
HAL Id: hal-03613806
https://hal.univ-lille.fr/hal-03613806

Submitted on 18 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallelization Scheme for Canonical Polyadic
Decomposition of Large-Scale High-Order Tensors
Abdelhak Boudehane, Laurent Albera, Arthur Tenenhaus, Laurent Le

Brusquet, Remy Boyer

To cite this version:
Abdelhak Boudehane, Laurent Albera, Arthur Tenenhaus, Laurent Le Brusquet, Remy Boyer. Par-
allelization Scheme for Canonical Polyadic Decomposition of Large-Scale High-Order Tensors. Signal
Processing, 2022, 199, pp.108610. �10.1016/j.sigpro.2022.108610�. �hal-03613806�

https://hal.univ-lille.fr/hal-03613806
https://hal.archives-ouvertes.fr

Parallelization Scheme for Canonical Polyadic
Decomposition of Large-Scale High-Order Tensors

Abdelhak Boudehanea, Laurent Alberab, Arthur Tenenhausa, Laurent Le
Brusqueta, Rémy Boyerc

aUniversité Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes,
91190, Gif-sur-Yvette, France.

bUniversité Rennes 1, Inserm, LTSI - UMR 1099, F-35000 Rennes, France.
cCentre de Recherche en Informatique, Signal et Automatique de Lille, Univ. Lille 1,

Villeneuve-d’Ascq, France.

Abstract

Modeling multidimensional data using tensor models, in particular through the

Canonical Polyadic (CP) model, can be found in large numbers of timely and

important signal based applications. However, the computational complexity in

the case of high-order and large-scale tensors remains a challenge that prevents

the implementation of the CP model in practice. While some algorithms, in

the literature, deal with large-scale problems, others target high-order tensors.

Nevertheless, these algorithms encounter major issues when both problems are

present. In this paper, we propose a parallelizable strategy, based on the tensor

network theory, to deal simultaneously with both high-order and large-scale

problems. We show the usefulness of the proposed strategy in reducing the

computational time on a realistic electroencephalography data set.

Keywords: High-order, large-scales, tensor decomposition, EEG, parallel

computing.

Email addresses: abdelhak.boudehane@gmail.com (Abdelhak Boudehane),
laurent.albera@univ-rennes1.fr (Laurent Albera),
arthur.tenenhaus@centralesupelec.fr (Arthur Tenenhaus),
Laurent.Lebrusquet@centralesupelec.fr (Laurent Le Brusquet),
remy.boyer@univ-lille.fr (Rémy Boyer)

Preprint submitted to Journal of Signal Processing March 18, 2022

1. Introduction

Data analysis using tensor models [1] is taking wider place in various

applications such as signal processing [2] and neuroscience [3]. Tensors preserve

the multidimensional structure of the data and provide separate factor analysis

[4]. These properties facilitate the interpretation of the decomposition. One

of the most attractive features of the Canonical Polyadic (CP) model is its

uniqueness, i.e., up to mild conditions, the factors of the tensor are unique [5].

To some extent, this property limits spurious physical interpretation. Tensor

approaches have been exploited for modeling ElectroEncephaloGraphy (EEG)

signals in the context of extended epileptic source localization [6]. In this

context, tensor modeling offers better separation of sources when compared to

conventional methods [6, 7]. However, computational complexity requirements

of tensor decomposition algorithms are prohibitive for high-order/large-scale

tensors. This appears clearly when dealing with high-order tensors (> 3)

where the number of entries increase exponentially with respect to the order [8].

Furthermore, the computational complexity of the factors estimation algorithm

increases when the dimensions of the tensor are large and appears to be an

end-point for analyzing large-scale tensors [8, 9]. This is the case for EEG

signals analysis that are observed for a large number of electrodes, frequency

bins, temporal samples and repetitions. Whereas, the relevant information is

usually concentrated in few factor matrices, such as in EEG source localization

where the aim is to estimate the spatial information represented by one factor

matrix (first mode) [10]. Nevertheless, the estimation of the corresponding

factor using classical tensor algorithms, such as Alternating Least Squares

(ALS) algorithm [11] and gradient-based approaches [12], requires full tensor

decomposition, i.e., the estimation of all the factors. This makes the expensive

process of full tensor decomposition inevitable. Tensor-Train [13] (TT) based

scheme called Joint dImensionality Reduction And Factors rEtrieval (JIRAFE)

has been proposed [14, 15], to deal with high-order tensors [15]. JIRAFE helps

reducing the computational complexity by breaking the high-order tensor into a

2

set of coupled 3-rd order tensors, called the TT-cores. A sequential estimation

scheme has been proposed for factor retrieval. The dominant complexity of

this scheme relies on the TT-SVD algorithm [13], which is the step used to

break the high-order CP tensor into TT-cores. This step becomes intractable

when dealing with large-scale tensors since it consists of applying a set of

SVDs on full unfolded tensor. In addition, the dimensions of the TT-cores

remain important for large-scale tensors. Grid-PARAFAC [16] is a parallelizable

algorithm that targets large-scale tensors. Yet, Grid-PARAFAC consists of

ALS and iterative steps whose complexity appears intractable when the order

increases. In this paper, we propose a TT-based scheme, targeting high-order

and large-scale problems simultaneously. First, we reduce the computational

time of the dimensionality reduction step by using parallel TT-SVD structure

through a split-and-merge strategy [17]. Roughly speaking, the computational

time is divided by the number of sub-matrices considered in the split-and-merge

algorithm. Moreover, we reduce the computational complexity of each of the

parallel steps using the randomized SVD (RSVD) [18]. Once the dimensionality

reduction is done, the TT-model allows the estimation of each factor separately

by decomposing the corresponding TT-core, without the need to estimate the

other factors. Furthermore, we propose a gridding-based scheme to break

the large-scale TT-cores into smaller sub-tensors sharing common change-of-

basis matrices. Thus, we exploit this coupling to reduce the time elapsed

to estimate the factor from the TT-core. The usefulness of the proposed

approach is demonstrated on a realistic EEG dataset described in [6]. In

this application, the objective is to localize the epileptic sources with sufficient

accuracy and reduced computational time. We compare our approach to an

ALS-based approach used in [6] applied to 3-rd and 4-th order tensors and to

the native JIRAFE. Notations: Vectors, matrices and tensors are represented

by x, X and X , respectively. The symbols (·)T , (·)−T and (·)† denote,

respectively, the transpose, the inverse of transpose and the Moore–Penrose

inverse matrix. The Frobenius norm is defined by || · ||F . The mode-q

product, denoted by ×q, is defined between tensor X of size N1 × · · · × NQ

3

and matrix A of size M × Nq as [X ×q A] =
Nq∑

nq=1
[X]n1n2···nq···nQ

[A]mnq .

The mode-{p, q} product, denoted by ×p
q , is defined between tensors A and

B as [A ×p
q B] =

∑Nq

k=1[A]n1,...,nq−1,k,nq+1,...,nQ
[B]m1,...,mp−1,k,mp+1,...,mP

. The

operator diag(V) converts vector V in to a diagonal matrix. The Khatri-Rao

product is denoted by ⊙. The tensor IQ,R, is a Q-th order tensor (hypercube)

with ones on the diagonal and zero otherwise, denoting the identity tensor of

size R × R × . . . × R. The matrix X(k) of size Nk × N1 · · ·Nk−1Nk+1 · · ·NQ

refers to the k-mode unfolding of X of size N1 × · · · ×NQ.

2. High-order large-scale tensor decomposition

2.1. Canonical Polyadic Decomposition

Assuming a high-order tensor X ∈ RN1×N2×...×NQ of order Q (> 3) and

canonical rank R. Tensor X follows a CP decomposition [19], i.e., it can be

written as the n-mode product of Q factor matrices as X = IQ,R ×1 P 1 ×2

. . . ×Q PQ, where P q ∈ RNq×R, for 1 ≤ q ≤ Q, are the factor matrices. The

widely used algorithms, to estimate these factor matrices, are usually based on

either ALS or gradient based approaches [11]. However, these algorithms face

problems since the complexity increases with the order and with the dimensions.

The problem of high-order tensors can be addressed using the JIRAFE algorithm

explained in the next section.

2.2. JIRAFE scheme

From the equivalence between the CP and the TT models, the high-order

tensor X can be written as a set of 3-rd order tensors called TT-cores, i.e., X =

G1×1
2G2×1

3 . . .×1
Q−1GQ−1×1

QGQ (TT-core factorization), with Gq = I3,R×1

M q−1×2P q×3M
−T
q (3-rd order CP), G1 = P 1M

−1
1 , GQ = MQ−1P

T
Q, where

Gq, for 1 < q < Q, is the q-th TT-core tensor of size R×Nq ×R, and the TT-

ranks are (R,R, . . . , R). The matrices M q, of size R×R, are the change-of-basis

matrices for 1 ≤ q ≤ Q − 1. The important result is that a rank-R Q-th order

CP model is equivalent to a structured TT-model where the TT-cores follow a

4

rank-R 3-rd order CP model. The TT-cores are obtained using the TT-SVD

algorithm, which consists of applying SVD on the tensor unfoldings. Once the

TT-cores estimated, one TT-core is used in Tri-ALS process, i.e., 3-rd order

ALS, in order to estimate the corresponding factor. Taking advantage of the

coupling between the TT-cores, the rest of factors are estimated through using

Bi-ALS processes, i.e., 3-rd order ALS with a pre-estimated matrix.

2.3. Limitations

The equivalence between TT and the CP models helps mitigating the impact

of the orderQ by using the JIRAFEmethod where the factor estimation problem

is solved as coupled least squares problems. However, sometimes the dimensions

of the tensor (N1, . . . , NQ) are large. This issue affects the JIRAFE scheme:

the TT-cores are obtained by TT-SVD that consists of applying SVDs on the

sequential tensor reshapings. The computational cost of this step depends

on the size of these reshapings and becomes prohibitive for large-scale tensor.

Furthermore, in the second step, Tri-ALS/Bi-ALS algorithms are used on the

TT-cores of size R × Nq × R. Knowing that the complexity of the Tri-ALS,

given by O(3R3Nq) per iteration, is dimension-dependent, the computational

time of this second step increases in a quadratic way with Nq, which is large for

large-scale tensors. In the following, we explain the solutions that we propose

in order to deal with these limitations.

3. Split and merge strategy

3.1. TT-SVD algorithm

The TT-SVD algorithm, as illustrated in Fig. 1, estimates the TT-cores by

extracting the dominant singular subspace using SVDs. At the first step, an

SVD is applied on the first unfolding X(1) (N2N3 . . . NQ × N1) of the tensor

X in order to extract the first dominant subspace, such that X(1) = U (1)V (1),

where U (1) is the left singular matrix and V (1) is the singular values diagonal

matrix multiplied by the right singular matrix. The first TT-core is given by the

5

P 1

R
N

1

P 2

R

N
2

PQ
R

NQ Unfold
X(1)

N1
N2N3...NQ

SVD

U(1) V (1)
N1 R

N2N3...NQ

U(1) = G1

G1

N1 R

Reshape

V (1)
V (1)

N2R N3N4...NQ

SVD

U(2) V (2)
RN2 R

N3N4...NQ

Reshape U(2)

G2

R R

N2

V (Q−1) = Gq

GQ

NQ R

Figure 1: Factor graph modelization of the TT-SVD algorithm

left singular matrix, i.e., G1 = U (1). Then, the second TT-core G2 is obtained

by applying the SVD on the remaining matrix V (1) of size (N3N4 . . . NQ ×

RN2) to extract the new left singular matrix U (2) reshaped into a R×N2 ×R

tensor G2. In the same way, we continue the process until all the TT-cores

are computed. Since the TT-SVD algorithm is composed of SVD steps, whose

complexity is given in section 6.1, the complexity of the TT-SVD depends on

the tensor dimensions Nq. This means that the complexity of the TT-SVD

increases significantly in the case of large-scale tensors. In the following, we

propose a solution to reduce the computational time using “split and merge”

[20, 21].

3.2. Split and Merge Scheme for the TT-SVD

The split and merge strategy allows the parallelization of SVD steps in order

to reduce the computational time [22]. We describe how we implement this

strategy in order to parallelize the SVDs in Algo. 1. In the “split” step, we

divide the tensor’s first unfolding X(1) (N2N3 . . . NQ×N1) into a set of smaller

matrices X
(1)T
J (

N2N3...NQ

J × N1) following the larger dimension, as shown in

Fig. 2, i.e., X(1) = [X
(1)T
1 X

(1)T
2 . . .X

(1)T
J]T , where J is the number of sub-

matrices that we chose depending on the number of calculators that we can

launch in parallel. Then, we apply the SVD on each of the sub-matrices in a

6

X X(1)

X
(1)
1

X
(1)
2

...

X
(1)
J

Unfold Split

N1

N2
N3

N1

N
2
N

3

N1

N2N3

J

N2N3

J

N2N3

J

Figure 2: Splitting the first unfolding of a 3-rd order tensor into J sub-matrices

parallel way, i.e., X
(1)
j = Ũ jSjV

T
j for 1 ≤ j ≤ J , where the size of Ũ j , Sj

and V j are (
N2N3...NQ

J ×R), (R×R) and (N1 ×R), respectively. In step 3, the

matrices SjV
T
j are concatenated to form the matrix Y of size (JR×N1), while

the matrix Ũ is block diagonal of size (N2N3 . . . NQ × JR). In step 4, we apply

SVD on the matrix Y , i.e., Y = UySyV
T
y . Finally, the SVD decomposition of

the tensor’s unfolding is given by Ux = ŨUy, Sx = Sy, V x = V y. Once done,

we reshape the product SxV x, and use it in the same scheme described in Algo.

1, in order to estimate the next TT-core, i.e., and we repeat this process for

all SVD steps described in Fig. 1 until all the TT-cores are computed. Notice

that this algorithm is parallelized, i.e., the SVDs (step 2) in Algo 1 are done

in parallel in order to reduce the computational time. Hence, instead of being

interested in the sum of computational time of all the SVDs applied on the

tensor unfolding, we are rather interested in the maximal computation time of

the sub-matrices obtained by splitting the tensor’s unfolding. Roughly speaking,

this divides the computation time by the number of sub-matrices. Note that,

in Algo 1, we assume that the rank is known. However, in practical situations,

the rank can be estimated using physical constraints [23, 24].

4. Gridding strategy on the TT-cores

Once the TT-core Gq, of dimensions R × Nq × R, is computed, a Tri-ALS

is used in order to estimate the factor matrix P q. Nevertheless, when the

tensor dimensions Nq become large, the computation time of the ALS increases

significantly since it has a dimension-size dependent complexity. Moreover, this

7

Algorithm 1 Split and merge for SVD

Input: Tensor’s unfolding X(1) and rank R

Output: The matrices Ux, Sx and V x

1: Splitting the tensor’s unfolding: X(1) = [X
(1)T
1 X

(1)T
2 . . .X

(1)T
J]T

2: parfor j ∈ {1, . . . , J}

Apply SVD on each X
(1)
j in parallel: X

(1)
j = ŨjSjV

T
j

end parfor

3: Forming the matrices: U = diag(Ũ1, · · · , ŨJ) and Y =
[
S1V

T
1 · · · SJV

T
J

]T
4: Applying SVD on Y : Y = UySyV

T
y

5: The SVD of X(1) is given by: Ux = ŨUy , Sx = Sy , V x = V y .

high complexity is multiplied by the number of iterations. In order to reduce

the computation time, we use a gridding scheme [16], that we adapt to our

context. In fact, we divide the TT-core Gq, following the larger dimension Nq

into smaller sub-tensors Gql , as shown in Fig. 3. This means that the factor

Gq Gq1 Gq2
. . . GqL

Grid

R

R
Nq

R

R

Nq

L
Nq

L
Nq

L

Figure 3: Dividing a TT-core into L sub-tensors

P q is split as well into L sub-matrices as P q =
[
P T

q1P
T
q2 . . .P

T
qL

]T
. The second

unfolding of Gq is written in function of the sub-tensors Gql as

G(2)
q =

[
G(2)T

q1 G(2)T
q2 . . .G(2)T

qL

]T
=

[
P T

q1P
T
q2 . . .P

T
qL

]T
[(M−T

q ⊙M q−1)
T]† (1)

. From eq. (1), each of the sub-tensors Gql can be factorized separately to

obtain the sub-factor P ql , while the matrices M q−1 and M q are common for

all the sub-tensors (see Fig. 4). In other words, we obtain a set of sub-tensors

Gql coupled on the first and the third modes [16, eqs. (17) and (18)]. Hence,

each sub-tensor Gql is written as a function of the matrices M q−1 and M q and

the factor l-th sub-matrix P ql as Gql = JM q−1,P ql ,M
−T
q K. Therefore, M q−1

and M q can be estimated by applying Tri-ALS on one of the sub-tensors Gq′l
,

instead of using the whole TT-core. Note that the choice of Gq′l
depends on

8

Gql

≈

I3,R

Mq−1

P ql

M−T
q

Figure 4: l-th sub-tensor of the q-th TT-core

the application, since in some contexts, such as sparse or incomplete data, the

choice of the right sub-tensor leads to better factor estimation. Once the change

of basis matrices estimated using a Gq′l
, we use them, in closed-form relations,

to compute the remaining factor sub-matrices P ql , for l ̸= l′ as follow

P ql = G(2)
ql

[(M−T
q ⊙M q−1)

T]†. (2)

This strategy allows us to reduce the computation time by using only a small

part of the TT-core in order to estimate M q−1 and M q by means of an ALS

algorithm, while the rest of the TT-core is used in a closed-form expressions in

order to estimate the rest of the factor sub-matrices. We recall the expressions

of the first and the last factor matrices in function of the first change of basis

matrices and the TT-cores

P 1 = G1M1, PQ = GT
QM

−T
Q−1. (3)

We summarize the steps of factors estimation in Algo. 2 using the Parallelized

TT-SVD (P-TT-SVD) where the SVD steps are performed as described in Algo.

1. It is to be mentioned that we take advantage of the coupling between the

TT-cores, i.e., knowing that the TT-cores Gq and Gq+1 share a common change-

of-basis matrix, namely M q, while Gq and Gq−1 have M q−1 as a common

change-of-basis matrix. Thus, once Gq is decomposed, we use M q to estimate

Gq+1 in a Bi-ALS step, i.e., a 3-rd order ALS with a pre-estimated matrix. On

the other side, we use M q−1 to estimate Gq−1. In the same way, we continue

taking advantage of the pre-estimated change of base matrices on the left and

the right side in parallel [25].

9

Algorithm 2 R-P-JIRAFE

Input: Tensor X and rank R

Output: Factor matrices P q

1: Estimation of TT-cores: [G1,G2, . . . ,GQ−1,GQ] = P-TT-SVD(X , R)

2: for q ∈ {2, . . . , Q− 1} Choose Gql′
and estimate change-of-basis matrices

[Mq−1,P ql′ ,Mq] = Tri-ALS(Gql′
)

3: for l ̸= l′ Retrieve the remaining sub-matrices of the factor

P ql = G
(2)
ql [(M−T

q ⊙Mq−1)T]†

end for

end for

4: Determine P 1 and PQ: P 1 = G1M1, PQ = GT
QM−T

Q−1

5. Randomized singular value decomposition

The dominant computational complexity for both the first and the second

steps of JIRAFE scheme is the cost of the SVD. The parallelization of the TT-

SVD reduces the computation time by splitting the tensor’s reshapings into

smaller matrices. However, the computational cost of each parallel step in the

split and merge process can be reduced significantly by replacing the ordinary

SVDs by randomized SVD (RSVD) [18]. In fact, instead of computing the

SVD of an R-rank matrix X of dimensions N × M , the RSVD consists of

computing the SVD of a smaller matrix QTX, where Q of dimensions N × F

is a random matrix with orthonormal columns, so that QQTX ≈ X. The

number of columns F is called the oversampling parameter. Finding Q is done

by generating a random matrix W of size M × F , which is projected on the

matrix X. Then, We extract the orthonormal basis of the projected matrix

to obtain Q, i.e., Q = orth(XW), where orth(A) is the operator that extract

the orthonormal basis of the range of A. Once Q calculated, we can compute

the SVD decomposition of QTX of dimensions F ×M , i.e., QTX = ŨSV T .

Thus, the SVD decomposition of X can be obtained as follow X ≈ QQTX =

QŨSV T = USV T , with U = QŨ . However, the error of the RSVD remains

significant compared to the classical SVD, due to the slow decay of the singular

values. In order to fix this problem, the random matrix W is multiplied by

10

(XXT)pX instead of X in the projection step. The power p allows a faster

decay to reduce the effect of the smaller singular values [18]. It is to be mentioned

that the larger the value of p we choose, the faster the decay of the singular

values. Moreover, increasing F , the number of columns of Q, results in better

performances and lower error [18]. Nevertheless, sinceQ is column-orthonormal,

the upper limit of F is fixed by F ≤ N . We summarize the steps of RSVD as :

• Generate random matrix W (M × F).

• Extract the orthonormal basis Q = orth((XXT)pXW).

• Compute the SVD of the product [Ũ ,S,V T] = SVD(QTX).

• calculate the left singular matrix as U = QŨ

Note that, for an RSVD applied on matrix X described above, authors in [18]

approximate the error by

E
∥∥∥X −QQTX

∥∥∥ ≤
[
1 +

4
√
R+ F

F − 1
·
√
min{N,M}

]
σR+1(X),

where E is the expectation with respect to W and σR+1(X) is the R + 1-th

singular value of X. Since the error approximation depends on σR+1(X), it

is recommended to have a sufficient power iterations number p to guarantee

a fast decay of the singular values and a small value of σR+1(X) to reduce

the approximation error significantly. Nevertheless, in our case, the RSVD is

applied on sub matrices Xj (see Algo. 1). Hence, the approximation error on

matrix X becomes [22, eq. (9)]

E
∥∥∥X −QQTX

∥∥∥ ≤
J∑

j=1

[
1 +

4
√
R+ F

F − 1
·
√

min{N
J
,M}

]
σR+1(Xj),

where σR+1(Xj) is the is the R+ 1-th singular value of Xj .

6. Complexity analysis

A complexity analysis comparing JIRAFE and ordinary ALS/NLS

algorithms have been already done in [14], with interesting results in the favor of

JIRAFE. Hence, in this section, we will analyse the computational complexity of

11

R-P-JIRAFE introduced above, taking the complexity of JIRAFE as a reference.

For the sake of simplicity, we will consider a tensor with size N ×N × . . .×N .

6.1. Split and merge complexity

In this section, we evaluate the complexity of the TT-SVD and the P-TT-

SVD for high-order large-scale tensors following the approximations used in [26].

As mentioned previously, the TT-SVD algorithm consists in applying SVDs on

the R-rank Q-th order tensor unfoldings. This means that, in the first step,

we apply an SVD on the first tensor unfolding of dimensions N ×NQ−1. The

complexity of truncated implementation economy SVD of a matrix Z, of size

m× n, where only the first r singular values/vectors are calculated, is given by

O(r2(m + n) + rmn). Hence, the complexity of the first step of the TT-SVD

is given by O(R2(N +NQ−1) + RNQ). For large dimensions, we approximate

the complexity of this step to the second term, i.e., O(RNQ). Once the first

dominant subspace extracted, the SVD is then applied on the remaining matrix,

tensorized and then unfolded following the second dimension. This matrix is of

a size RN ×NQ−2. Hence, the computational complexity of this step is given

by O(R2NQ−1). Thus, the complexity of the TT-SVD is given by

k(TT-SVD) = O(RNQ) +O(R2NQ−1) + . . .+O(R2N2). (4)

However, using the split-and-merge algorithm, the tensor’s unfoldings are

divided into J sub-matrices, giving a complexity equals to O(RNQ

J) for each

sub-matrix from the first unfolding and O(R
2NQ−1

J) for the second. Since these

SVDs are applied on the sub-matrices on different calculators in parallel, the

computational time of the P-TT-SVD will depend on the time elapsed by one

calculator. Hence, instead of being interested in the global computational

complexity of all the SVDs launched in parallel, we are interested only in

the complexity of one SVD applied on a sub-matrix. Thus, thanks to the

parallelization, the theoretical complexity of the split-and-merge algorithm for

the larger dimension is divided by the number of sub-matrices. We write the

12

0 10 20 30 40 50

10
4

10
6

10
8

Figure 5: Computational complexity of P-TT-

SVD and the SVDs applied on Y in function

of J for Q = 4, R = 2 and N = 100

0 50 100 150 200

0

2

4

6

8
10

9

Figure 6: Computational complexity in

function of the size N for Q = 4, R = 2

and J = 4

new complexity of the P-TT-SVD

k(P-TT-SVD) = O

(
RNQ

J

)
+O

(
R2NQ−1

J

)
+ . . .+O

(
R2N2

J

)
. (5)

From eq. (4) and eq. (5), we can see that the overall complexity of the P-TT-

SVD is divided by the number of sub-matrices considered in the split-and-merge

algorithm. The complexity of the SVD applied on Y of size (JR×N), in step 4

of Algo. 1, is given by k(SVD(Y)) = O(R2(JR+N) +R2NJ). For a low-rank

large-scale tensor, this complexity is approximated by O(R2NJ). However, this

complexity is computed for the first SVD step of the P-TT-SVD only. For the

remaining Q − 2 P-TT-SVD steps, the size of Y becomes (JR2 × N), which

means that its complexity becomes O(R3NJ). Thus, the global complexity of

SVDs applied in step 4 for all split and merge steps of P-TT-SVD as

k(SVD(Y)) = O(R2NJ) + (Q− 2)×O(R3NJ) (6)

As we compare k(SVD(Y)) in eq.(6) to k(P-TT-SVD) given in eq.(5) (see Fig.

5), we notice that k(SVD(Y)) is less significant and can be neglected for large

tensors. Hence, the complexity of P-TT-SVD algorithm is approximated by

k(P-TT-SVD).

In Fig. 6, we plot the complexity of the TT-SVD algorithm and the

complexity of the P-TT-SVD in function of the dimension size N , for a fixed

13

tensor order Q = 4 and R = 2, while the number of the considered sub-matrices

is fixed at J = 4 to be launched on 4 calculators working in parallel. We

noticed, on Fig. 6, a fast exponential increase of the complexity of the TT-SVD

algorithm, in function of the dimension size, compared to the slower increase of

the complexity of the P-TT-SVD. Consequently, as the tensor dimension size

increases, the computational time of the TT-SVD is expected to grow faster

than the computional time of the P-TT-SVD.

6.2. Randomized SVD complexity

The randomized SVD reduces the computation of the parallel SVDs that

we apply on the splitted tensor reshapings. However, for the first tensor

unfolding in the P-TT-SVD process, instead of calculating the SVD for an

N × (NJ)Q−1 matrix, for which the complexity is evaluated in the previous

section as O(R2(NJ)Q−1), we use the RSVD to reduce the unfolding into a

F ×M matrix, for which the complexity is reduced to O(R2M).

6.3. Gridding complexity

The second step of JIRAFE algorithm consists of factors retrieval by

applying Tri-ALS algorithm on the TT-cores of size R × N × R. The

computational complexity of a tri-ALS is given by O(3R3N) for one iteration.

this complexity is then multiplied by the number of iterations in order to find

the global complexity of the Tri-ALS, i.e.,

k(Tri-ALS) = O(3R3N)× number of iterations. (7)

The gridding strategy allows us to divide the TT-cores following the largest

dimension of size N by the number of sub-tensors L we wish to consider. Hence,

the complexity of the Tri-ALS applied on the first sub-tensor becomes O(3R3N
L)

multiplied by the number of iterations. We add the complexity of Eq. 2 that we

apply (L−1) times closed-form in order to estimate the remaining sub-matrices

of the factor. Since the dominant complexity of Eq. 2 is the complexity of the

pseudo-inverse operation on the matrix [(M−T
q ⊙M q−1)

T] of size R2×R, that is

14

approximated to an SVD operation, we evaluate the complexity of this equation

as O(R4). We obtain the following complexity for the gridding scheme.

k(Tri−ALS) = O(3R3N

L
)× number of iterations + (L− 1)O(R4). (8)

From eq. (7) and eq. (8), when the tensor size N increases, the complexity of

Tri-ALS increases drastically, since it is multiplied by the number of iterations,

while we can increase the number of sub-tensors L, in the case of grid scheme,

in order to reduce the complexity multiplied by the number of iterations.

7. Simulation and discussion

In this section we evaluate the performances of our method using numerical

simulations. First, we study the impact of the different parameters on the

estimation error and the running time using synthetic data. Afterwards, we test

our approach on a realistic EEG source localization context. The simulations

are performed using MatLab software on a computer having a processor Intel(R)

Core(TM) i7-8650U CPU @ 1.90GHz (8 CPUs), 2.1GHz.

7.1. Synthetic simulation

In this part, we use a rank-2 4-th order hyper-cubic tensor X , following a

CP model, of size N × N × N × N , with N = 100. The tensor is constructed

from randomly generated factors following a standard normal distribution. A

Gaussian white noise tensor E, of the same size and order as X , is then added to

the initial tensor, to reach a desired level of SNR. The reconstruction normalised

mean squared error (NMSE) and the computational time are computed as the

average over 100 noise realizations.

7.1.1. Impact of the number of sub-matrices on the TT-SVD algorithm

First, we study the impact of the number of sub-matrices on the

reconstruction normalised squared error (NMSE) and the running time. For

this, we apply a randomized P-TT-SVD (RP-TT-SVD, i.e., a P-TT-SVD with

randomised SVDs), on the tensor for J ∈ {2, 4, 10, 20} and for different SNR

15

0 5 10 15 20
10

-7

10
-6

10
-5

Figure 7: Normalised reconstruction mean square error (NMSE) in function of SNR (dB).

values. We compare RP-TT-SVD to the classical TT-SVD and the randomised

TT-SVD (R-TT-SVD, i.e., the TT-SVD with RSVDs). It is to be mentioned

that we use the RSVD algorithm described in [18, algorithm 4.4]. Authors in

[18] suggest that two power iterations (p = 2) would be sufficient to quicken the

decay of the singular values and obtain a good approximation of the matrix.

Likewise, they claim that, for rank-R N ×M matrix X, it would be enough to

take a column-orthonormal matrix Q of size N × 2R. Thus, we fix the number

of power iterations at p = 2 and the second dimension size of Q at 2R. It

is to be mentioned that, for J > 25, the column-orthonormality condition on

Q, mentioned in section 5, can no longer be satisfied. In fact, in the last step

of the RP-TT-SVD, splitting the remaining tensor unfolding into J > 25 sub-

matrices means that matrix Q will have N
J < 4 columns and 2R = 4 rows, which

violates the column-orthogonality condition. Hence, we stop at J = 20. The

NMSE results in Fig. 7 show identical reconstruction error for all the compared

algorithms. Hence, changing the number of sub-matrices J has no effect on the

reconstruction error. On the other hand, table 1 shows no significant changes

in computational time as we increase SNR. This is thanks to the fact that all the

compared methods are algebraic. RP-TT-SVD shows the lowest computational

time, followed by R-TT-SVD, while the classical TT-SVD has the highest time.

16

Running time (s)

SNR (dB) 0 10 20 Gain

TT-SVD 5.79 5.28 5.82 1

R-TT-SVD 0.49 0.51 0.51 11

RP-TT-SVD (J = 2) 0.23 0.24 0.25 23

RP-TT-SVD (J = 4) 0.12 0.12 0.12 46

RP-TT-SVD (J = 10) 0.071 0.069 0.070 80

RP-TT-SVD (J = 20) 0.072 0.071 0.071 79

Table 1: Running time (s) in function of SNR (dB). The last column represents the gain of

each algorithm compared to the TT-SVD. The gain of each algorithm computed as the average

computational time of the TT-SVD over the SNR values divided by the average computational

time of each algorithm.

Moreover, the gain of the RP-TT-SVD increases as we increase the number of

sub-matrices, as observed for the values J = 2, J = 4 and J = 10. However, for

J = 20, the gain decreases slightly despite the fact that the dimensions of sub-

matrices are smaller. This is due to the increase of the number of sub-matrices

to be computed. Hence, J should be chosen in order to make a compromise

between the number of the sub-matrices to be computed and their dimensions.

In our case, J = 10 shows the most interesting results in this case.

7.1.2. Impact of the number of sub-tensors on the factor estimation

In this part, we study the impact of the number of sub-tensors L on both

the tensor reconstruction error and the running time. For this, we use the

classical TT-SVD to estimate the TT-cores. Once the TT-cores estimated, we

estimate the factors twice : once using Tri-ALS and once using Grid-ALS, in

order to compare the reconstruction error and running time of these algorithms.

Note that we take into account only the elapsed time to estimate the factors

from the TT-cores. For the Grid-ALS, we consider L sub-tensors, with L ∈

{2, 4, 10}. Fig. 8 shows that the NMSE decreases as we increase the SNR values

since the ALS compared algorithms are iterative (noise-sensitive). Moreover, it

shows similar reconstruction error between Tris-ALS and Grid-ALS for all the

considered L values. On the other hand, Table 2 shows a decrease in terms of

17

0 5 10 15 20
10

-7

10
-6

10
-5

Figure 8: Normalised reconstruction mean square error (NMSE) in function of SNR (dB).

Running time (s)

SNR (dB) 0 10 20 Gain

Tri-ALS 0.123 0.080 0.038 1

Grid (L = 2) 0.109 0.057 0.029 1.2

Grid (L = 4) 0.095 0.050 0.027 1.4

Grid (L = 10) 0.090 0.048 0.024 1.5

Table 2: Running time (s) in function of SNR (dB). The last column represents the gain of

each algorithm compared to the Tri-ALS algorithm.

computational time as we increase the number of sub-tensors L. Overall, the

dimensions of the TT-cores in this case are not too large (2 × 100 × 2), which

explains the small computational time elapsed to perform the decomposition.

However, the gain is expected to increase for larger dimensions as the running

time increases comparing to the time elapsed for elementary operations.

7.2. Realistic data

In this section, the efficiency of our strategy is evaluated on realistic EEG

signals. The aim is to localize brain epileptic sources and to estimate their

spatial extent, using the scalp EEG data and the lead field matrix, which

models the transfer between brain and scalp electrical activity. This ill-posed

linear inverse problem is well-known as the brain source imaging problem. The

lead field matrix is computed using a real head geometry and the Boundary

18

Element Method (BEM) to solve Poisson equation in the head medium [27].

EEG spatio-temporal matrices Z are generated as Z = GS, where S represents

the source signals and G represents the known lead field matrix standing for the

attenuation that the source signals are subject to [10]. It is to be mentioned that

the source signals are taken from real interictal epileptic data with spikes. We

apply a wavelet transform on the matrix Z, using the Morlet wavelet, in order

to obtain a space-time-scales 3-rd order tensor that we call X (N1 ×N2 ×N3).

Finally, we simulate the repetition of spikes which is observed in practice. In

order to do that, we introduce a weight factor matrix as a 4-th dimension of

a new 4-th order tensor that we call Y . The goal is to estimate the spatial

factor matrix, that we call A1, of size N1 ×R, where R is the tensors canonical

rank, corresponding to the first mode. The second factor matrix is A2, of size

(N2 × R), representing the temporal dynamics, while the third factor matrix

(N3 × R) stands for the scales obtained by the wavelet transform. The fourth

factor (N4×R) is the spike repetition factor matrix. We apply our approach on

the tensor Y and compare it to JIRAFE and the classical 4-th order Nonlinear

Least Squares (NLS) algorithm provided by tensorlab toolbox [28], and to the

3-rd order NLS that we apply on the tensor X . Once A1 estimated, under

the assumption of a known lead field matrix, and since only a small number

of dipoles contribute to each patch of interest, a sparsity penalty is imposed

on the matrix A1 in order to identify the position/extent of each patch [10].

This step is done by the algorithm called Source Imaging based on Structured

SparsitY (SISSY) [10]. For the sake of approaching realistic context, we consider

3 scenarios according to the position of the epileptic patches, the number of

patches and the level of correlation between the signal dynamics :

• First scenario: two distant patches on the brain, with less correlated

dynamics, i.e., the correlation between the dynamics between the two

patches is lower than a threshold fixed to 0.7.

• Second scenario: two close patches are present, with higher correlation

than the threshold.

19

• Third scenario: three patches are present, from which two are spatially

close and correlated, while the third patch is distant with dynamics less

correlated to those of the first and second patches.

We add white Gaussian noise, standing for the noise generated by instruments.

In addition, we add modeled noise standing for the non epileptic brain activity

called ”the background activity” [10]. The dimensions we chose are N1 = 91

electrodes, N2 = 200 time samples with a sampling frequency of fs = 256Hz,

while the scale number is N3 = 60 obtained by the wavelet transform. The

repetition number is N4 = 50. The simulations are done for 100 runs for each

scenario, for three values of SNR, i.e., SNR = 0 dB, SNR = 10 dB and SNR = 20

dB. We use as performance criterion the distance of localization error (DLE)

[29], defined as the distance between the original sources and the estimated

sources. Likewise, we compare the time of execution of the four approaches. In

this application, the main goal is to estimate the spatial dimension, i.e., the first

factor matrix only. This means that there is no need to estimate the remaining

factors. Therefore, we adapt our algorithm to this context and we stop once the

first factor is estimated. Hence, the computational time is reduced in a drastic

way. Note that eq. (3) means that the estimation of the first factor matrix

requires only the first TT-core G1 obtained from the first TT-SVD step, and

the first change-of-base matrix M1 obtained from a single sub-tensor G2l′ in

the grid of the second TT-core G2 (see Fig. 3). Since G1 and G2 are obtained

by the first two steps of the TT-SVD, it becomes unnecessary to estimate the

rest of the TT-cores in the case where only the first factor is needed. However,

Algorithm 3 R-P-JIRAFE

Input: Tensor Y and rank R

Output: The first factor matrix P 1

1: Estimation of TT-cores: [G1,G2] = P-TT-SVD(Y, R)

2: Choose G2l′
and estimate M1: l′ = argmaxl||G2l ||Fro

[M1,P 2l′ ,M2] = Tri-ALS(G2l′
)

3: Determine the first factor: P 1 P 1 = G1M1

we mentioned previously that the choice of the l′-th sub-tensor depends on

20

the application. We remind that, in our case, the second factor represents the

temporal dimension. Hence, knowing that the source signals are impulsive, we

chose the sub-tensor G2l′ that has the greatest Frobenius norm value. This

means that we chose the part of the signal that corresponds to the peak of the

impulse, where the source signal is at its greatest value compared to background

activity and noise. In other words, we chose G2l′ so that l′ = argmaxl||G2l ||Fro.

We describe this process in Algo. 3, where we use only two steps of P-TT-

SVD in order to estimate the first and the second TT-cores in step 1. Then, in

step 2, we choose the sub-tensor G2l′ that we integrate into a Tri-ALS process

to estimate the change-of-basis matrix M1. Finally, we use M1 in step 3 to

determine the first factor P 1.

7.2.1. First scenario

(a) NLS 3D (b) NLS 4D (c) JIRAFE

(d) R-P-JIRAFE (e) Ground truth

Figure 9: Example of epileptic source localization for two distant patches (SNR = 10 dB)

In this scenario we consider two distant patches, to simulate the case where

the interictal activity is generated by two distant epileptic generators in the

brain. Since the two sources are not close, it is reasonable to consider a low

correlation between the corresponding activities. As shown in Fig. 9, the source

localization allows for the reconstruction of the activity of the two patches on the

surface of the brain. We can see that the 4 methods have similar results, with

slight differences, in terms of the shape of the patches, compared to the ground

21

JIRAFE R-P-JIRAFE NLS 4D NLS 3D

1

1.2

1.4

1.6

1.8

2

JIRAFE R-P-JIRAFE NLS 4D NLS 3D

0.5

1

1.5

2

JIRAFE R-P-JIRAFE NLS 4D NLS 3D

0.5

1

1.5

2

Figure 10: Boxplots of DLE (cm) for two distant patches over 100 runs

truth taken as a reference. Fig. 10 represents the DLE of the 4 approaches,

for 3 values of SNR, obtained for the two distant patches. At SNR=0 dB,

the upper quartile of the 4-th order NLS is slightly lower than the median of

JIRAFE, R-P-JIRAFE and 3-rd order NLS. As we increase the SNR, we notice

that the DLE of the 4 methods is becoming comparable with slight differences

in terms of the median in favor of R-P-JIRAFE and 4-th order NLS. However,

comparing the upper/lower quartiles, the minimum and the maximum, we can

see that the methods using 4-th order tensor, i.e., JIRAFE, R-P-JIRAFE and 3-

rd order NLS, are slightly better than 3-rd order NLS. On the other hand, Table

Execution time (s)

SNR (dB) JIRAFE R-P-JIRAFE NLS-CPD (4D) NLS-CPD (3D)

0 1.80 0.16 25.50 0.73

10 1.77 0.14 25.23 0.63

20 1.72 0.13 25.09 0.60

Table 3: Execution time for two distant patches over 100 runs, where the shortest execution

time is marked in red

3 shows that R-P-JIRAFE has the shortest execution time, with a constant gain

22

regarding the other methods as we increase the SNR. In addition, the execution

time of R-P-JIRAFE is even lower than the execution time of 3-rd order NLS

with a constant gain (around 4.5).

7.2.2. Second scenario

(a) NLS 3D (b) NLS 4D (c) JIRAFE

(d) R-P-JIRAFE (e) Ground truth

Figure 11: Example of epileptic source localization for two close patches (SNR = 10 dB)

JIRAFE R-P-JIRAFE NLS 4D NLS 3D

1

1.2

1.4

1.6

1.8

2

JIRAFE R-P-JIRAFE NLS 4D NLS 3D

1

1.2

1.4

1.6

1.8

2

JIRAFE R-P-JIRAFE NLS 4D NLS 3D

1

1.2

1.4

1.6

1.8

2

Figure 12: Boxplots of DLE (cm) for two close patches over 100 runs

We consider two close patches, with a high correlation between their

activities. Since the electrical activity propagates from one patch to the other,

23

the proximity of both patches justifies their high correlation. We can see in

Fig. 11 that the reconstruction of the patch activity using the 4 methods gives

identical results with a slight difference in the shape of patches comparing to

the ground truth. In order to visualize the estimation error for each method,

we plot the DLE of the 4 methods in Fig. 12. At SNR = 0 dB, the boxplots

show a slightly lower DLE error in favor of the approaches using 4-th order

tensor compared to 3-rd order NLS. At SNR = 10 and 20 dB, the difference

in favor of R-P-JIRAFE, JIRAFE and 4-th order NLS becomes clearer as the

upper quartiles of these methods become lower than the median of 3-rd order

NLS. However, the results of R-P-JIRAFE, JIRAFE and 4-th order NLS are

comparable in general. In the same way as in the first scenario, Table 4, shows

that R-P-JIRAFE has the shortest execution time. In fact, R-P-JIRAFE is

about 5 times faster than the 3-rd order NLS and around 150 times faster than

4-th order NLS for all SNR values.

Execution time (s)

SNR (dB) JIRAFE R-P-JIRAFE NLS-CPD (4D) NLS-CPD (3D)

0 1.43 0.14 19.12 0.68

10 1.30 0.12 18.26 0.54

20 1.30 0.11 17.69 0.51

Table 4: Execution time for two close patches over 100 runs, where the shortest execution

time is marked in red

7.2.3. Third scenario

We consider three patches, two of them are close and correlated, while the

third one is distant and has a low correlation with the two other patches. As

in the first two scenarios, we can see the identical reconstruction of the three

patches on the surface of the brain, using the 4 methods, in Fig. 13, with a

slight difference in the shape of the patches comparing to the ground truth.

DLE boxplots in Fig. 14, show that the median of all methods is comparable,

with slight differences, through the different values of SNR. However, comparing

the minimum, maximum, upper and lower quartiles, we can see that 4-th order

24

(a) NLS 3D (b) NLS 4D (c) JIRAFE

(d) R-P-JIRAFE (e) Ground truth

Figure 13: Example of epileptic source localization for one distant patch and two close patches

(SNR = 10 dB)

JIRAFE R-P-JIRAFE NLS 4D NLS 3D

0.5

1

1.5

2

2.5

JIRAFE R-P-JIRAFE NLS 4D NLS 3D

0.5

1

1.5

2

2.5

JIRAFE R-P-JIRAFE NLS 4D NLS 3D

0.5

1

1.5

2

2.5

Figure 14: Boxplots of DLE (cm) for one distant patch and two close patches over 100 runs

NLS has the lowest values followed by R-P-JIRAFE, JIRAFE and finally 3-rd

order NLS. On the other hand, Table 5, shows the same temporal gain in favor

of R-P-JIRAFE, over 3-rd order NLS. However, 4-th order NLS becomes slower

as the canonical rank of the tensor becomes 3, this makes this approach 200

times slower than R-P-JIRAFE.

25

Execution time (s)

SNR (dB) JIRAFE R-P-JIRAFE NLS-CPD (4D) NLS-CPD (3D)

0 2.13 0.22 44.20 1.13

10 1.94 0.21 44.12 1.05

20 1.88 0.19 44.69 1.02

Table 5: Execution time for the three patches scenario over 100 runs, where the shortest

execution time is marked in red

7.3. Discussion

The results presented previously show no significant difference in the

reconstruction of the patch activity between the compared methods. Regarding

the DLE, no significant difference has been noticed between the four methods

in the first scenario, except for a slight gap that appears as we increase the

SNR values, in the favor of the three methods using the 4-th order tensor, i.e.,

JIRAFE, R-P-JIRAFE and 4-th order NLS. As we move to the second and the

third scenarios, with the presence of two close patches with a high correlation

of their activities, the latter methods (using the 4-th order tensor model) gain

clearly the upper hand over 3-rd order NLS. In fact, 4-th order NLS, JIRAFE

and R-P-JIRAFE have comparable DLEs, while 3-rd order NLS has higher DLE

values. From this we note that, in the presence of correlated and close patches

(scenarios 2 and 3), the methods using 4-th order tensor have lower DLE values

than 3-rd order NLS, which means that they provide a better localization. This

observation is valid for both the second and the third scenarios, thanks to the

better separability properties provided by the additional repetition dimension

added to the 3-rd order tensor to obtain the 4-th order tensor model. Thus,

using the 4-th order tensor results in lower DLEs, i.e., a better the source

localization. It is to be noted that R-P-JIRAFE shows better DLE results than

JIRAFE for low SNR values, with less dispersed results in the second scenario,

by means of choosing the sub-tensor with the greatest Frobenius norm in step 2

of Algo. 3, which is the less affected by noise. This makes the estimation of the

factors more accurate. Likewise, throughout the 3 scenarios, the DLE of R-P-

26

JIRAFE is comparable to that of 4-th order NLS, with insignificant differences.

On the other hand, when comparing the computation time, R-P-JIRAFE shows

the best performance for all the three scenarios with significant gains (around

5 times faster than 3-rd order NLS, and 200 times faster than 4-th order NLS).

Therefore, it is fair to say that R-P-JIRAFE offers the best compromise between

localization accuracy and computational time among the 4 tested methods.

8. Conclusion

Tensor modeling has brought many advantages to data analysis, helping

to take into account the multidimensionality of the data. However, this

advantages have a computational cost that appears when dealing with high-

order and large-scale tensors, which is often the case in EEG context. As

the tensors are becoming, at the same time, of high-order and large-scale,

the computational complexity increases drastically. In this paper, we proposed

a methodological scheme based on JIRAFE, algorithm to deal simultaneously

with the problems of high-order and large scales, with the aim of parallelizing

and optimizing the computation steps. In practise, this approach has shown

efficiency in reducing the computational time into reasonable values compared

to the traditional tensor decomposition algorithms. Moreover, this comparison

allowed us to confirm practically the advantages of using high-order tensors. In

fact, the additional information contained in the added dimensions allows better

separation between sources in the case of multiple brain sources. As a result,

high-orders (> 3) may be considered with the aim of improving the separability

and, thus, the localization. This has been shown by adding a dimension of

repetitions, which results in a more precised source localization compared to

the usual 3-rd order tensor model (space, time, scale or frequency).

References

[1] N. Lee, A. Cichocki, Fundamental tensor operations for large-scale data analysis

using tensor network formats, Multidimensional Syst. Signal Process. 29 (3)

(2018) 921–960. doi:10.1007/s11045-017-0481-0.

27

https://doi.org/10.1007/s11045-017-0481-0

[2] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, H. A.

PHAN, Tensor decompositions for signal processing applications: From two-way

to multiway component analysis, IEEE Signal Processing Magazine 32 (2) (2015)

145–163. doi:10.1109/MSP.2013.2297439.

[3] F. Cong, Q. H. Lin, L. D. Kuang, X. F. Gong, P. Astikainen, T. Ristaniemi, Tensor

decomposition of EEG signals: A brief review, Journal of Neuroscience Methods

248 (2015) 59 – 69. doi:https://doi.org/10.1016/j.jneumeth.2015.03.018.

[4] L. D. Lathauwer, A short introduction to tensor-based methods for factor analysis

and blind source separation, in: 2011 7th International Symposium on Image and

Signal Processing and Analysis (ISPA), 2011, pp. 558–563.

[5] A. Stegeman, N. D. Sidiropoulos, On Kruskal’s uniqueness condition for the

CANDECOMP/PARAFAC decomposition, Linear Algebra and its Applications

420 (2) (2007) 540–552. doi:https://doi.org/10.1016/j.laa.2006.08.010.

[6] H. Becker, L. Albera, P. Comon, M. Haardt, G. Birot, F. Wendling, M. Gavaret,

C. Bénar, I. Merlet, EEG extended source localization: Tensor-based vs.

conventional methods, NeuroImage 96 (2014) 143 – 157. doi:https://doi.org/

10.1016/j.neuroimage.2014.03.043.

[7] H. Becker, L. Albera, P. Comon, R. Gribonval, F. Wendling, I. Merlet, Brain-

source imaging: From sparse to tensor models, IEEE Signal Processing Magazine

32 (6) (2015) 100–112. doi:10.1109/MSP.2015.2413711.

[8] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, D. P. Mandic, Tensor

networks for dimensionality reduction and large-scale optimization: Part 1 low-

rank tensor decompositions, Foundations and Trends® in Machine Learning 9 (4-

5) (2016) 249–429. doi:10.1561/2200000059.

[9] C. I. Kanatsoulis, N. D. Sidiropoulos, Large-scale Canonical Polyadic

decomposition via regular tensor sampling, in: 2019 27th European Signal

Processing Conference (EUSIPCO), 2019, pp. 1–5. doi:10.23919/EUSIPCO.2019.

8902959.

[10] H. Becker, L. Albera, P. Comon, J.-C. Nunes, R. Gribonval, J. Fleureau,

P. Guillotel, I. Merlet, SISSY: An efficient and automatic algorithm for the

28

https://doi.org/10.1109/MSP.2013.2297439
https://doi.org/https://doi.org/10.1016/j.jneumeth.2015.03.018
https://doi.org/https://doi.org/10.1016/j.laa.2006.08.010
https://doi.org/https://doi.org/10.1016/j.neuroimage.2014.03.043
https://doi.org/https://doi.org/10.1016/j.neuroimage.2014.03.043
https://doi.org/10.1109/MSP.2015.2413711
https://doi.org/10.1561/2200000059
https://doi.org/10.23919/EUSIPCO.2019.8902959
https://doi.org/10.23919/EUSIPCO.2019.8902959

analysis of EEG sources based on structured sparsity, NeuroImage 157 (2017)

157 – 172. doi:https://doi.org/10.1016/j.neuroimage.2017.05.046.

[11] P. Comon, X. Luciani, A. L. F. De Almeida, Tensor decompositions, alternating

least squares and other tales, Journal of Chemometrics: A Journal of the

Chemometrics Society 23 (7-8) (2009) 393–405. doi:https://doi.org/10.1002/

cem.1236.

[12] E. Acar, T. G. Kolda, D. M. Dunlavy, All-at-once Optimization for Coupled

Matrix and Tensor Factorizations, in 9th Workshop on Mining and Learning with

Graphs, San Diego, CA (2011).

[13] I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific

Computing 33 (5) (2011) 2295–2317. doi:10.1137/090752286.

[14] Y. Zniyed, R. Boyer, A. L. F. de Almeida, G. Favier, High-order CPD

estimation with dimensionality reduction using a tensor train model, 2018 26th

European Signal Processing Conference (EUSIPCO) (2018) 2613–2617doi:10.

23919/EUSIPCO.2018.8553466.

[15] Y. Zniyed, R. Boyer, A. L. de Almeida, G. Favier, Multidimensional harmonic

retrieval based on Vandermonde tensor train, Signal Processing 163 (2019) 75 –

86. doi:https://doi.org/10.1016/j.sigpro.2019.05.007.

[16] A. H. Phan, A. Cichocki, PARAFAC algorithms for large-scale problems,

Neurocomputing 74 (11) (2011) 1970 – 1984. doi:https://doi.org/10.1016/

j.neucom.2010.06.030.

[17] P. Hall, D. Marshall, R. Martin, Merging and splitting eigenspace models, IEEE

Transactions on Pattern Analysis and Machine Intelligence 22 (9) (2000) 1042–

1049. doi:10.1109/34.877525.

[18] N. Halko, P. Martinsson, J. Tropp, Finding structure with randomness:

Probabilistic algorithms for constructing approximate matrix decompositions,

SIAM Rev. 53 (2011) 217–288. doi:10.1137/090771806.

[19] R. A. Harshman, Foundations of the PARAFAC procedure: Models and

conditions for an ”explanatory” multi-modal factor analysis, UCLA Working

Papers in Phonetics 16 (1970) 1–84.

29

https://doi.org/https://doi.org/10.1016/j.neuroimage.2017.05.046
https://doi.org/https://doi.org/10.1002/cem.1236
https://doi.org/https://doi.org/10.1002/cem.1236
https://doi.org/10.1137/090752286
https://doi.org/10.23919/EUSIPCO.2018.8553466
https://doi.org/10.23919/EUSIPCO.2018.8553466
https://doi.org/https://doi.org/10.1016/j.sigpro.2019.05.007
https://doi.org/https://doi.org/10.1016/j.neucom.2010.06.030
https://doi.org/https://doi.org/10.1016/j.neucom.2010.06.030
https://doi.org/10.1109/34.877525
https://doi.org/10.1137/090771806

[20] M. W. Berry, D. Mezher, B. Philippe, A. Sameh, Parallel algorithms for the

singular value decomposition, in: Handbook of parallel computing and statistics,

Chapman and Hall/CRC, 2005, pp. 133–180.

[21] J. Tzeng, Split-and-combine singular value decomposition for large-scale matrix,

Journal of Applied Mathematics 2013 (03 2013). doi:10.1155/2013/683053.

[22] F. Liang, R. Shi, Q. Mo, A split-and-merge approach for singular value

decomposition of large-scale matrices, Statistics and its interface 9 (4) (2016)

453—459. doi:10.4310/sii.2016.v9.n4.a5.

[23] Q. Shi, H. Lu, Y.-m. Cheung, Tensor rank estimation and completion via cp-based

nuclear norm, in: Proceedings of the 2017 ACM on Conference on Information

and Knowledge Management, 2017, pp. 949–958.

[24] N. Taheri, A. Kachenoura, A. Karfoul, X. Han, K. Ansari-Asl, I. M. L. Senhadji,

L. Senhadji, L. Albera, Rank estimation and tensor decomposition using physics-

driven constraints for brain source localization, in: 2019 27th European Signal

Processing Conference (EUSIPCO), 2019, pp. 1–4. doi:10.23919/EUSIPCO.2019.

8902585.

[25] A. Boudehane, Y. Zniyed, A. Tenenhaus, L. L. Brusquet, R. Boyer, Breaking

the curse of dimensionality for coupled matrix-tensor factorization, 2019

IEEE 8th International Workshop on Computational Advances in Multi-Sensor

Adaptive Processing (CAMSAP) (2019) 689–693doi:10.1109/CAMSAP45676.

2019.9022462.

[26] Y. Zniyed, R. Boyer, A. L. F. de Almeida, G. Favier, A TT-based hierarchical

framework for decomposing high-order tensors, SIAM Journal on Scientific

Computing 42 (2) (2020) A822–A848. doi:10.1137/18M1229973.

[27] D. Cosandier-Rimélé, J.-M. Badier, P. Chauvel, F. Wendling, A physiologically

plausible spatio-temporal model for EEG signals recorded with intracerebral

electrodes in human partial epilepsy, IEEE transactions on bio-medical

engineering 54 (2007) 380–8. doi:10.1109/TBME.2006.890489.

[28] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, L. De Lathauwer, Tensorlab 3.0

30

https://doi.org/10.1155/2013/683053
https://doi.org/10.4310/sii.2016.v9.n4.a5
https://doi.org/10.23919/EUSIPCO.2019.8902585
https://doi.org/10.23919/EUSIPCO.2019.8902585
https://doi.org/10.1109/CAMSAP45676.2019.9022462
https://doi.org/10.1109/CAMSAP45676.2019.9022462
https://doi.org/10.1137/18M1229973
https://doi.org/10.1109/TBME.2006.890489
https://www.tensorlab.net

(2016).

URL https://www.tensorlab.net

[29] J. Cho, S. Hong, Y. Jung, H. Kang, H. Kim, M. Suh, K. Jung, C. Im, Evaluation

of algorithms for intracranial EEG (iEEG) source imaging of extended sources:

Feasibility of using iEEG source imaging for localizing epileptogenic zones in

secondary generalized epilepsy, Brain Topography 24 (2) (2011) 91–104. doi:

10.1007/s10548-011-0173-2.

31

https://www.tensorlab.net
https://doi.org/10.1007/s10548-011-0173-2
https://doi.org/10.1007/s10548-011-0173-2

	Introduction
	High-order large-scale tensor decomposition
	Canonical Polyadic Decomposition
	JIRAFE scheme
	Limitations

	Split and merge strategy
	TT-SVD algorithm
	Split and Merge Scheme for the TT-SVD

	Gridding strategy on the TT-cores
	Randomized singular value decomposition
	Complexity analysis
	Split and merge complexity
	Randomized SVD complexity
	Gridding complexity

	Simulation and discussion
	Synthetic simulation
	Impact of the number of sub-matrices on the TT-SVD algorithm
	Impact of the number of sub-tensors on the factor estimation

	Realistic data
	First scenario
	Second scenario
	Third scenario

	Discussion

	Conclusion

