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Abstract: In this study, inexpensive and eco-friendly production of the silver nanoparticles (AgNPs) 

was explored using Laminaria ochroleuca sodium alginate as stabilizing and reducing agent. The 

synthesized nanoparticles were characterized by various analytical techniques such as UV–Vis 

spectroscopy, Energy dispersive X-ray spectrometer (EDX), X-ray diffraction (XRD), transmission 

electron microscopy (TEM), TEM selected area electron diffraction (SAED), Fourier transform infrared 

(FTIR) spectroscopy, and thermogravimetric analysis (TGA). The synthesis of AgNPs was elucidated 

by characteristic absorption peaks in the UV–Vis test. The FTIR analysis revealed the involvement of 

many functional groups in the bioreduction and the stabilization of AgNPs, while TEM images 

illustrated the spherical shape with maximum particles found in the size range of 10-20 nm.  Prominent 

peaks and silver diffraction rings shown by the XRD spectrum and SAED pattern, respectively, 

confirmed the crystalline nature (fcc) of the synthesized AgNPs, which were found to be thermally 

stable based on TGA analysis. The AgNPs exhibited strong antibacterial activity against Gram+ and 

Gram– bacteria. The synthesized silver nanoparticles using Laminaria ochroleuca sodium alginate 

revealed interesting properties that could be potentially used for pharmaceutical applications. 

Keywords: silver nanoparticles; biosynthesis; sodium alginate; Laminaria ochroleuca. 
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1. Introduction 

Nanotechnology has progressively more expanded as a promising field of applied 

science due to its various applications, which involve many aspects of human life using 

nanoparticles [1–3]. Research on nanomaterials mainly emphasizes the synthesis of 

nanoparticles of various sizes, shapes, and structures for desired applications [4]. Among the 

various nanoparticles, silver nanoparticles have established more interest due to their properties 

such as size, shape, antimicrobial and antioxidant activity [5]. Because of their distinguishing 

physico-chemical attributes [6], silver nanoparticles (AgNPs) are now one of the inorganic 

noble metal nanoparticles that have potential application in the areas of chemistry, physics, 

https://biointerfaceresearch.com/
https://biointerfaceresearch.com/
https://doi.org/10.33263/BRIAC125.60466057
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3016-8691
https://orcid.org/0000-0003-1415-3625
https://orcid.org/0000-0002-0016-422X
https://orcid.org/0000-0001-5240-7804
https://orcid.org/0000-0002-9380-3595
https://orcid.org/0000-0002-5569-0980


https://doi.org/10.33263/BRIAC125.60466057  

https://biointerfaceresearch.com/ 6047 

environmental remediation, optoelectronics, material science, biomedical devices, and 

renewable energies [7]. 

Several methods have been explored for the synthesis and stabilization of AgNPs. 

However, many of them were proved to have adverse effects in applications with potential 

environmental toxicity, as well as biological risks [8]. Hence, biological methods were 

established as a valuable, inexpensive, and less cumbersome alternative.  

Currently, there is increasing attention to the synthesis of metal nanoparticles from 

marine sources [9]. The use of marine macroalgae in the biosynthesis of nanoparticles arises 

as an ecofriendly and thrilling approach [10]. By taking advantage of its biochemical 

properties, including its biocompatibility, biodegradability, immunogenicity, and non-toxicity 

in drug delivery system and cell encapsulation [11, 12], alginate from brown seaweeds is one 

of the various bio-molecules often used as an organic matrix to produce metallic nanoparticles 

[13–16]. 

In the present study, silver nanoparticles (AgNPs) were synthesized using sodium 

alginate extracted from the kelp Laminaria ochroleuca harvested from the Atlantic coast of 

Morocco. The characterization of the AgNPs was performed by UV–VIS spectroscopy, X-ray 

diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron 

microscopy (TEM), TEM selected area electron diffraction (SAED), and thermogravimetric 

analysis (TGA). The synthesized AgNPs were tested for their antibacterial activity. 

2. Materials and Methods 

2.1. Alginate extraction. 

Laminaria ochroleuca samples were collected from the Atlantic coast of Morocco 

(33°14’47.5”N 8°32’31.9”W). The kelp biomass was washed with water to remove impurities 

and dried in an oven at 50°C. Dried samples were soaked in 2% formaldehyde for 24 h at room 

temperature, washed with distilled water, and added to 0.2 M HCl afterward for 24 h, then 

washed again with distilled water before extraction using 2% sodium carbonate (Na2CO3) 

during 24 h. The soluble fraction was collected by centrifugation. The sodium alginate was 

precipitated by ethanol and washed by acetone, then dried at 50°C. 

2.2. Synthesis of silver nanoparticles. 

Sodium alginate solution (1.5 %) extracted from Laminaria ochroleuca was added to 

AgNO3 (0.05 M) at a ratio 1:1. The mixture was stirred for 10 min at 60 °C, and then incubated 

at room temperature in the dark for 2h. After the centrifugation at 5000 rpm for 45 min and the 

precipitation, the product was dried at 40 °C to obtain the dry powder of the silver 

nanoparticles. 

2.3. Characterization of silver nanoparticles. 

UV–Vis spectrophotometer was performed to monitor the absorption pattern of 

synthesized silver nanoparticles using a spectrophotometer Metashe 5200 HPC. The samples 

were periodically recorded between 250 and 700 nm. An energy-dispersive X-ray spectrometer 

(EDX) was used to determine the silver concentration of the synthesized nanoparticles 

(AgNPs). 
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X-ray diffraction pattern of AgNPs was carried out on an XRD instrument operating at 

room temperature in a 2θ range of 0 to 70° with a scan step width of 0.02° using a D8 

AdvanceBruker AXS diffractometer (Cu Kα radiation, λ = 1.5418 Å). The resulting XRD 

pattern profile was treated with the EVA program.  

Transmission electron microscopy (TEM) was used to determine the size and shape of 

the synthesized silver nanoparticles. The analysis was performed using an FEI Tecnai G2 20 

by suspending the nanoparticles in distilled water. After being homogenized, a drop was placed 

on a copper grid, then air-dried and observed in TEM. The crystalline nature of the silver 

nanoparticles was examined using the selected area electron diffraction (SAED) pattern. 

FTIR spectroscopy analysis of biosynthesized AgNPs was performed with Thermo 

Scientific Nicolet IS50 FT-IR Spectrometer at room temperature over the wavenumber 

range4000-400 cm-1 in an attenuated total reflectance (ATR) mode. A total of 64 scans were 

averaged for each sample at 4 cm-1 resolution, and the IR spectra were then plotted and 

analyzed with the Omnic 9.1 software. 

Thermogravimetric analysis (TGA) was performed using TGA Seteram 92. The TGA 

thermograms were recorded at a heating rate of 10 °C per min in the temperature range of  

50 °C to 800 °C under a nitrogen atmosphere. 

2.4. Antibacterial activity. 

Antibacterial activity of the AgNPs was evaluated against different human pathogenic 

strains whose three Gram-negative bacteria Klebsiella pneumoniae (clinically isolated), 

Pseudomonas aeruginosa and Escherichia coli, and three Gram-positive bacteria 

Staphylococcus aureus, Bacillus cereus, and Micrococcus luteus using the technique of wells 

with a diameter of the beads of 6 mm [17]. In fact, 80 μL of the synthesized AgNPs were 

deposited in wells formed on the Muller-Hinton agar medium previously inoculated with 

0.1 mL of bacterial suspensions (106 CFU/mL) of the tested pathogenic microorganisms. The 

zones of inhibition that appeared around the wells after 18 hours of incubation at 37°C were 

subsequently measured [18]. 

3. Results and Discussion 

3.1. Synthesis of silver nanoparticles. 

When the extracted alginates solution is mixed with AgNO3
- aqueous solution, the color 

of the reaction began immediately turn from colorless to yellowish and then to brownish. It has 

been reported that Ag-NPs solutions have brown coloration due to their characteristic 

excitation of surface plasmons in the range of 400–414 nm [19, 20]. The UV–Visible spectrum 

of the synthesized Ag-NPs (Figure 1) showed a prominent peak at 400 nm. This peak is 

consigned to the excitation of surface plasmon resonance (SPR) and the reduction of AgNO3 

for the thermodynamically favored formation of the AgNPs using sodium alginate [21, 22]. 

This heteropolysaccharide is a structural component of marine brown algae 

(Phaeophyceae)made up of linked β-D mannuronic acid (M) and α –L guluronic acid (G) 

residues and operates as a controller of nucleation, as well as a stabilizer due to its functional 

groups (COOH and OH) with oxygen-rich structures. The latter binds strongly with 

nanoparticles via electrostatic interactions [23] due to the high charge density of the anionic 

sodium alginate that allows the replacement of sodium ions (existing in the sodium alginate 

structure) by the silver ions and contributes to the release of nitrate in the form of sodium nitrate 
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[24]. This one-electron transfer from the carboxyl groups of alginates to the bound Ag+ reduces 

the silver ion to Ag0 by dint of the hydroxyl groups provided by sodium alginate used as an 

organic matrix to produce metallic nanoparticles [25]. 

 
Figure 1. UV–Vis spectrum of AgNPs synthesized with Laminaria ochroleuca Na-alginate. 

3.2. TEM-SAED analysis. 

Transmission electron microscopy (TEM) images (Figure 2) clearly illustrate the 

homogeneity and spherical shape of the synthesized silver nanoparticles with predominant size 

in the range of 10–20 nm and a mean diameter of 14.89 ± 6.1 nm. It was reported that reducing 

and stabilizing agents strongly influence the metallic ion solution and incubation conditions 

the morphologies of the obtained nanoparticles [25, 26], being commonly quasi-spherical when 

produced for biopolymer particles [27, 28]. The obtained particle size is in accordance with 

previously reported green-synthesized AgNPs [29]. The TEM-SAED pattern revealed 

significant silver diffraction rings, suggesting the face cubic centered (fcc) crystalline nature 

of the AgNPs (Figure 3). 

 
Figure 2. TEM micrographs and size distribution analysis of AgNPs synthesized with Laminaria ochroleuca 

Na-alginate. 
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Figure 3. TEM-SAED ring pattern of the synthesized AgNPs. 

3.3. XRD analysis. 

The XRD pattern of the AgNPs (Figure 4) indicates four strong Bragg reflections 

exhibiting the characteristic peaks of the silver crystallites observed at 2θ values of 38.06°, 

44.21°, and 64.43° corresponding to the (111), (200) and (220) planes of silver crystals, 

respectively, indexed to the crystallographic planes of the face-centered cubic structure of 

silver (fcc) according to ICDD/ICSD from X’Pert High Score Plus (reference code: 01-087-

0719). XRD pattern clearly illustrates the crystalline structure of the synthesized AgNPs with 

fcc form. The weak diffraction peaks detected at 2θ values of 28°, 29°, 32.5°, and 34° (Figure 

4) can be assigned to Na-alginates due to the reflection of the (110) plane from polyguluronate 

unit, (200) plane from polymannuronate unit [30, 31]. This biopolymer used as an organic 

matrix to synthesize the silver nanoparticles is generally crystalline due to a strong interaction 

between chains through intermolecular hydrogen bonding [30].  

 
Figure 4. XRD spectra of Laminaria ochroleuca’ Na-alginate and the synthesized AgNPs. 
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3.4. EDX Analysis. 

Energy-dispersive X-ray spectrometer (EDX) was employed to reveal the presence of 

silver nanoparticles and their elemental nature. As shown in Figure 5, the presence of elemental 

silver along with Na, O, C, Si, and Cu in the synthesized nanoparticles are confirmed by a 

prominent peak detected at 3 keV linked to the typical absorption peak of AgNPs due to the 

surface plasma resonance (SPR) phenomenon [32]. 

 
Figure 5. EDX spectrum of the synthesized AgNPs. 

3.5. FTIR Analysis. 

The FTIR spectra of Laminaria ochroleuca Na-alginate and synthesized AgNPs were 

performed in the range of 4000 to 500 cm−1, as shown in Figure 6. Broadband appeared at 

3204.68 cm−1 could be assigned to the stretching vibration of –OH group [33]. The peak noted 

at 2919.75 cm-1 is related to carboxylate O=C–O asymmetric stretching vibrations [34, 35]. 

According to Fenoradosoa et al. [36] and Leal et al. [37], the characteristic peak of alginate 

found at 1599.21 cm−1 can be attributed to asymmetric stretching vibrations of carboxylate salt 

ion. The strong peak at 1404.91 cm−1 may be assigned to C–OH deformation vibration with the 

contribution of O–C–O symmetric stretching vibration of the carboxylate group, while the 

weak band at 1023 cm-1 may be assigned to C–O, and C– C stretching vibrations of pyranose 

ring [38]. The following bands are important for the alginate characterization as they 

correspond to the anomeric region (950 to 750 cm-1), in which two peaks were reported. The 

first one was observed at 877.95 cm-1 which corresponds to the C1–H deformation vibration of 

β-D-mannuronic acid residues. The second absorption brand band at 810,93 cm−1 was often 

reported for alginates, due to mannuronic acid residues [39]. Silver nanoparticles spectrum 

showed significant differences compared to that of Na-alginate (Figure 8). In fact, the band 

assigned to O–H group in Na-alginate absorption region did not appear on the AgNPs spectrum 

while that attributed to C–OH deformation shifted to 1329.22cm−1. Similary, the peak assigned 

to C–O and C– C stretching vibrations of pyranose ring shifted to 978.71 cm−1. These results 
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indicated that, hydroxyl and carboxylate groups could be involved in the synthesis of silver 

nanoparticles. 

 
Figure 6. FTIR spectra of Laminaria ochroleuca Na-alginate and the synthesized AgNPs. 

3.6. Thermogravimetric Analysis. 

TGA curves of AgNPs and sodium alginate (Figure 7) depicted three main degradation 

steps. The initial slight weight loss (100 °C) is due to moisture adsorbed on particles surface. 

After that, the main thermal degradation step was recorded between 120-220 °C for AgNPs, 

and it occurred between 120-280 °C for sodium alginate. During the third degradation step, the 

percentage of the residual mass decreased quietly to reach 35 and 70 % at 700°C for sodium 

alginate and AgNPs, respectively. The synthesized nanoparticles appear to be thermally stable. 

 
Figure 7. TGA curves of Laminaria ochroleuca Na-alginate and the synthesized AgNPs. 

3.7. Antibacterial properties. 

The antibacterial assay was tested against different human pathogenic strains of Gram-

negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia) and 

Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, and Micrococcus luteus). It 

is apparent that the synthesized nanoparticles showed important inhibition zones against two 
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of the tested bacterial microorganisms, Gram-negative K. pneumonia and Gram-positive S. 

aureus (Table 1). 

A maximum zone of inhibition was detected against Gram-positive S. aureus (21 mm) 

and a minimum zone of inhibition was obtained against Gram-negative E. coli (15 mm), while 

no inhibition zone appeared for the rest of the tested pathogenic strains. This might be explained 

by the large contact areas of small-sized synthesized AgNPs [40] and the different structure 

and composition of the cell wall in both bacteria types [41, 42]. Gram-negative bacteria with 

their thick peptidoglycan layer allow the entrance of only macromolecules. In contrast, the 

thinner layer of peptidoglycan and the abundant pores existing in the cell wall of Gram-positive 

bacteria allow foreign molecules to penetrate easily. This contributes to facilitating the 

absorption of the AgNPs into the bacterial cytoplasm, which leads to the disruption of its 

membrane, loss of cytoplasmic constituents, and ultimately cell death [43]. Additionally, 

Gram-positive bacteria have a high negative charge on the cell wall surface which possibly 

improves the antibacterial activity by attracting NPs [44]. Thus, the inhibition of the microbial 

processes could be made in the cell and on its surface. As reported in Kvıtek et al. [45], 

nanoparticles may attach to the surface of the bacterial membrane, influencing the shape and 

function of the cell membrane and the disturbance of the bacteria respiration and permeability 

functions. AgNPs could also penetrate the bacteria to prevent protein synthesis and DNA 

replication through interaction with phosphorus-containing molecules [46], generating 

Reactive Oxygen Species by deactivating cellular enzymes [47]. 

Table 1. Antibacterial activity of biosynthesized silver nanoparticles compared with literature data. 
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AgNPs –Caulerpa serrulata extract 16 nt nt 21 14 nt [48] 

AgNPs –Caulerpa racemosa extract 12 nt nt nt nt nt [49] 

AgNPs –Chlorella pyrenoidosa extract 12 nt nt nt nt 18 [50] 

AgNPs –Enteromorpha 

flexuosa extract 
10 nt nt 12 0 9 [51] 

AgNPs –Pithophora oedogonia extract 13.6 nt 15 16.8 17.2 nt [52] 

AgNPs –Sargassum ilicifolium extract 16.8 nt nt 18.2 nt 16.2 [53] 

AgNPs - Sargassum muticum Na-alginate 7 11 11 3 8 3 [19] 

AgNPs - Padina tetrastromatica Na-alginate 6 nt nt nt 4 nt [54] 

AgNPs – Laminaria ochroleuca Na-alginate 21 0 0 15 0 0 This study 

1 Zone of inhibition does not include the diameter of wells; nt: not tested 

4. Conclusions 

In the present study, an inexpensive, eco-friendly, and efficient method was developed 

for the green synthesis of silver nanoparticles (AgNPs).  

Sodium alginate extracted from the kelp Laminaria ochroleuca from the Atlantic coast 

of Morocco was used as a stabilizing and reducing agent for the synthesis of the silver 

nanoparticles. Their characterization was determined by various analytical techniques such as 
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UV–VIS spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) 

spectroscopy, transmission electron microscopy (TEM), TEM selected area electron diffraction 

(SAED), and thermogravimetric analysis (TGA). 

The resulting particles exhibited interesting characteristics, including the spherical 

shape of the synthesized AgNPs, with maximum particles in the size range of 10-20 nm. The 

results also showed the face cubic centered (fcc) crystalline nature of the thermally stable 

synthesized silver nanoparticles (AgNPs). This study suggests that the synthesized silver 

nanoparticles possess significant antibacterial activity against Gram-negative and Gram-

positive bacteria. The use of Na-alginate extracted from Laminaria ochroleuca seems to be an 

interesting environmentally friendly procedure for synthesizing bioactive AgNPs, which makes 

it potentially interesting for medical uses. 
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