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Abstract

In this article, several modes are controlled simultaneously both in phase
and amplitude on an haptic display. To achieve this, modulation/demodulation
control combined with mixed spatial/frequency filters is developed. It is then
applied to produce a predefined velocity field both in space and time on a
plate. The experimental results show good agreement with theory.

Keywords: modulated-demodulated control (Vector control), Multimodal
vibration control, modal decomposition , focusing, Modal filter,
Piezoelectric transducer, Linear Quadratic Regulator (LQR)

1. Introduction

In some applications, the excitation of the modes of a structure is un-
wanted as it leads to detrimental effects, like failures [1]. For that purpose,
passive or active control methods have been deployed in order to damp those
vibrations. In other applications however, a perfect harmonic vibration of
the structure, at a given amplitude is necessary. This is the case for Atomic
force microscopy (AFM) [2], Micro Electro-Mechanical Systems (MEMS) [3],
and the burgeoning field of haptic interfaces [4]. The main issues for these
typical applications are the robustness of the amplitude besides external per-
turbation as well as the fact that these devices operate at several kHz.
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Researchers have proposed closed loop controls in order to deal with these
issues. Autoresonance is a non-linear feedback control technique that allows
to automatically excite a vibration mode at its natural frequency while im-
posing the vibration amplitude [5]. The modulated-demodulated control [6]
is an adaptive control approach which was introduced in the 90’s in order to
reject sinusoidal perturbations [7, 8]. This technique consists in demodulat-
ing the measured vibration by a sinusoidal signals, named the carrier, in order
to obtain the real (direct) and imaginary (quadrature) components of the vi-
bration. A controller is then implemented on these components to deduce
therefrom the demodulated control effort, which is modulated by the carrier.
In [9], the authors introduce the Vector Control method which encompasses
the dynamic amplitude control during transients, with the tracking of the
system’s resonance frequency. Improved dynamic performances as well as
efficient operation are obtained, yet at simplified practical implementation
[10].

For some recent applications it is interesting to use several modes which
dynamics and synchronization are ensured. For instance, in a bi-modal
Atomic Force Microscopy, a first bending mode is used for topography imag-
ing and a second one gives mechanical and electromagnetic properties of a
studied sample [11]. In other applications, more than one vibration mode
are excited, as to produce travelling waves for ultrasonic motor [12], it is also
used for haptic interface to produce localized stimulation by modal superpo-
sition [13]. In energy harvester, the multimodal approach [14, 15] increases
the efficiency of the system to extract more power, compared to a single
degree of freedom harvester.

This work demonstrate the possibility to combine several techniques to
achieve the control of several modes simultaneously, both in amplitude and
phase. The application intended here is an haptic display, where localized
stimulation will be rendered. This is obtain through rapid focusing, and
by realizing specific velocity fields. This raises several challenges due to
constraints such as the reduced number of sensors, decoupling parallel banks
of controllers, and limited number of actuators.
The paper is organized as follows. The section 2 recalls the modal dynamic
model of one vibration mode in its demodulated base the design of a controller
described in [16] and addresses the control of several modes. In section 3, the
experimental device is presented and different design protocols are developed
specifically. Finally, in section 4, the different approaches developed in this
article are validated through several experiments with good results.
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2. Method

2.1. Modal dynamic model

In this section, we consider the general scheme of the studied system as
shown in the Fig. 1. It consists in a vibrating structure with a displacement
field w(x, t) where x is the space coordinate. The structure is actuated
through na actuators located in different point of the surface and the vibra-
tion of the structure is measured by using a set of ns dispersed sensors

Figure 1: General scheme of the studied system , where the vibrating structure is controlled
through a set of piezoelectric actuators and a set of piezoelectric sensors.

If the dynamic equations are described by self-adjoints operators, one
can write using the modal decomposition [17] this displacement field as an
infinite weighted sum of its mode shapes ψ(k)(x):

w(x, t) =
∞∑
k=1

ψ(k)(x)η(k)(t) (1)

where the kth modal coordinates η(k)(t) verifies the dynamic equation:

η̈(k)(t) + 2ξkωkη̇
(k)(t) + ω2

kη
(k)(t) = f (k)(t) (2)
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which is obtained by projection of the actual dynamic equation on the mode
shapes normalized with respect to the mass. This procedure eliminates the
spatial dependence of the problem, and provides a set of independent ordi-
nary differential equations. In (2), ξk are the damping and ωk the resonant
frequency of the kth mode respectively, while f (k) is the modal effort resulting
from the projection process.

In order to introduce some of the design constraints addressed in the fol-
lowing section, assume that the na actuators of the Fig. 1 produce the forces
Fa at their respective location xa (a ∈ {1, . . . , na}). The modal projection
process gives the following modal forces :

f (k)(t) =
na∑
i=1

f (i)
a (t) =

na∑
i=1

ψ(k)(xa)Fa(t) (3)

This leads to the observation that to efficiently transfer energy to a mode k,
the actuators should be adequately located. Moreover, the Laplace transform
of the modal velocities (which are of interest in this paper) is

L[η̇](s) = sL[η] =
na∑
i=1

ψ(k)(xa)L[Fa](t)
s

s2 + 2ξiωis+ ω2
i

(4)

Hence each mode acts as an band pass filter with respect to the modal force.
Therefore, to reduce the control effort, it must be ensured that the forces
Fa(t) have frequencies within the bandwidth of a given mode.. This later
requirement motivates the use of the control proposed in the next section.

2.2. Dynamic modal model in a demodulated base

The aim of the application is to impose a specified velocity field and to
control its transient. To this end, it is required to control simultaneously the
relative amplitudes and phases of several modes. Since each mode should be
excited close to or at its resonant frequency, it make sense to apply a mod-
ulated/demodulated control approach. In Fig. 2 the principle is illustrated
in the case of the control a single degrees of freedom oscillator equivalent
to Eq. 2. The vibration measurement η(t) is demodulated by multiplying
it by two sinusoidal signals in quadrature, then passing the resulting sig-
nals through low-pass filters. The benefit of the processing is to extract the
envelop of η(t), and calculates its phase with respect to the demodulation
signals. These pieces of information are conveyed by the Hd and Hq compo-
nents in the figure.The LTI controller computes the control signals Fd and Fq
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according to the references and the actual driving force is obtained by am-
plifying the modulated control by multiplying them by the same sinusoidal
signals.
The demodulation reduces the requirements on the controller since low band-
width compensators are sufficient. In [18], some properties of this strategy
are studied under some assumptions. First, the poles of the demodulated
system are shifted by iΩ to the ones of the original system, hence the less
demanding requirement on the controller. Second, the delay of the original
system are invariant with respect to the modulation and demodulation. Thus
they affect the bandwidth of the demodulated system, but not the actual one.
This implies that even rapidly oscillating systems can be regulated by slow
controllers. The zeros might be affected in a more complicated way, but if
the modulation frequency is large enough compared to the dynamic of the
oscillator, they roughly behave in a similar manner as the poles.
Actually, in [16], the proposed method provides the equations of the demod-
ulated before filtering. Assuming that the poles of η(k) are slow compared to
Ωk (the modulation angular frequency) and the bandwidth of the controller
is small, one can write in complex polar form:

η(k)(t) = (H
(k)
d (t) + jH(k)

q (t))ejΩkt (5)

f (k)(t) = (F
(k)
d (t) + jF (k)

q (t))ejΩkt (6)

where H
(k)
d and H

(k)
q are respectively the real and imaginary part of the

modal amplitude, F
(k)
d and F

(k)
q the real and imaginary part of the modal

effort, Ωk is the excitation frequency (k will later be the index to distinguish
the various modulations). By replacing the Eq. (5), its derivatives and the
Eq. (6) in the Eq. (2) a system of two differential equations is obtained
which leads to:

Ḧ
(k)
d = (Ω2

k − ω2
k)H

(k)
d + 2ξkΩkωkH

(k)
q − 2ξkωkḢ

(k)
d + 2ΩkḢ

(k)
q + F

(k)
d

Ḧ(k)
q = −2ξkΩkωkH

(k)
d + (Ω2

k − ω2
k)H

(k)
q − 2ΩkḢ

(k)
d − 2ξkωkḢ

(k)
q + F (k)

q

(7)

Unlike the model proposed in [19], the proposed model in Eq. (7) is writ-
ten directly in an analytical form as a function of the modal parameters ξk,
ωk and the modulation/demodulation frequency Ωk. By this way, a system-
atic approach for the controller design of a single mode has been proposed
in [16], which is described in the next section.
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Figure 2: Principle of modulated-demodulated control (vector control) and the equivalent
model of a single vibration mode, an example of the obtained waveforms is shown for each
part of the modulated-demodulated control structure

2.3. Control in demodulated base

To design the controller ensuring zero steady-state error, the Eq. 7 are
rewritten in a state space form, introducing two new states

∫
H

(k)
d dt and∫

H
(k)
q dt:

H
(k)
d

H
(k)
q

Ḣ
(k)
d

Ḣ
(k)
q

Ḧ
(k)
d

Ḧ
(k)
q


︸ ︷︷ ︸

ẋk

=


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 a1 a2 a3 a4

0 0 −a2 a1 −a4 a3


︸ ︷︷ ︸

Ak



∫
H

(k)
d dt∫

H
(k)
q dt

H
(k)
d

H
(k)
q

Ḣ
(k)
d

Ḣ
(k)
q


︸ ︷︷ ︸

xk

+


0 0
0 0
0 0
0 0
1 0
0 1


︸ ︷︷ ︸

Bk

[
F

(k)
d

F
(k)
q

]
︸ ︷︷ ︸

uk

(8)

where a1 = Ω2
k − ω2

k , a2 = 2ξkΩkωk, a3 = −2ξkωk and a4 = 2Ωk. A Linear
Quadratic Regulator is then used to design a state-feedback, which optimizes
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the quadratic criterion [20]:

Jk =

∫ ∞
0

(
xTkQkxk + uTkRkuk

)
dt (9)

The state-feedback uk = −Kkxk is found by:

Kk = R−1
k BT

k Pk for Pk s.t. ATkPk + PkAk − PkBkR
−1
k BT

k Pk +Qk = 0 (10)

Following [16], particular weighting matrices Qk and Rk are chosen:

Rk = diag(qki, qki, qkp, qkp, 0, 0) (11)

Qk = diag(1, 1) (12)

which promote proportional-integral action, and treat symmetrically the
closed loop dynamics of H

(k)
d and H

(k)
q .

Along with this choice, it is specified that the close-loop step response should
be as close as possible to the one of a first order. Moreover, in order to impose
a 95 % closed-loop response time t′k, the ratio αk = tk

t′k
where tk is the 95 %

open-loop response time, is introduced in the LQR algorithm by letting:

qki =
(
2αkξ

2
kω

3
k

)2
(13)

qkp =
(
2αkξkω

2
k

)2
(14)

From a practical point of view, the resulting feedback control is modified
into a MIMO-PID, which actually simplifies to a MIMO-PI in the case of a
discrete implementation.
Finally to sum-up, Fig. 3 depicts the overall process from the point of view
of the frequency spectra obtained at each steps when Ωk = ωk. At first,
the velocity spectrum of the mode of interest is centered around ∓ωk. Once
demodulated, the translation of the poles gives a first set of frequency cen-
tered around zero, and two lateral lobes centered at ∓2ωk appear. They
are filtered out and the bandwidth of the zero-centerd lobe is modified of
the controller according to the value of αk selected. In the last step, the
modulation translates back the modified central lobe to ωk.

2.4. Multimodal control

The design procedure discussed the bandwidth around the resonant fre-
quency of a mode can be allocated. In order to control several modes, a
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bank of controllers can be implemented in parallel as schematized in Fig.
4. Each path follows the principle developed for a single mode, the main
difference being that each controller is tuned on a given frequency thanks to
the modulation/demodulation frequency Ωk. First, the measurement w

(m)
s

are combined linearly and then filtered with frequency filters in order to
reconstruct each modal coordinate η(k). The modal coordinate is then de-
modulated which gives its real H

(k)
d and imaginary H

(k)
q component in its

demodulated base. The controller calculates the modal forces components
F

(k)
d , F

(k)
q from the measurement H

(k)
d , H

(k)
q and their respective references

H
(k)
dref , H

(k)
qref . The components F

(k)
d and F

(k)
q are then modulated and give

the modal forces f (k).
The proposed parallelization requires that the controllers are independent

from each other i.e the influence of a given control effort f (i) on a kthmode (i 6=
k) is negligible compared to f (k). this assumption imposes that the dynamic
of a controller remains within a given bandwidth such that no overlappings
between neighbour controllers occur. Such a set-up is depicted in the Fig. 3-e
where the overall frequency response of the parallelized controller surrounds
resonant frequencies of the selected modes without intersection. Moreover,
no unwanted mode should lie within a controlled bandwidth. Similarly, the
presence of a modal coordinate η(i) in the measurement of a kth mode (i 6= k)
should negligible compared to η(k).

3. Experimental set-up

3.1. Hardware

3.1.1. Mechanical design

The proposed set-up is a an experimental prototype for a haptic feed-
back device that generates a localized tactile sensation on a touchscreen by
modal superposition [22], while using piezoelectric transducers. It consists
in a 150× 100× 2 mm3 glass plate onto which 34 piezoelectric monolayer
patches (Noliac NC 51, 9× 5× 0.5 mm3) are glued. A patch possesses a
folded electrode (cf Fig. 5-c) so according to the connection two different
polarization can be chosen (since the glass plate defines no common ground).
Behind the plate, a 5” LCD touchscreen is placed to later serve as a point-
ing and display device. To this end, the central area of the set-up must
remain clear, which implies that the piezoelectric patches are confined at the
periphery of the plate as illustrated in Fig. 5-b
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Figure 3: Conceptual overview of modulated-demodulated control in the case of multi-
modal control,adapted from [21] : (a) Frequency spectrum of one modal coordinate, (b)
Frequency spectrum after demodulation the measured modal coordinate, (c) synthesis of
the controller in the demodulated base, the bandwidth of the controller is represented
in dashed lines, (d) modal control signal after modulation, and (e) Resulted spectrum
of the control efforts after superposing n modulated-demodulated controllers, each color
correspond to the control signal of a single mode.

The finger acts as a perturbation that damps the vibrations [23, 24].
Therefore, the feedback control is needed to ensure a repeatable tactile stim-
ulation independently of the finger mechanical properties and the pressure
applied. Lastly, the vibration amplitude should be large enough to be de-
tectable. This implies that the ceramics must transfer enough energy to the
modes. Due to the limited number of patches, and since the applied voltages
must respected the specifications of the manufacturer, the set of available
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Figure 4: Proposed control structure, composed by modal filters and parallelization of nm
modulated-demodulated controllers.

Figure 5: (a) Picture of the experimental device; (b) Location of the piezoelectric patches;
(c) Schematic of a piezoelectric patch.

ceramics must be carefully divided into subsets assigned to the modes.
To do so, the later must be known then selected according to the desired
velocity fields that should be synthesized. For this purpose, the Eq. 3 is
adapted to the specificity of the piezoelectric actuators as they do not pro-
duce concentrated forces, but as a combination of forces and moments. They
results from the piezoelectric contribution to the stresses at the boundary of
a ceramic thus both their shape and location with respect to a mode shape
matter [preumont]. The modal force developped by a ceramic i is calculated
by [Ehsan]:

f ia = e31d

∮
∂Γi

∇Ψ(k).ndΓVi = Φk,iVi (15)
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where e31 [N V−1] is the piezoelectric coefficient, d is the distance between
the patch and the plate mid-planes and Vi is the applied voltage.

Figure 6: The first forty mode shapes of the plate and the corresponding resonance fre-
quencies, the selected modes are surrounded in dashed red lines.
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To estimate the global piezoelectric coefficient Φk,i, the mode shape were
approximated using the Rayleigh-Ritz method [25, 26] where the assumed
modes are free-free beam modes. These approximation were then used to
estimate coupling between a patch and a mode. the first forty mode shapes
and their resonant frequencies are shown in Fig 6. In Fig. 7-a the estimated
normalized φ(k,i) are represented as a matrix. A square defines the coupling
between a patch and a mode. It can be interpreted in two ways: spanning
the rows vertically at a given columns (i.e a given patch) quantifies the effi-
ciency of the patch to energize the modes, while spanning the columns gives
the ceramics prone to excite a given mode. Note that due to the reversibility
of piezoelectricity, φ(k,i) also relates the electrical charge induced by a defor-
mation, thus the same representation also indicates the ceramics that can be
used as sensors.

Figure 7: (a) Normalized modal coupling matrix Φ, where each case correspond to a modal
coupling gain φk,l , (b) normalized modal coupling matrix Φ(E) associated with the set
of selected modes E = {4, 6, 8, 9, 12, 15, 16, 22}.

3.1.2. Electronic

The control unit is composed of a set of Digital Signal Processor (DSP)
STM32F4 (STMicroelectronics) as shown in the Fig. 8.The first DSP is
principally responsible for the communication with a computer on a USB link.
This allows to program the other DSP, send them references, parameters and
gather measurements. Moreover, it provides a common clock signal to ensure
the synchronization of the controllers. The communication between the DSP

12



is performed through a SPI (Serial Peripheral Interface) link. The DSP 2 and
3 implement two controllers each. The modulated control signal is amplified
by two half-bridge DC to AC converter from a 100 V DC bus using a 500 kHz
pulse width modulation (PWM). The PWM voltages are then filtered by
passive low pass RLC circuits before supplyning the ceramics. In the design
of Fig. 5 some ceramics will be used as actuators, the rest as sensors.
The ST32F4 has up to three Digital to Analog Converters (DAC), which
limits to three measurements available to a set of two controllers. This is
a strong constraint, and thus a method to select the ceramics assigned for
measurements ans actuation is necessary. Unfortunately, it is not anymore
possible to use model reduction [1] or controllability of observability gramians
[27, 28]. Specific selection methods must be defined.

Figure 8: Structure of the control unit, composed with a set of DSP controllers, each DSP
possess its own measurement inputs and control signals outputs

3.2. Protocol

3.2.1. Reference

The prototype is limited to the simultaneous control of four modes. In the
following experiments though, eight modes will be used, repeating the focus-
ing with four modes at each run, then reconstructing the velocity field. This
approach holds because of the linearity and because the electronic guarantees
the synchronization of DSP. However, a reference velocity field composed of
eight mode must be defined. In this work, a sinc is chosen since it is known
that number of harmonics is limited and it can easily controlled. We thus
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define an ellipsoidal spatial sinc velocity reference by:

ẇ∗f (x, y) = ẇ∗ref sinc
(x− x0)2 + as(y − y0)2

R2
s

(16)

where ẇ∗ref defines the peak amplitude, {x0, y0} its location, and Rs, as adjust
the ellipsoid. Here as =0.5 and Rs =40 mm and three focusing location are
defined as in Fig. 9.
Once the reference defined, the modal velocity references are computed by

Figure 9: Velocity fields references: the center of the main lobes are located at
(37.5mm, 50.0mm) , (75.0mm, 50.0mm) and (112.5mm, 50.0mm) in order to focus at the
left, center and the right of the plate respectively.

a modal projection, that is:

η̇∗(k)f =

∫∫
Sp

ψ(k)(x, y)ẇ∗f (x, y)dxdy (17)

where Sp is the surface of the plate. The η̇∗(k)f define the reference values to
be reached at the time of focusing and are represented in Fig. 6 for the 40
modes. It can be observed that they participate unevenly and therefore the
decomposition can be pruned to retain only eight modes. To do this the τ
criterion defined in [13] is adapted. Denoting E the subset of selected modes
(dimE = 8), the criterion is written for the set of modes (cf Fig. ) as follows

τ =


∑
k∈E

(η̇∗(k)f )2

nm∑
k=1

(η̇∗(k)f )2


1/2

(18)

Evaluating τ over all combinations finally gives E = {4, 6, 8, 9, 12, 15, 16, 22}
with τ−scores 89%, 97% and 89% for the left, center and right location
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Figure 10: Modal participation factors for each spatial reference : left, center, right, the
selected modes are surrounded in dashed lines
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Figure 11: (a) Orthogonality of the coupling vectors in the case of the selected modes ;
(b) Sensors and actuators sets

respectively (cf. Fig 10).
In Fig. 7-b, the sub-matrix Φ(E) which gathers the piezoelectric force

factor Φk,i for the set E is represented. Then the matrix
∣∣Φ(E)TΦ(E)

∣∣ is
computed to evaluate the redundancy in the coupling of the ceramics with
respect to the modes. It is then normalized so as to have a unity diagonal,
hence measuring the correlations of the ceramics and the modes (cf. Fig.
11-a). To select a set of actuators prone to energize a mode, one should
choose ceramics with high correlation along a row or a column. On the
contrary, ceramics with low covariance indicate complementary information
in the measurements that facilitates the recovery of modal coordinates.
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Finally to avoid electromagnetic compatibility issues observed in previous
works, two separated areas are assigned to actuators and sensors (cf. Fig.
11-b) these regions corresponds to the red rectangle outlined in Fig. 11-a.

3.2.2. Actuators

In order to control a mode k ∈ E, a subset of ceramics within the set of
actuators of Fig. 11-b must be defined. A trade-off between a strong coupling
assigned to the mode and a weak coupling with the other mode must be
found to realize a modal filtering. To do so, let φ

(k)
a be the vector which i-th

component is φ
(k,i)
a , and introduce the connection vector p which components

take values in {−1, 0, 1}. A zero component means no connection, while ±1
indicates a connection, the sign being chosen relative to the connection of the
ground of the supply with respect to the polarization of the ceramic. The
following criterion is introduced:

Sk(p) =
∣∣pTφ(k)

a

∣∣− cp nm∑
k′=1
k′ 6=k

∣∣pTφ(k)
a

∣∣ (19)

Let Pn be the set of all exclusive and distinct connections vector p with n
connections. By that, we mean that two vectors in Pn have no common non-
nil component, and there are no opposite vector because it would actually
be the same connection if the voltage polarity is reversed. Then the aim is
to find four vectors p ∈ P such that the worst case is minimized, that is the
solution P̂n in the set of selected modes M is:

P̂n = max
Pn

min
k∈M
p∈Pn

Sk(p) (20)

In this way, the connections will ensure that the voltage range is used at
best, and thank to the parameter cp the design can be tuned against spill-
over. The problem is non convex and discrete: in this work it was solved by
brute force.
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3.2.3. Mode measurements

The measurements are given by a superposition of modal coordinate,
pondered by the piezoelectric effects :w

(1)
s
...

w(ns)
s


︸ ︷︷ ︸

ws

=

 φ
(1,1)
s · · · φ(1,nm)

s
...

. . .
...

φ(ns,1)
s · · · φ(ns,nm)

s


︸ ︷︷ ︸

Φs

 η(1)

...
η(nm)


︸ ︷︷ ︸

h

(21)

where, again, the coefficient φ(m,k)
s depends on the position of the sensor with

respect to a given mode. Therefore a sensor provides a weighted superimpo-
sition of modes.
The usual approach consists in applying a Penrose-Moore pseudo-inverse to
get ĥ = Φ†sws. However, as mentioned earlier, the reduced number of mea-
surement available (three measurement for two modes) is challenging. Here,
a combined spatial/frequency filtering is applied. Consider the schematic of
Fig 4. The estimates is given by

η̂(k)(s) = G(k)
eq (s)


 d

(k,1)

...
d(k,ns)


T  φ

(1,1)
s · · · φ(1,nm)

s
...

. . .
...

φ(ns,1)
s · · · φ(ns,nm)

s



 η(1)(s)

...
η(nm)(s)

 (22)

where d(k,m) is the row of the matrix D representing the gain of the linear
combiner associated with the sensor m and the mode k, G(k)

eq (s) is the equiva-
lent transfer function of the frequency filter in cascade with the demodulation
operator (Fig. 4) which has its own frequency response depending of the used
demodulation technique [29].
To simplify the procedure, the frequency filter is introduced into Φs. Then
defining the gains of the filter for each modes frequencies G(k,i)

eq =
∣∣G(k)

eq (jωi)
∣∣,

one has:

η̂(k)(s) =

 d
(k,1)

...
d(k,ns)


T  φ

(1,1)
s G(k)

eq (s) · · · φ(1,nm)
s G(k)

eq (s)
...

. . .
...

φ(ns,1)
s G(k)

eq (s) · · · φ(ns,nm)
s G(k)

eq (s)


 η(1)(s)

...
η(nm)(s)

 (23)

and thus the vector of linear combiner d(k) is calculated as follow :

d(k) = ∆(k)Φ(k)†
sf (24)
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where ∆(k) =
[
δk1 . . . δki . . . δknm

]
is a selection vector and δki correspond

to Kronecker delta. The procedure is iterated for the various filter, and each
time the corresponding line of D is updated.
The procedure is valid for one sensor connection. Therefore, an optimisation
procedure similar to the previous one is implemented to iterate on the set of
possible connections. A constraint is added to the procedure in order to avoid
the measurement noise amplification, which is induced by a rank deficiency
of the matrix Φ(k)

sf [30]. The constraint consists in penalizing a great values
of the linear combiner d(k).

3.2.4. System Calibration

The plate mode-shapes identification is done by using a laser vibrometer
(Polytec PSV-400) and while exciting a given set of actuators. From the
spatio-frequency response of the plate, the mode shapes are extracted us-
ing a peak picking method. In the Fig. 12 are superposed the theoretical
(Rayleigh-Ritz) mode shapes and the experimentally identified one. it can
be observed that the experimentally identified mode shapes match well with
the predicted one using Rayleigh-Ritz method. However, due to the influence
of the PZT patches and the connecting wires, the resonance frequencies are
around 12% lower than the calculated frequencies (Fig.6).

Figure 12: Mode shapes of the selected modes identified experimentally (black grid) and
the theoretical one (colored surface).

The identified resonance frequencies ωk and modal damping ξk are sum-
marized in the Table 1. The identification procedure consists in a frequency
sweep around the resonance frequency of given controlled mode by using the
associated sensors and actuators. The modal parameters are extracted using
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the quadrantal frequencies method as explained in [16]. It can be observed
that all the controlled modes are lightly damped ξk < 0.01 (1%).

Mode 4 6 8 9 12 15 16 22
Frequency (Hz) 1007 1400 2035 2427 3052 4137 4335 6160
Damping (%) 0.45 0.31 0.45 0.54 0.88 0.48 0.69 0.61

Table 1: Identified parameters

4. Results

Considering the limitation of the experimental set-up, only four modes
can be controlled simultaneously. Therefore, we propose to divide the experi-
ment in two parts, in each part we control four vibration modes and we adapt
the experimental implementation adequately. Since the system is linear and
assuming that there is no coupling between the modal coordinates, then the
superposition of both results is equivalent to the result obtained by exciting
simultaneously all of the eight selected modes.

The first part of the experiment consists in exciting the modes {4, 8, 16, 22}
that have a high contribution factors for a ’center’ focus. First, we validate
the proposed control approach for a ’center’ focus by superposing the modes
{4, 8, 16, 22}. Secondly, we show the results obtained by exciting successively
the modes {4, 8, 16, 22} and then the modes {6, 9, 12, 15}, for a ’left’, ’center’
and ’right’ focus of the velocity field.

4.1. Actuation

By taking a penalty factor cp = 1.5 in the criterion (19) the result of the
actuators selecting procedure with the modes {4, 8, 16, 22} is represented in
the Fig. 13, where each color corresponds to a mode, the sign +/− represents
the power polarity of each actuator.

In order to validate the actuators selecting procedure of the section 3.2.2,
the time and frequency responses of each controlled mode are analysed. If
we consider that a vibration mode excited at its resonance is a linear lightly
damped harmonic oscillator (second order system), then its time step re-
sponse in its demodulated base should be a convergent exponential and its
frequency response (Nyquist diagram) should form a circle in the complex
plan [31]. If a neighbor mode is excited and measured, its influence could be
observed in the time and frequency response.

19



Figure 13: Connection scheme of the sensors and the actuators to the control devices, the
sign +/− represents the power polarity of each actuator.
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Figure 14: Time (top) and frequency (bottom) responses in the demodulated bases, with an
isolated excitation. the blue and red curves in the time responses correspond respectively

to U
(k)
d and U

(k)
q . The red curves in the frequency responses correspond to the identified

circles

The Fig. 14 shows the time and frequency responses of the selected
modes in their demodulated bases, when each mode is excited separately at
their respective resonance frequencies and the modal force are taken so as to
obtain the same modal velocity amplitude. The modal velocity is written as
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its complex form as follow:

u(k)(t) = η̇(k)(t) = (U
(k)
d (t) + jU (k)

q (t))ejΩkt (25)

where U
(k)
d and U

(k)
q are respectively the real and imaginary part of the

modal velocity and they can be approximated as U
(k)
d = ΩkH

(k)
q and U

(k)
q =

−ΩkH
(k)
d . It can be established that the response of the U

(k)
d component

matches with the response of a first order system [16]. The component U
(22)
q

shows some oscillations at the beginning of the transient. These oscillations
are due to the excitation of a neighbour mode by a spillover effect whose
influence is visible by a gap in the frequency response. The consequence of
this spillover is presented in the next section.

4.2. Sensors

The first step for the measurement process establishment is to define
the demodulation bloc and the frequency filter forms. The demodulation
bloc consists in a moving average method [29] [10] with a window of two
oscillation periods Tk = 4π/ωk. The additional frequency filter is a second
order band-pass filter which writes :

G
(k)
pb =

2ξbpωks

s2 + 2ξbpωks+ ω2
k

(26)

where ξbp = 0.42 defines the filter bandwidth. The chosen value is a good
compromise between the selectivity of the filtering process and the phase
shift induced.

By considering the frequency response of the equivalent frequency filter,
the results of the selecting procedure is summarized in Fig. 13. The sensors
associated with the 4th and 8th modes are {1, 5, 10} and those associated with
the 16th and 22th modes are {3, 8, 15}. The corresponding normalized spatial
filters are shown in the Fig. 15, the null rows represent unused sensors.

In order to validate the calculation method for the modal filter weight-
ing gains d(k,m), the filtering process is simulated for the case of the sen-
sors/modes combination shown in the Fig. 13. The first calculation method
is the classical one and the second method is the proposed one Eqs. (24).
The modes are excited simultaneously at their respective resonance frequen-
cies and the modal force are taken so as to obtain the same modal velocity
amplitude. The modal responses in the respective demodulated base are
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Figure 15: Normalized Spatial filter gains d(k,m).

shown in the Fig. 16.a for the classical method case and Fig. 16.b for the
proposed method case. It can be observed that for some modes as the 22th

one, the classical calculation method is sufficient to obtain a good measure-
ment. However, in the case of the 8th the proposed method reduces the
measurement residues by around 2.5 times while using the same sensors.

Figure 16: Obtained simulation responses with the classical (a) and the proposed (b)
method for calculating the modal filter weighting gains, Udref and Uqref correspond the
ideal modal responses

After implementing the filtering and modulation-demodulation algorithm
in the micro-controllers, the modes are excited simultaneously in open loop
at their respective resonance frequencies with a step of voltage in the d-axis
(real) and so as to obtain the same velocity amplitude. the influence of the
modal filter on the measurement is shown in the Fig. 17. The Fig. 17.a shows
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the obtained responses without spatial and frequency filters, in this case only
a demodulation operation is applied on arbitrary sensor. The Fig. 17.b shows
the responses obtained when applying the proposed combination of spatial
and frequency filtering. It can be observed that due to the demodulation
characteristic some measurement contains a small percentage of residues as
for the 4th or 8th. The integration of spatial and frequency filters enhances
the measurement and reduces drastically the residues, which can be observed
principally for the 22th mode.

Figure 17: Influence of the modal filter on the measurement of the modal velocities, U
(k)
d

in blue and U
(k)
q in red : (a) measurement responses by using only the demodulation bloc

with an arbitrary sensor ; (b) measurement modal velocities while applying the proposed
spatial frequency filter

4.3. Closed loop control

In this chapter, the closed loop control of several modes is presented.
The proposed methodology is based on the controller design discussed in 2.3
which has been validated by Kaci & al. [16] for the case of controlling a single
mode. The transition to the control of several modes is done thanks to the
control structure shown in the Fig. 4 which allows to have an independent
control for each mode.

From the modal parameters of the Tab. 1 and the controller design
method described in 2.3, it is possible to calculate the Multi-Inputs-Multi-
Outputs Proportional-Integral (MIMO-PI) controller gains, for each mode,
while imposing a desired acceleration factor αk. As a reminder, the accel-
eration factor is defined as the ratio of the open loop response time by the
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closed loop one, αk = 1 results an equivalent closed loop dynamic than the
open loop one.

In order to show the robustness of the proposed approach, different dy-
namics αk = {0.5, 1, 2} are imposed and the closed loop time responses are
recorded. The choices αk = {0.5, 1, 2} translate respectively a slower, equiva-
lent and faster closed loop dynamic than the open loop one, and each imposed
acceleration factor αk results different controller gains. The modal velocities
references are taken U

(k)
dref = 3 mm s−1 and U

(k)
qref = 0 and all of the four modes

are excited simultaneously at their respective resonance frequencies.
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Figure 18: Closed loop time responses of the selected modes k = {4, 8, 16, 22}, for a

simultaneous excitation, U
(k)
d in blue and U

(k)
q in red, (a) αk = 0.5, (b) αk = 1.0, (c)

αk = 2.0

The obtained closed loop responses are shown in the Fig. 18. In the
case where αk = 0.5 and αk = 1 all the four modes are stable, where their
measurement shows low oscillations and all the modal references are reached
despite of the simultaneous excitation of several modes. However, in the case
where αk = 2 (Fig 18.c) the 22th is unstable which results in high oscillation
in both d-q axis, these oscillations are limited by the maximum voltage that
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can be generated by the control device. This instability can be explained by
a large presence of the 24th whose the influence is visible in the gap on the
frequency response Fig. 14.

4.4. Wave focusing

In a previous study Enferad & al. [13] generated focused waves by con-
trolling several modes in open loop at their resonance frequencies. In this
work, the modes are controlled in closed loop by using the proposed control
structure in order to produce and adapt in real time the control effort. The
modal references are defined as follow :

η̇∗(k)(t) = η̇∗(k)f cos(ωk(t− tf )) eκkξkωk|t−tf | (27)

where η̇∗(k)f is the modal velocity reference at the focusing time and calculated
from the projection in Eq. (17), κk is an acceleration factor of the reference
which allows to adjust the transient of each mode. The reference formula
(27) correspond to the response of an unstable mode ξk < 0 for t ≤ tf and to
the response a stable mode ξk > 0 for t > tf . The reference is composed by
harmonic vibration cos(ωk(t − tf )) and an envelop (η̇∗(k)f eκkξkωk(t−tf )) in the
other side. The velocities references in the demodulated bases are calculated
by writing the Eq. (27) in its complex form :

u∗(k)(t) = η̇∗(k)(t) =
(
U (k)

dref (t) + jU (k)

qref (t)
)

ejωk(t−tf ) (28)

which gives after identification in the real and imaginary complex axis :

U
(k)
dref (t) = η̇∗(k)f eκkξkωk|t−tf |

U
(k)
qref (t) = 0

(29)

thus, the amplitude and phase control is perfomed by the control of the
components Ud and Uq. The carrier ejωk(t−tf ) possesses a non-null initial
angle −ωktf which ensures the synchronisation of the modal velocities at
t = tf . The modal amplitudes references are calculated by the variable

change H
(k)
dref = U

(k)
qref/ωk and H

(k)
qref = −U (k)

dref/ωk.
Considering the dynamical nature of the reference signals, it is necessary

to include in the control structure a reference tracking method which consist
in a model-based feed-forward controller which is written in the discrete form:[

F (k)

d (z)
F (k)
q (z)

]
= C(k)

ff

[
H (k)

dref (z)

H (k)

qref (z)

]
(30)
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Figure 19: Control structure for one vibration mode

where C(k)

ff is the discrete feedforward transfer function matrix.
The implemented control structure for one vibration mode is shown in

Fig. 19. It consists in a measurement processing bloc which includes a spatial
filter, a frequency filter and a demodulation operator. The carriers angles
are initialized to −ωktf in order to synchronize their angle at the focusing
time tf , ts corresponds to the discretized time at 125 kHz (8 µs). The modal

amplitude components H
(k)
d and H

(k)
q are controlledwith a sampling period

of Tk = 4π/ωk. It means that the control efforts are updated each second
vibration period of the controlled mode. C(k)

fb corresponds to the transfer
matrix of the MIMO-PI feedback controller described in section 2.3. The
outputs of the controller F

(k)
d and F

(k)
q are modulated which results the modal

effort f (k).
The first experiment consists in a focusing at the center of the plate

by exciting four modes (4, 8, 16, 22). The chosen velocity reference at the
focusing point is w∗ref = 12 mm s−1 which results after projection, to the

modal velocities references η
∗(k)
f summarized in the Table.2. The shape of the
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Mode (k) 4 8 16 22

η̇
∗(k)
f (mm s−1) 3 3.72 3.36 2.04

κk 2 1.5 1 0.5
αk 4 3 2 1

Table 2: Modal velocities references at the focusing time η̇
∗(k)
f , acceleration factor of the

reference κ(k) and acceleration factor for the closed loop dynamic α(k), for each controlled
mode k

transients are imposed by the focusing duration tf and by the acceleration
coefficients κk associated with the references envelop η̇∗(k)f eκkξkωk(t−tf ). In
order to reduce the transient duration, the coefficient κk is taken all the
smaller as the rank of the mode is low. Concerning the closed loop dynamics
αk, it has been found experimentally that αk = 2κk is a good compromise
between disturbance rejection and noise amplification. We define the focusing
time as tf = 131.1 ms and the chosen coefficients κk and αk are resumed in
the Table.2.

The proposed control structure is validated by comparing the obtained
results with and without feedback control (respectively with Cff + Cfb and
just with Cff ), in the presence and absence of external perturbation. In
this case, the perturbation is a finger pushing around the center of the plate
with a constant force. The obtained results are shown in Fig.20. In absence
of feedback control, the Fig.20.a shows the sensitivity of the system if the
modes are not exactly excited at their resonance frequency ω 6= ωk, which
can be observed in the U

(k)
q components that are not null during the tran-

sient. The influence of the finger is also visible on the same figure, with an
attenuation of U

(k)
d components of the 4th and 8th mode principally. Since

only feedforward control Cff is used, the voltage in Fig.20.b does not depend
on the measurement but just on the references. The ripples visible on the
same figure are due to the numerical round-off which are all the greater as the
resonance frequency is high. The integration of feedback controller (Fig.20.c)

substantially reduces the tracking errors of both components U
(k)
d and U

(k)
q .

The associated voltages V
(k)
d and V

(k)
q are shown in Fig.20.d.

The modal velocities η̇(k) in the natural bases are extracted from a laser
cartography measurement procedure, by using a laser vibrometer (OFV 505
polytec). The response of the plate is measured successively in different
known points of the surface and then are projected on the modal basis by
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Figure 20: Modal signals in the demodulated bases for a focusing at the center of the

plate, with tf = 131.1ms :(a) Modal velocities components U
(k)
d and U

(k)
q in the case of

just feedforward control Cff ; (b) The associated voltages V
(k)
d and V

(k)
q

using the identified mode shapes. The extracted modal velocities are shown in
Fig.21. The Matlab command filtfilt is used in order to isolate the frequency
components around the resonance of each mode and the corresponding signals
are shown in red dashed lines. As shown in the figure, the references at the
focusing time are reached, while all the modal velocities are in phase at their
maximum for t = tf . However, the components η̇(22) show an error of around
20% which may be caused by the voltage ripple.

The modal responses in presence of external perturbation are shown in
Fig.22. When the feedback control is applied (Fig.22.a), the modal velocities
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Figure 21: Extracted modal velocities η̇(k) of the controlled modes in absence of external

perturbation, the modal velocities reference at the focusing time η̇
∗(k)
f are represented by

the symbol +.

at the focusing time are slightly attenuated. However, when the feedback
control is not applied, the modal velocities are much attenuated, with par-
ticularly η̇(4).
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Figure 22: Extracted modal velocities η̇(k) of the controlled modes in presence of external
perturbation : (a) with feedback control (b) without feedback control

The influence of the external disturbance on the velocity field at the
focusing time is shown in Fig.23. It can be observed that the velocity field
is more attenuated in absence of feedback control than in its presence. The
respective quadratic spatial errors are υ = 0.27(without feedback) and υ =
0.14 (with feedback), where the quadratic spatial error between a specified
velocity field ẇs and the obtained one ẇo is defined as follow :
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υ(ẇs, ẇo) =


∫∫

Sp

(ẇs(x, y)− ẇo(x, y))2 dxdy∫∫
Sp

ẇs(x, y)2dxdy


1/2

(31)

Figure 23: Velocity fields measured in the presence of external perturbation : (left) While

using closed loop control bloc C
(k)
fb , (right) without using closed loop control bloc C

(k)
fb .

At this point, we demonstrate the validity of the proposed control struc-
ture in order to generate a focused velocity field, by using a modulated-
demodulated control. The integration of feedback control allowed to reduce
the tracking error when an external disturbance influences the system dy-
namic. Considering the used external set-up, only four modes can be con-
trolled simultaneously. In order to reproduce the defined references shown
in Fig.9, we control separately two sets of modes, k ∈ {4, 8, 16, 22} and then
k ∈ {6, 9, 12, 15}. For the second set, all the optimisation, filtering and con-
troller design procedures are reapplied. For each set of modes, the velocity
field is focused at the ’left’, ’center’ and at the ’right’ of the plate. Then, since
the system in linear, the results with each set of modes are superposed in
order to reconstruct the velocity field as if all the modes could be controlled
simultaneously.

The obtained velocity fields for each spatial references ”right”, ”center”
and ”left” and using the first set of modes k ∈ {4, 8, 16, 22} are shown
in Fig. 24.(a). The obtained velocity fields with the second set of modes
k ∈ {6, 9, 12, 15} are shown in the Fig.24.(b). The superposition of both re-
sults as if we could control simultaneously all the selected 8 modes is shown
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Figure 24: (a) Velocity fields with modes {4, 8, 16, 22}, (b) Velocity fields with modes
{6, 9, 12, 15}, (c) reconstructed velocity fields with the two sets of modes ”(c)=(a)+(b)”

in Fig.24.(c). As it can observed, the obtained velocity fields at the focus-
ing time matches well with the references, where the corresponding spatial
quadratic errors for ”right”, ”center” and ”left” reference are respectively
υr = 0.10, υc = 0.13 and υl = 0.09.

5. Discussion and conclusion

In this work, the modulated-demodulated control of one vibration mode
is generalized to allow the simultaneous control of several vibration modes,
thanks to the use of modal filters. A novel method to design the modal filter is
proposed, it allows to take into account the influence of the frequency filter
applied in downstream. In this context and compared with the classical
calculation method for the modal filter coefficients, the proposed calculation
method enhances the modal coordinates measurement quality which can be
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a good solution in the case where the number of available sensors is limited.
It is obvious that the efficiency of the proposed method depends directly on
the distance between the resonance frequencies.

An experimental prototype of the control unit was developed for that
purpose, it consists in a set of micro-controllers stm32f4, where each one is
responsible to control a given number of modes. Since the micro-controllers
possesses a limited number of inputs and outputs, hence the number of used
actuators and sensors is limited. Then, different optimization procedures
were performed in order to select the best sensors or actuators sets.

The proposed control approach has been applied to produce predefined
velocity field within the framework of tactile feedback touchscreen, in order
to generate localized tactile stimulation. The user finger in contact with
the vibrating surface acts as a perturbation. The modulated-demodulated
control showed a good rejection of the perturbation. It can be assumed that
the rejection degree could be enhanced by enlarging the controller bandwidth
with a higher choice of the acceleration factor.
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