salt magnesium oxide MgO and 
quartz SiO2 (Price et al. 1987). It is noteworthy that the fit-
ting procedure included no data about forsterite itself. The 
THB1 potential has a long history of successful applications, 
including the equation of state of forsterite (Choudhury et al. 
1989), high-pressure phase transitions (Guyot and Reynard 
1992), vacancy formation (Jaoul et al. 1995), and the model-
ling of dislocations (Mahendran et al. 2017).

For all its successes, the THB1 potential is not without 
drawbacks. Few modern simulation codes actually imple-
ment it, such as GULP (Gale 1997) or DL_POLY (Todorov 
et al. 2006). Mahendran and co-workers implemented this 
potential into LAMMPS (Mahendran et al. 2017), with the 
limitation that the Coulomb interaction is computed with the 
Wolf summation method. Up to this date, this implementa-
tion was not merged into the main version of LAMMPS, 
which limits its usage. Moreover, the THB1 potential is com-
putationally demanding, owing to the three-body term and 
to the fact that each oxygen ion is described as two interact-
ing particles; as a result, modelling the unit cell with THB1 

Fig. 1  Unit cell of forsterite 
counts four formula units of 
Mg

2
SiO

4
 , i.e., 28 atoms. Mg 

ions are displayed as large 
orange spheres, silicon as 
medium blue, and oxygen as 
small red spheres. Si− O bonds 
and SiO

4
 tetrahedra are also 

represented. Atoms are labelled 
according to the crystallo-
graphic site they occupy
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requires defining 44 particles. Finally, the THB1 potential 
is by design only suited to model Mg–Si–O systems at the 
exclusion of any other atomic species, and is very difficult 
to fit to other elements. Some groups modified the THB1 
potential using a breathing shell model (Blanchard et al. 
2005), or using different charges for oxygen ions depending 
on the site they occupy (Urusov and Dudnikova 2011), how-
ever such models have essentially the same limitations as the 
original THB1 potential. All these difficulties combined are 
reason enough for seeking other types of potentials, which 
are implemented and readily available in up-to-date simula-
tion codes, computationally more efficient, and include the 
interaction parameters for various atomic species.

In 1994, Matsui designs a new rigid-ion potential (RIP) 
describing crystals and melts in the system CaO–MgO–Al2
O3–SiO2 (Matsui 1994). Contrary to shell-model potentials 
(such as THB1), rigid-ion potentials treat all ions as point 
charges and do not account for ion polarization. The Mat-
sui1994 potential uses partial charges ( qO = −0.945e ), and 
a Born function to describe short-range interactions. The 
parameters were fitted to experimental lattice parameters and 
bulk moduli of 26 different crystals, including MgO with 
the rock-salt structure, alumina Al2O3 , different polymorphs 
of quartz SiO2 , forsterite, spinel and more. In this data set, 
various crystal types are represented including high-pressure 
phases, with various coordination including SiO4 tetrahdra 
and SiO6 octahedra. The Matsui1994 potential was applied 
to model liquids (Spera et al. 2011), amorphous phases (Shi-
moda and Okuno 2006; Tane et al. 2011), and recrystallisa-
tion in complex systems (Rymzhanov et al. 2019).

In 1998, Miyake and co-workers, unsatisfied by the inad-
equacy of previous potentials for describing feldspars and 
pyroxenes, propose another interatomic potential for mod-
elling crystals in the K 2O–Na2O–CaO–MgO–Al2O3–SiO2 
system (MIYAKE 1998). They also use partial charges 
( qO = −0.96e ), and a combination of a Born and a Morse 
functions to describe short-range interactions. The function 
parameters were fitted so as to reproduce the lattice con-
stants and thermal expansion coefficients of various crystals, 
including forsterite.

Yet another RIP is proposed by Pedone and co-workers 
in 2006 (Pedone et al. 2006). It uses partial ion charges 
( qO = −1.2e ), a short-range Morse function, and a repul-
sive r−12 term akin to a truncated Lennard–Jones function. 
In addition to Mg, Si and O, the potential includes interac-
tions for iron in two oxidation states, along with a number 
of other elements. Parameters were fitted to experimental 
data that included lattice parameters, elastic constants, high-
frequency and static dielectric constants, lattice energy, 
piezoelectric constants, and phonon frequencies of binary 
oxides. The authors then validated their parametrization by 
computing the bulk properties (lattice parameters and elas-
tic constants) of ternary and quaternary crystals, including 

forsterite, fayalite Fe2SiO4 , garnets, and more. So far, the 
Pedone2006 potential was cited in over 300 published arti-
cles, and found successful applications in a large variety of 
topics, such as silicate glasses (Urata 2019), recrystalliza-
tion (Hu et al. 2010), grain boundaries in strontium titan-
ate (Ramadan and De Souza 2016), thermal conductivity 
(Severin and Jund 2017), lithium-ion and sodium-ion battery 
materials (Deng et al. 2018; Lee et al. 2021), and more.

Finally, most recently Dufils and co-workers developed a 
new RIP, using the same partial charges as the Matsui1994 
potential ( qO = −0.945e ), and a mixture of a Buckingham 
function and a Gaussian function for short-range interac-
tions (Dufils et al. 2017). This potential was specifically 
designed and fitted to describe melts, and not at all intended 
for modelling crystalline structures, nonetheless we include 
it in our comparison to assess its transferability to crystal-
line forsterite.

Atomistic simulations

We perform simulations with the general utility lattice pro-
gram (GULP) (Gale 1997), where Coulomb interactions 
are computed using the Ewald sum method; and with the 
large-scale atomic/molecular massively parallel simulator 
(LAMMPS) (Plimpton 1995), where Coulomb interac-
tions are computed with the particle–particle particle–mesh 
(pppm) method (Eastwood et al. 1980). For calculations 
based on the THB1 potential, we use the custom version of 
LAMMPS modified by Mahendran (Mahendran et al. 2017), 
where the Coulomb interaction is computed with the Wolf 
summation method (Wolf 1995). Preliminary tests allowed 
us to verify that the different codes and methods yield the 
same lattice constants and energies.

Pressure is imposed by rescaling the simulation box and 
monitoring the stress tensor as computed by LAMMPS. The 
cell angles are constrained to 90◦ , and the geometry and 
atom positions are optimized several times until the target 
pressure is reached and all forces are smaller than 10−9 eV.
Å−1 . Supercells containing lattice defects are constructed 
with Atomsk (Hirel 2015), and atomic structures are visual-
ized with VESTA (Momma and Izumi 2011).

Bulk forsterite properties

Interatomic potential functions are fitted to reproduce bulk 
properties, hence they are expected to match closely the DFT 
and experimental data. For each potential, we performed a 
full relaxation of atom positions and cell dimensions.
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Lattice constants and density

Forsterite is orthorhombic and therefore has three independ-
ent lattice constants, such as a < c < b in the Pbnm space 
group. Figure 2 shows the resulting lattice constants as func-
tion of pressure. Experimental data from literature appears 
as red circles, while blue squares are results from density 
functional theory (DFT) calculations. The latter were per-
formed using the local density approximation (LDA), which 
is renown for systematically underestimating lattice con-
stants. The present results obtained with interatomic poten-
tials are represented as continuous curves. All potentials 
reproduce the lattice constants with a very good fidelity at 
all pressures in the range from 0 to 12 GPa, with deviations 
smaller than 5% from experiment. The Pedone2006 potential 
matches experimental values the closest.

Knowing the lattice constants, the material density is eas-
ily obtained. Figure 3 shows the density produced by the 
various potentials as function of pressure, compared with 
experimental and DFT data. As the LDA underestimates 
lattice constants, it overestimates the material density. 
Inversely, the generalized-gradients approximation (GGA) 
overestimates lattice constants, and thus underestimates 
the density. All interatomic potentials lie within these two 
bounds. The THB1 and Pedone2006 potentials are closest 
to DFT+GGA, the Matsui1994 is closest to DFT+LDA, 

while the Miyake1998 and Dufils2017 potentials are clos-
est to experimental values.

Static dielectric constants

The dielectric constants control the screening of the interac-
tions between charges (including charged defects). Since for-
sterite has an orthorhombic symmetry, its dielectric response 
is anisotropic and characterized by a dielectric tensor, where 
only diagonal elements �xx , �yy and �zz are non-zero. When 
using an interatomic potential, the values of dielectric con-
stants depend on the effective ion charges that are used.

We compute the static dielectric constants of forster-
ite using GULP implementing the interatomic potentials 
described above. We compare our results with reference val-
ues from experiments of Shannon and co-workers (Shannon 
and Subramanian 1989) and from DFT calculations employ-
ing a B3LYP hybrid exchange-correlation functional per-
formed by De La Pierre et al. (De La Pierre et al. 2011), 
both in absence of pressure. To the best of our knowledge, 
the dielectric constants of forsterite were not measured nor 
calculated at high pressure.

Figure 4 presents the static dielectric constants of for-
sterite as function of pressure. All potentials reproduce 
correctly the relative ordering 𝜖xx < 𝜖zz < 𝜖yy , with only a 
weak anisotropy between the three coefficients, in agreement 
with the experimental (Shannon and Subramanian 1989) and 
DFT (De La Pierre et al. 2011) values, although the absolute 
values are not correctly reproduced. Reference values from 
literature are in the range of 6.5−7.2, with a good agreement 
between experiment and DFT calculations.

Fig. 2  Variation of the three lattice constants of forsterite Mg
2
SiO

4
 

as function of pressure. Values from experiments (Takeuchi and Y. 
1985; Downs et al. 1996) (filled discs) and DFT calculations (Brod-
holt 1997) (empty squares) from the literature serve as reference. The 
lines are the values computed with the different interatomic poten-
tials: the shell-model potential THB1 (pink point-double dashed), 
and rigid-ion potentials (RIP) Matsui1994 (orange point-dashed), 
Miyake1998 (green dashed), Pedone2006 (continuous black), and 
Dufils2017 (black points)

Fig. 3  Variation of the density of forsterite Mg
2
SiO

4
 as function of 

pressure (same colour code as Fig. 2)
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The (low-frequency or static) dielectric response of an 
ionic solid comes from two contributions: ionic displace-
ments, and electronic structure. In the THB1 potential, if 
an electric field is applied then the ions are displaced, and 
the shells mimic the response due to the electron clouds, 
so that this potential accounts for both contributions. We 
find indeed that only the THB1 potential offers an accu-
rate description of the dielectric constants, demonstrating 
that the polarizability of individual ions plays an important 
role. On the contrary, rigid-ion potentials can only account 
for the ionic contribution and miss the electronic contri-
bution entirely. As a result, they systematically underesti-
mate the dielectric constants. We note that the smaller the 
partial charge in these potentials, the weaker the dielectric 
constant: the Pedone2006 potential ( qO = −1.2e ) underes-
timates the dielectric constants by a factor of 2, while the 
other RIP ( qO ≈ −0.9e ) underestimate them by a factor of 
3 approximately.

Elastic constants

The elastic properties are often a critical point when model-
ling the material, thus we computed the elastic tensor pro-
duced by each potential. We apply a given strain tensor �kl to 
the unit cell, and the internal stress tensor �ij is computed by 
deriving forces from the empirical potential. Deformations 
of 2% or below are used, and we checked that the results 

were unchanged for deformations between 0.5% and 2%. The 
elastic constants are then computed according to Hooke’s 
law:

Forsterite has an orthorhombic symmetry, therefore it is 
characterized by nine independent elastic constants. Their 
values are reported as function of pressure in Fig. 5, again 
compared with experimental (red discs) and DFT (blue 
squares) data. Overall the interatomic potentials follow the 
correct trends, with deviations comparable to the differences 
between experimental and DFT data. Surprisingly the THB1 
potential tends to systematically overestimate the c33 compo-
nent by about 30%, and to underestimate the c44 component.

Knowing the elastic tensor allows computing the theoreti-
cal sound wave velocities in the crystal. We use the Voigt 
definition of the bulk and shear modulus, respectively (Hill 
1952):

Assuming an homogenous medium, the velocities of longi-
tudinal (P) and transverse (S) elastic waves are computed, 
respectively, as

The resulting velocities are reported in Fig. 6 as function 
of pressure, and also compared with results from literature. 
The transverse velocity vS obtained with the THB1 potential 
matches closely experiments and DFT, while other intera-
tomic potentials underestimate it. For the longitudinal wave 
velocity vP , the THB1 potential overestimates its value, 
while other potentials are in better agreement with experi-
mental and DFT data.

Figure 6 also shows the velocities obtained experimen-
tally for the upper mantle in the framework of the prelimi-
nary reference Earth model or PREM (Dziewonski and 
Anderson 1981). Although the upper mantle is actually 
composed of various minerals at high temperature, we find 
that the velocities obtained for pure forsterite from 0 K simu-
lations are of the same order of magnitude as those obtained 
in the PREM.

Overall, we find that all interatomic potentials tested 
reproduce with a good fidelity the bulk properties of forst-
erite. Depending on the target property, some potentials per-
form better than others, but no potential fails critically when 

(1)�ij = cijkl �kl

(2)K =

c11 + c22 + c33 + 2
(

c12 + c23 + c13
)

9

(3)

G =

c11 + c22 + c33 −
(

c12 + c23 + c13
)

15
+

c44 + c55 + c66

5

(4)vP =

√

K + 4G∕3

�
; vS =

√

G

�

Fig. 4  Variation with pressure of the static dielectric constants of 
forsterite obtained with the various interatomic potentials (same 
colour convention as Fig.  2). At 0  GPa experimental values are 
taken from Ref.  (Shannon and Subramanian 1989), and DFT values 
from Ref.  (De La Pierre et al. 2011). All values follow the ordering 
𝜖xx < 𝜖zz < 𝜖yy
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applied to bulk, defect-free forsterite. Even the Dufils2017 
potential, which was designed for modelling melts, describes 
very well crystalline forsterite.

Ultimate strength

Pursuing beyond the small deformations and elasticity, 
applying large strains to probe the limits of the stability of 
the forsterite lattice also provides a good testing bench of 
interatomic potentials. Instability is reached when the forst-
erite structure is no longer stable, which typically is associ-
ated with a maximum stress or ideal stress.

The ideal tensile and shear stresses in forsterite were 
recently computed by means of DFT+GGA calculations by 
Gouriet et al. (Gouriet et al. 2019), which we use here as a 
reference. A unit cell of forsterite (optimized with the rel-
evant interatomic potential) is deformed, either in tension or 
in simple shear, by increments of 0.5% up to 40%. After each 
deformation increment, atom positions are relaxed, and the 
stress is derived from the forces acting on atoms.

Table 1 summarizes the ideal tensile stress (ITS) and 
ideal shear stress (ISS) obtained with the various poten-
tials, and compared with DFT results from Gouriet et al. 
(Gouriet et al. 2019). Concerning the ITS, all potentials 
agree qualitatively with the DFT data on the relative order-
ing [010] < [001] < [100] . Quantitatively, the potentials 
maintain the forsterite structure up to tensile stresses that 
are higher than DFT by up to 30%. Only the Dufils2017 
potential becomes unstable at lower stresses. The trend is 
the same concerning the ideal shear stresses (ISS): intera-
tomic potentials support stresses that are higher than the ISS 
predicted by DFT.

The fact that interatomic potentials produce ideal stresses 
so different from DFT values is not catastrophic for their 
usability. The ideal stress is only a measure of how much 
deformation the model can sustain and still maintain a 
mechanically stable forsterite structure. In the end, all 
potentials can sustain very large strains and stresses before 
showing instabilities or large deviations from DFT, which 
is a good indicator of their robustness (see Supplementary 
Material).

Fig. 5  Variation with pressure of the nine independent elastic constants of forsterite computed with interatomic potentials and compared with 
values from literature (same colour code as Fig. 2)
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Free surfaces

The main motivation for using interatomic potentials is 
going beyond the simple bulk properties and simulating 
large-scale systems. In particular, modelling plastic defor-
mation requires a good description of point defects (vacan-
cies, interstitials, impurities), linear defects (dislocations), 
and planar defects (surfaces, stacking faults, grain bounda-
ries). Unfortunately, the structure and energetics of such 

defects in forsterite is extremely complex and the published 
data scarce, which complicates the evaluation of the suit-
ability of interatomic potentials to describe such defects.

As a first defect, we consider the free surfaces of forst-
erite. Their energy controls the shape and morphology of 
olivine crystals, and are also strongly related to interface and 
grain boundary energies, hence it is of critical importance to 
assess the ability of interatomic potentials to describe them 
correctly. Recently, Bruno et al. performed DFT calcula-
tions of surface energies in forsterite (Bruno et al. 2014). 
We use their published configurations, relaxed with DFT, 
as the initial configurations for our own simulations. Each 
configuration is relaxed (ions and box geometry in the plane 
of the free surface) using the empirical potentials, and the 
surface energy is computed:

where Esurf is the total energy of the cell containing free sur-
faces, E0 the total energy of an equivalent bulk and 3-D peri-
odic cell of forsterite with the same number of atoms, and 
S the area of the free surface. The factor of 2 accounts for 
the fact that the cell contains two equivalent free surfaces. 
These calculations are performed only at 0 GPa, because 
free surfaces are not expected to form in the mantle at high 
pressure, and the constraints to model high-pressure free 
surfaces are not defined unambiguously.

Table 2 gives the free surface energies computed with 
the interatomic potentials, along with the DFT results from 
Bruno et al. (Bruno et al. 2014). All potentials give cor-
rectly the (010) surface as the most favourable, and the (110) 
surface as the least favourable. Differences appear in the 
relative energies of the other surfaces. Overall, the THB1 
potential is the best match in absolute values, but gives a 
wrong ordering (111) < (101) , while the other potentials 

(5)�surf =
Esurf

− E0

2S

Fig. 6  Evolution of seismic wave velocities as function of pressure 
(same colour code as Fig.  2). vP indicates the velocity of longitudi-
nal (P) waves, vS those of transverse (S) waves. The colour code is 
the same as in Fig. 2, experimental data is taken from ref. (Zha et al. 
1996), DFT data from ref.  (Jochym et  al. 2004), and data from the 
preliminary reference Earth model (PREM (Dziewonski and Ander-
son 1981)) are also shown for comparison

Table 1  Ultimate mechanical properties (in GPa) of forsterite at ambient pressure, computed with the various interatomic potentials. DFT data 
by Gouriet et al. serve as reference (Gouriet et al. 2019). Numbers in parenthesis give the corresponding ultimate strain

DFT(Gouriet et al. 2019) THB1 Matsui1994 Miyake1998 Pedone2006 Dufils2017

Ideal tensile stress (ITS) and strain
[010] 12.1 (11.5%) 16.1 (15%) 12.8 (13%) 14.2 (13%) 10.9 (10.1%) 10.2 (9.6%)
[001] 15.9 (16%) 19.1 (13%) 16.2 (13%) 17.2 (14.2%) 16.2 (12.5%) 13.0 (10%)
[100] 29.3 (13%) 26.9 (9.6%) 23.0 (10.5%) 27.8 (13%) 20.9 (9.1%) 22.5 (10.5%)
Ideal shear stress (ISS) and strain
(010)[001] 5.3 (18%) 7.7 (27.2%) 6.0 (21.5%) 7.1 (14.5%) 4.34 (23%) 5.1 (18.5%)
(001)[010] 6.2 (20%) 7.6 (23.5%) 6.1 (17.5%) 7.1 (15.5%) 6.34 (17.8%) 5.8 (18.8%)
(010)[100] 8.5 (18%) 17.4 (23%) 20.4 (24%) 16.1 (19.6%) 11.23 (11.8%) 15.0 (10.5%)
(100)[010] 9.0 (20%) 15.2 (23.1%) 13.2 (24.2%) 12.62 (19.6%) 11.51 (18.6%) 10.0 (16.6%)
(100)[001] 11.2 (26%) 14.0 (30%) 11.05 (25.5%) 11.4 (22.6%) 8.21 (18.1%) 8.5 (18.6%)
(001)[100] 13.4 (29.5%) 21.3 (30%) 15.7 (27.5%) 13.0 (22.6%) 10.13 (18.5%) 10.8 (19.5%)
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agree with DFT on the ordering (101) < (111) . The other 
potentials underestimate the values of the surface energies 
by 10 to 20%, and the Matsui1994 and Miyake1998 poten-
tials both invert the ordering of the (021) and (111) surfaces. 
The Pedone2006 and Dufils2017 potentials both give the 
correct energy ordering for all tested surfaces, but the latter 
largely underestimates the energies by about 30%.

Overall, the Pedone2006 potential is the best match to 
DFT data when considering both the absolute and relative 
values of the surface energies.

Generalized stacking faults

A second important class of defects are the stacking faults. 
The most complete and reliable data on this topic come from 
Durinck et al., who used DFT with GGA to compute the 
energy density of generalized stacking faults (GSF) in vari-
ous slip planes of forsterite, at 0 and 10 GPa (Durinck et al. 
2005). This allows killing two birds with one stone: first, 
the GSF are closely related to the atomic core structure of 
dislocations (Vitek 1968), and can be used to predict the 
lattice resistance to dislocation glide (Denoual 2004). Sec-
ond, sampling the GSF means evaluating the energy of a 
great number of unstable configurations. We argue that if an 
interatomic potentials reproduces accurately the GSF, then 
it would also be well suited to model other types of planar 
defects, including grain boundaries.

We used the different interatomic potentials to compute 
the GSF in forsterite, at imposed pressures of 0 and 10 GPa 
to compare with the previously mentioned DFT results from 
literature. The unit cell is duplicated 16 times in the direc-
tion normal to the plane of interest, and the stacking fault 
is constructed by translating the top part of the crystal by a 
vector � contained in the given plane, all while maintaining 
the integrity of SiO4 tetrahedra (i.e., without shearing or cut-
ting Si–O bonds), similar to the work by Mahendran et al. 
(Mahendran et al. 2017). Mg and Si ions are constrained to 
relax only in the direction normal to the fault, while oxygen 
ions (and their shells in the case of THB1) are free to relax 
in all directions.

We begin with the stacking faults in the (010) plane, 
reported in Fig. 7. Along the [100] direction, DFT (blue 
squares) produces a single maximum, meaning that disloca-
tions belonging to the (010)[100] slip system have a com-
pact core structure. All potentials follow the same qualitative 
behaviour, although they all tend to underestimate the fault 
energies. Overall the agreement can be considered satisfac-
tory, and potentials can be expected to produce correct or 
reasonable dislocation core structures.

The situation is radically different along the [001] direc-
tion. There again, DFT predicts a single maximum for a 
shift vector 1/2[001], which leads to compact dislocation 
cores (Durinck et al. 2005). Unfortunately, most interatomic 
potentials fail to reproduce this behaviour. The most accu-
rate is the THB1 potential, which is in very good agreement 
with DFT at both pressures investigated. This was already 
verified by Mahendran et al., and justifies the use of this 
potential to model dislocations in forsterite (Mahendran 
et al. 2017). The Pedone2006 potential (continuous black 
curve) largely underestimates the SF energies, meaning that 
the dislocations Peierls stresses may be underestimated. 
However at 0 GPa it produces a single maximum and thus 
would produce a compact dislocation core. Surprisingly, 
the Dufils2017 potential matches closely the behaviour of 
the Pedone2006 potential, and produces a single maximum. 
Although not perfect, these two potentials may still be useful 
for modelling dislocations, at the condition of taking appro-
priate care. By contrast, the Matsui1994 and Miyake1998 
rigid-ion potentials predict a local minimum at 1/2[001], i.e., 
a metastable stacking fault (SF). This is catastrophic, as it 
would result in the dissociation of (010)[001] dislocations, 
in disagreement with DFT and Peierls–Nabarro calculations 
by Durinck et al. (Durinck et al. 2007). These potentials 
should not be used at all to model dislocations belonging to 
the (010)[001] slip system. At high pressure (10 GPa), all 
RIP potentials including the Pedone2006 produce a meta-
stable SF, in complete disagreement with DFT. Only the 
THB1 potential remains in good agreement with DFT at 
high pressure.

The energy maximum along [001] corresponds to a 
configuration, where pairs of Mg ions come close to each 

Table 2  Free surface energies 
(J.m−2 ) in forsterite Mg

2
SiO

4
 

computed with the empirical 
potentials, and compared with 
DFT results from Bruno et al. 
(Bruno et al. 2014). Numbers in 
parenthesis give the deviation 
from DFT data

Surface DFT(Bruno 
et al. 2014)

THB1 Matsui1994 Miyake1998 Pedone2006 Dufils2017

(010) 1.22 1.25 (+2.5%) 1.12 ( −8.2%) 1.11 ( −9.0%) 1.13 ( −7.4%) 0.89 ( −27%)
(120) 1.36 1.58 (+16.2%) 1.28 ( −5.9%) 1.23 ( −9.6%) 1.37 (+0.7%) 0.99 ( −27.2%)
(001) 1.78 1.58 ( −11.2%) 1.40 ( −21.3%) 1.32 ( −25.8%) 1.52 ( −14.6%) 1.12 ( −37%)
(101) 1.78 1.89 (+6.2%) 1.47 ( −17.4%) 1.42 ( −20.2%) 1.58 ( −11.2%) 1.18 ( −33.7%)
(111) 1.84 1.79 ( −2.7%) 1.55 ( −15.8%) 1.50 ( −18.5%) 1.67 ( −9.2%) 1.21 ( −26.1%)
(021) 1.90 1.94 (+2.1%) 1.51 ( −20.5%) 1.48 ( −22.1%) 1.68 ( −11.6%) 1.24 ( −34.7%)
(110) 2.18 2.26 (+3.7%) 1.72 ( −21.1%) 1.73 ( −20.6%) 1.81 ( −17%) 1.46 ( −33.0%)
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other at the interface. Analysis of the relaxed configurations 
(reported in the Supplementary Material) show that all 
potentials produce a similar configuration, therefore the dis-
crepancies in energy do not come from a relaxation problem, 
but from the potential functions themselves. By construc-
tion, all interatomic potentials assume a Coulomb repulsion 
between Mg ions, and neglect short-term interaction between 
them. This is a reasonable approximation in bulk forsterite, 
where Mg ions are not first neighbours, however it is likely 
the source of errors when Mg ions get closer. The repulsion 
is then entirely controlled by the Coulomb term, i.e., by the 
charge carried by Mg ions. We notice that the smaller the 
charge in a potential, the smaller the energy of the (010)
[001] stacking fault. The THB1 potential with formal charge 
qMg = +2 gives the largest SF energy; the Pedone2006 with 
partial charge +1.2 underestimates the SF energy by a factor 
of 2; and last, the Matsui1994 and Miyake1998 potentials 
(which have the smallest partial charges) produce a local 
energy minimum. This trend seems to indicate that the error 
lies in the short-range Mg–Mg interaction, which may be 
corrected by fitting suitable short-term parameters in the 
Buckingham or Morse functions of the potentials. We leave 
such parametrization to another work.

We also computed the GSF in the other low-index planes 
(100) and (001). Since dislocations with [010] Burgers vec-
tor are extremely unfavourable in forsterite, we restricted 
the computation to the directions relevant to the known slip 
systems, (100)[001] and (001)[100]. The corresponding 

GSF energy densities are reported in Fig. 8. All potentials 
are qualitatively in good agreement with DFT, in both slip 
planes and at both pressures considered. In the (100) plane 
we find a metastable stacking fault at 1/2[001] in agree-
ment with DFT. The presence of this metastable SF means 
that (100)[001] dislocations modelled with those poten-
tials would dissociate, which is in agreement with Pei-
erls–Nabarro calculations by Durinck et al. (Durinck et al. 
2007). The THB1 potential overestimates all energies by a 
factor of 2, which is expected to result in the underestimation 
of dissociation distances. Rigid-ion potentials overestimate 
unstable energies, but are in excellent quantitative agree-
ment with DFT concerning the metastable stacking fault at 
1/2[001].

In the (001) plane, along [100] the GSF goes through a 
single maximum according to both DFT and the empirical 
potentials. At 0 GPa, the latter produce a plateau instead of 
a bell-shaped curve, and the energies are underestimated. 
The agreement with DFT is better at 10 GPa. These dis-
crepancies can be considered minor, all potentials can be 
considered in reasonable agreement with DFT data in (100) 
and (001) planes, and good candidates to model dislocations 
belonging to these slip systems.

To summarize, only the THB1 potential gives a good 
account of all GSF energies at all pressures investigated, even 
though it largely overestimates energies in the (100) plane. 
The Pedone2006 potential can be considered as satisfactory 
at ambient pressure, however it seems to fail at describing 

Fig. 7  Generalized stack-
ing fault energy density in 
forsterite, in the (010) plane, 
along the [100] direction (top) 
and [001] direction (bottom), at 
0 GPa (left) and 10 GPa (right). 
DFT data (blue squares) from 
Ref. (Durinck et al. 2005)
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stacking faults in the (010) plane at high pressure. Other poten-
tials produce a wrong energy landscape in the (010) plane at 
all pressures.

Frenkel pairs

A Frenkel defect forms when an atom is moved from its 
lattice site into an interstitial site. If a Frenkel pair is intro-
duced in a simulation cell, its energy depends on the separa-
tion distance between the vacancy and interstitial because 
of their respective elastic fields and the long-range Coulomb 
interaction. In addition, the pair forms an electric dipole, 
which tends to polarize the whole structure. Finally, using 
periodic boundary conditions, the Frenkel pair interacts with 
an infinite array of replica, thus complicating the evaluation 
of its energy.

To circumvent this, we compute separately the total 
energy EN−1

v
 of a system with a vacancy, and the energy 

EN+1
i

 of a system containing an interstitial. This is equivalent 
to considering that the two defects are infinitely separated. 
The formation energy (enthalpy) of the Frenkel pair is then 
computed:

where EN
0

 is the total energy of a defect-free bulk system with 
N atoms. Ecorr is a correction term due to the interaction of 
a charged defect with its periodic replica. This contribution 

(6)HF = EN+1
i

+ EN−1
v

− 2EN
0
− Ecorr

can be computed analytically as Ecorr = −

1

2
�q2∕(�L) , where 

L is the typical cell size (Leslie and Gillan 1985). However 
the Madelung’s constant � depends on the cell geometry 
and therefore on pressure, and is difficult to obtain for an 
orthorhombic cell of forsterite. Instead, we use a numerical 
method inspired by the Ewald summation, and already used 
by Brodholt (Brodholt 1997). In an empty simulation cell 
with the same dimensions as the defective cell, we place a 
single ion. Using periodic boundary conditions, we compute 
the Coulomb interaction energy. Because the cell is empty, 
this situation mimics an infinite periodic array of point 
charges separated by vacuum, therefore we correct the Cou-
lomb interaction by introducing the pressure-dependent die-
lectric constant computed with the potential and presented 
before. Since the dielectric constant is only weakly aniso-
tropic, at each pressure we use the average value of all three 
components. The inset in Fig. 9 gives the energy as function 
of system size before (empty triangles) and after application 
of the correction Ecorr (filled triangles), for the Mg Frenkel 
pair computed with the Pedone2006 potential. Application 
of the correction allows for rapid convergence of the Frenkel 
energy even in small systems. We note that the uncorrected 
values appear to converge towards the corrected value for 
large system sizes, thus giving confidence in our computa-
tion of the correction term. The results presented below were 
obtained in supercells containing 896 atoms, corresponding 
to the system size 2 in the inset graph of Fig. 9.

Fig. 8  GSF energy density in 
forsterite, in the (100) plane 
along the [001] direction 
(top), and in the (001) plane 
along [100] (bottom), at 0 GPa 
(left) and 10 GPa (right). 
DFT data (blue squares) from 
Ref. (Durinck et al. 2005)



Physics and Chemistry of Minerals           (2021) 48:46  

1 3

Page 11 of 16    46 

Figure 9 reports the enthalpy of formation of Mg and 
O Frenkel pairs as function of pressure. We compare our 
results with those obtained by Verma and Karki using DFT 
calculations (Verma and Karki 2009). According to DFT, 
the energy of the Mg Frenkel defect rises from 3.52 eV at 
ambient pressure, to about 3.9 eV at 12 GPa (Verma and 
Karki 2009). The empirical potentials tend to overestimate 
these energies by about 0.5 eV, the error rising up to 1 eV 
at high pressure.

The error is greater on the oxygen Frenkel defect, as 
shown on the right-hand side of Fig. 9. Instead of forma-
tion enthalpies ranging from 5 to 5.5 eV according to DFT 
calculations (Verma and Karki 2009), empirical potentials 
largely overestimate enthalpies ranging from 7 to 8.5 eV. 
This may come from the fact that when an oxygen ion is 
missing, potentials tend to connect the defective tetrahedron 
with a neighbouring one, and thus two tetrahedra share an 
oxygen ion and are connected by their tips.

Schottky defects

Schottky defects are neutral vacancy clusters. In forster-
ite, four types of Schottky defects can form: one formed 
of one magnesium and one oxygen vacancies (MgO partial 
Schottky defect); one formed of SiO2 vacancies; one formed 
of MgSiO3 vacancies; and finally, the full Schottky defect 
Mg2SiO4.

As for the Frenkel defects, the DFT calculations by 
Verma and Karki (Verma and Karki 2009) are used as a 
reference. As for Frenkel defects, we compute the total 

energies of supercells containing a single Mg, Si or O 
vacancy, respectively, EN−1

VMg
 , EN−1

VSi
 and EN−1

VO
 . These energies 

are evaluated at different pressures from 0 to 12 GPa. The 
formation enthalpies of the (unbound) Schottky defects are 
then computed using

The correction terms Ecorr account for interaction of vacan-
cies with their periodic replica and was discussed in the 
previous section. The terms �MgO and �SiO2

 refer to the 
chemical potential of the neutral units removed from the lat-
tice. Here we use the lattice energy of rock-salt MgO and �
-quartz SiO2 , respectively, as computed with the correspond-
ing potential. The Schottky formation enthalpies therefore 
depend on the ability of interatomic potentials to correctly 
describe the parent oxides phases (see Supplementary Mate-
rial). For sake of consistency, the MgSiO3 partial Schottky 

(7)H
MgO

S
= EN−1

VMg
+ EN−1

VO
− 2EN

0
+ �MgO − Ecorr

(8)H
SiO2

S
= EN−1

VSi
+ 2EN−1

VO
− 3EN

0
+ �SiO2

− Ecorr

(9)
H

MgSiO3

S
= EN−1

VMg
+ EN−1

VSi
+ 3EN−1

VO
− 5EN

0

+ �MgO + �SiO2
− Ecorr

(10)
H

Mg2SiO4

S
= 2EN−1

VMg
+ EN−1

VSi
+ 4EN−1

VO
− 7EN

0

+2�MgO + �SiO2
− Ecorr

Fig. 9  Enthalpy of formation 
of Mg2+ (left) and O 2− (right) 
Frenkel defects as function 
of pressure in forsterite. DFT 
data is from Ref. (Verma and 
Karki 2009). The inset shows 
the energy difference before 
( Δ E, empty triangles) and after 
accounting for the correction 
term E

corr
 ( EF , solid triangles) 

as function of the system size, 
obtained at 0 GPa with the 
Pedone2006 potential
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defect is also computed assuming incorporation into MgO 
and SiO2 phases.

Figure 10 reports the evolution of the partial and full 
Schottky defects in forsterite, as calculated with the differ-
ent interatomic potentials, in the pressure range from 0 to 
12 GPa. Qualitatively, all interatomic potentials correctly 
reproduce the energy ordering of Schottky defects at all 
pressures:

Quantitatively, the interatomic potentials are in reason-
able agreement with DFT, with typical deviations smaller 
than 1 eV. Only the Dufils2017 potential underestimates 
the energies by more than 1 eV for all Schottky defects. 
Other interatomic potentials are in better agreement with 
DFT, especially for the partial MgO and for the full Schottky 
defects. For all defects, errors also tend to become larger as 
the pressure increases. It is noteworthy that the rigid-ion 
potentials do not deviate from DFT significantly more than 
the THB1 potential does.

Performance

Finally, we benchmark the relative performance of all five 
interatomic potentials. Supercells of crystalline forsterite 
with different sizes up to 112,000 atoms are constructed. 
In the case of THB1 potential, a number of atoms N means 
that the system contains 11N/7 particles, because oxygen 

H
MgO

S
< H

Mg
2
SiO

4

S
< H

MgSiO
3

S
< H

SiO
2

S

ions are described as cores and shells. After initializing atom 
velocities for a temperature of 300 K, a molecular dynamics 
(MD) simulation is run for 1,000 steps in the microcanonical 
(NVE) ensemble, using a time step of 1 fs. No dump file is 
written to reduce the impact of disk access. Simulations are 
run with LAMMPS in parallel using 4 threads, on a desktop 
computer equipped with an Intel Xeon E5-1620 v2 CPU 
running at 3.7 GHz and 16 GB of RAM.

Simulation times as function of number of atoms are 
reported in Fig. 11. The four rigid ion potentials show simi-
lar performance, requiring between 20 min (Matsui1994 and 
Dufils2017) and 40 min (Pedone2006) to complete the MD 
simulation with 112,000 atoms. The THB1 performs much 
more poorly, requiring no less than 4 h to complete the same 
simulation. Part of this performance issue may be accounted 
for by the shells: a system of 112,000 atoms is modelled 
using a total of 176,000 particles (cores+shells). However 
our benchmark shows that the THB1 run time increases 
much faster than would be anticipated just because of shells. 
This heavy toll comes mostly from the complexity of the 
potential function, which counts no less than four different 
pair contributions (Coulomb, Buckingham, harmonic) and 
a three-body term, causing the number of computed interac-
tions to increase faster than the number of atoms.

The THB1 potential is remarkably accurate, and can be 
used to model moderately large systems. However, its poor 
performance limits its usage to a few hundred thousands of 
atoms at best. For million-atom systems, computational cost 
is largely in favour of rigid-ion potentials.

Fig. 10  Enthalpy of formation of partial and full Schottky defects in forsterite as function of pressure. DFT data is from Ref. (Verma and Karki 
2009)
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For the sake of comparison, we performed MD simula-
tions using similar conditions on crystals of face centred 
cubic (fcc) aluminium, using an embedded atom method 
(EAM) potential to model interactions (Jacobsen et  al. 
1987). The run time as function of system size is also 
reported in Fig. 11 (thick blue line): for a system of 108,000 
atoms the MD simulation runs in about 42 s, making the 
EAM potential at least 50 times faster than rigid ion poten-
tials. This difference is consistent with the benchmarks pub-
lished on the LAMMPS Web site (LAMMPS Web page). 
The relatively heavy computational cost of rigid-ion (or shell 
model) potentials comes mostly from the evaluation of the 
long-range Coulomb interaction with the pppm method. This 
computational cost can be reduced by decreasing the pppm 
accuracy, or using a different method for computing the Cou-
lomb interaction. For instance, Wolf’s summation method 
can be faster than pppm, with the drawback of being sensi-
tive to the choice of damping factor and truncation radius 
(Baker and Hirst 2014). No general advice can be given as 
ultimately, the choice of method depends on the type of 
atomic system, boundary conditions, defects present, and 
so on.

Discussion

Accuracy

Interatomic potentials are often fitted to bulk properties, 
therefore they are expected to give an excellent description 
of the bulk crystal. Aside from an underestimation of dielec-
tric constants due to the use of partial charges, all intera-
tomic potentials that we tested offer a good description of 
the lattice and elastic constants of pristine forsterite. This is 
not surprising, since their respective potential functions were 
fitted to experimental or ab initio data. Even the Dufils2017 
potential, which was not designed for modelling crystalline 
forsterite, produces quite accurate bulk properties. It must 
be noted that potentials for minerals are often fitted with 
high-pressure properties in mind, and indeed the potentials 
remain robust for modelling forsterite at least up to 12 GPa, 
and probably at higher pressures. This is probably the reason 
why they are able to capture the energetics for a wide range 
of bond lengths.

The critical question is that of their transferability to 
defective systems. This is a well known limitation of inter-
atomic potentials, and the reason why their accuracy and 
transferability must be tested as thoroughly as possible 
before applying them to complex problems. Indeed, we find 
that the accuracy of the potentials differ when defects are 
present in the system. That is expected, because defects often 
cause large variations in bond lengths and angles, or in the 
number of neighbouring atoms (coordination). Simple pair 
potentials are often poorly suited to capture the energetics of 
such drastic deviations from the perfect crystal. Nonetheless, 
we find that the THB1 potential successfully passed all the 
tests and produces defects energetics in excellent agreement 
with DFT calculations. The Pedone2006 potential comes 
close behind. Its good accuracy and performance in terms 
of computation time makes it an ideal candidate for model-
ling all types of defects, including dislocations or diffusion 
of point defects. Since it also gives a good description of 
MgO and �-quartz SiO2 , it can probably be used to model 
interfaces between these minerals. The Pedone2006 poten-
tial appears to fail only in describing (010) stacking faults 
at high pressure, meaning that it would probably not give a 
good description of interfaces and dislocations related to this 
plane at high pressure.

Other potentials give good results when modelling bulk 
forsterite or point defects, however they fail at describing 
stacking faults. As a result, we advise against using them for 
modelling dislocations, grain boundaries, or planar defects 
in general in forsterite.

At last, it must be pointed out that we did not compute 
dynamic lattice properties, such as phonon modes. Research-
ers who are interested in high-temperature behaviour 

Fig. 11  Simulation time (minutes) for running 1,000 steps of molecu-
lar dynamics with the various potentials for forsterite, as function of 
the number of atoms (or number of cores for the THB1 potential). 
Results of a similar simulation with an embedded atom potential 
(EAM) for aluminium are also shown for comparison (thick blue line)
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of forsterite should test the accuracy of the potential for 
dynamic properties.

Extrinsic defects in forsterite

Although we restricted our work to native defects in forst-
erite, foreign elements are known to have a major impact 
on the properties of this phase. Iron is a major constituent 
of natural olivine, as it may typically count for as much as 
20 wt.% of its composition (Ringwood 1975). Other ele-
ments may also be present as traces, such as Ca, Ni or Mn 
(see for instance the review by Demouchy (Demouchy 
2021)). The intercalation of hydrogen and the formation of 
hydroxyl groups is also expected to occur in the mantle, and 
to have a significant influence on the mechanical and electri-
cal response of olivine (Justice et al. 1982; Wang et al. 2006; 
Demouchy and Bolfan-Casanova 2016). However when 
modelling an atomic system with an interatomic potential, 
one is limited by the set of chemical elements that the said 
potential is able to describe.

The THB1 potential was initially designed for modelling 
forsterite Mg2SiO4 . As such it is capable to describe interac-
tions only between Mg, Si and O ions, at the exclusion of 
any other element. De Leeuw et al. extended it to include 
hydrogen, at the price of defining two different types of oxy-
gen ions depending on the site they occupy (De Leeuw et al. 
2000). The resulting potential has the same limitations as 
the THB1 as discussed above, with additional complexity 
and computational time. In a separate work, Blanchard and 
co-authors modified the THB1 potential using a breathing-
shell model and adding parameters fitted for germanium, 
and applied it to wadsleyite (Blanchard et al. 2005). Fitting 
parameters for additional elements is a very heavy task, so it 
can be assumed that the THB1 potential will remain limited 
in the atomic interactions it can describe in the foreseeable 
future. Similarly, the Matsui1994 potential includes only 
calcium in addition to Mg, Si and O, which limits its reach.

The other rigid-ion potentials (RIP) that we tested were 
designed for describing more diverse compositions, and 
so include many more elements. In addition to Mg, Si and 
O, the Miyake1998 potential includes parameters for alu-
minium (Al), calcium (Ca), sodium (Na), and potassium 
(K). Miyake validated his potential by computing the bulk 
properties of 26 binary and ternary phases (MIYAKE 1998), 
which makes it a good candidate to investigate minerals with 
these compositions.

The Pedone2006 potential is by far the richest, including 
parameters for 28 elements. The immediate availability of 
parameters for iron in two oxidation states (modelled as Fe1.2+ 
and Fe1.8+ ) makes this potential a good candidate for inves-
tigating olivine (Mg1−xFex)2SiO4 with various iron contents, 
from forsterite ( x = 0 ) to fayalite ( x = 1 ). Although Pedone 
and co-workers validated their potential by computing the bulk 

properties of both phases (Pedone et al. 2006), its accuracy for 
intermediate compositions or defects in these phases remain 
untested. In addition, one must bear in mind that magnetism 
is unaccounted for in such empirical potentials, so magnetic 
effects (like those due to iron atoms) remain out of reach. The 
Pedone2006 potential also includes light elements such as 
lithium (Li+ ), however fitting parameters for hydrogen (H+ ) 
are still unavailable. Fitting parameters for hydrogen is no 
small task and is rendered difficult by the charge transfer in 
OH groups that differ from bulk forsterite, however the devel-
opment of an interatomic potential that would allow modelling 
hydrogen binding energies and diffusion in olivine would be of 
great interest to the mineral physics community.

Conclusion

We assessed the accuracy and transferability of five different 
empirical potentials to describe forsterite Mg2SiO4 : the shell-
model potential THB1, and four different rigid-ion potentials. 
The results obtained with these potentials were compared 
with reference data from experiments and DFT calculations 
from literature. We find that all potentials give a satisfactory 
description of bulk forsterite in its stability pressure range 
( 0 − 12 GPa), however their accuracy is challenged when 
modelling defects. The THB1 potential appears to give the 
most accurate representation of all defects, at the cost of a 
greater complexity and computation time. The Pedone2006 
potential comes close behind, as it gives a good description of 
all defects investigated in forsterite, as well as rocksalt MgO 
and �-quartz SiO2 . Its only major failure concerns the energet-
ics of stacking faults in the (010) plane at high pressure. The 
Matsui1994 and Miyake1998 potentials have similar behav-
iours, both failing to describe planar defects and the parent 
oxide phases MgO and SiO2 at all pressures. The most recent 
Dufils2017 potential exhibits similar problems, which is not 
surprising as it was initially designed to describe melts and 
not crystalline phases. In the end, the Pedone2006 potential 
appears to give the best trade-off in terms of accuracy and 
computation time to describe defects in Mg2SiO4 forsterite. 
Our results indicate that it can be applied to a broad range 
of problems, such as point defects and diffusion, dislocation 
glide, planar defects or grain boundaries.
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