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Iterative Solvers For Singular Symmetric Linear
Systems in Low Frequency Electromagnetics

A. Tinzefte, Y. Le Menach and F. Piriou
LAMEL, L2EP, USTL, Cité Scientifique 59655 Villeneuve d’Ascq, France

Abstract—In this paper, several methods based on Krylov
methods are proposed to solve the singular linear systems from
Finite Element Method. Indeed, in the magnetostatic case, for A-
formulation the system to solve is singular but it is auto-gauged
by Krylov methods. However, due to the computation of residual
vector all the methods (CG, MRTR, SQMR,MINRES) do not
present the same behaviour. Moreover, these methods are applied
to eddy current problem. The numerical behavior are compared
and analyzed.

Index Terms—Numerical analysis, Eddy currents, Magneto-
statics.

I. I NTRODUCTION

For the Finite Element Method (FEM) applied to electro-
magnetism, we are led to solve linear system of equations,
there are different methods for solving efficaciously such sys-
tems. Given sufficient memory and reasonable performance,
direct solvers would be the method of choice for solving linear
systems which have a regular matrix. The Krylov subspace
iterative methods such as Conjugate Gradient (CG) [7] require
less memory than direct solvers. Consequently, they are pre-
ferred for very large sparse linear systems that cannot fit into
memory using direct solvers. Also, these methods represent
a good computation tool for solving singular systems. This is
the case in magnetostatic when we use the formulation in term
of the vector potential without gauge condition. The gauge
condition can be introduced with the help of an edge tree;
alternative gauges are possible. With the gauge condition the
system is well defined but the convergence of iterative method
is very slow, so the gauging is impracticable [10].

In the case of non-gauged formulation, the properties of
iterative solvers can be used to auto-gauged the problem [10].
So, the system converges and has an infinity of solutions
(potential) if the matrix equation is compatible. In the case
of vector formulation (curl-curl equation), the compatibility
implies that the right hand side (the current density) should
be divergence free. We can see, that all solutions in term of
potential give the same magnetic field. The same finding is
observed for eddy current problem, when we use the potential
formulations.

The CG is reliable on positive-definite systems. Although,
we notice that, in the case of singular systems, this method can
breakdown and his convergence is irregular. In this paper, we
propose to use other methods of Krylov subspace type, which
have a much more stable behaviour. An example is proposed
to illustrate our results.
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II. MODEL

A. magnetostatic Case

The magnetostatic assumptions introduced into Maxwell’s 
equation and with the help of vector potential and the magnetic 
relationship, we obtain the classical A-formulation.

curl
1

µ
curlA = J (1)

With µ the magnetic permeability,J the current density andA
the magnetic vector potential. According to the classical works
[2] [14] concerning the discretisation of magnetic quantities,
the vector potentialA is defined on the edges (circulation)
and the current densityJ on the facets (flux). But to define
the discrete form of the constitutive law we must introduce
the duality conditions between two series of spaces. In these
conditions, if we consider a primal mesh on which the vector
potential (notedAe) then the current density (noted̃Jf )
will be expressed on facets of the dual mesh̃M. Moreover,
using the properties of the incidence matrix we can define
the discrete operators of gradient, curl and divergence. These
operators are denoted on the primal mesh:G, C andD and
respectivelyG̃, C̃ andD̃ on the dual mesh. It can be noted that
we have the following properties:GT = −D̃ andC = C̃T .
Consequently, the discretized form ofA formulation (1) can
be written

CTMν
ff
CAe = J̃f (2)

whereMν
ff

is the material matrix including the permeability
and the metric information. Usually, the current density are
known on primal mesh then a matrix (notedMef ) containing
only geometric data must be introduced to transfer the current
density on dual mesh.

CTMν
ff
CAe = MefJf (3)

The system is singular. Indeed an infinity of solution can
verify the equation (1) ifMefJf is in the range ofCTMν

ff
C

(divergence ofJ must be free [1]). In fact, the system is
oversized by the number of nodes minus one equation. To
ensure the uniqueness ofAe there are two possibilities : the
first one consists to use a spanning edge tree to eliminate the
useless unknowns. The second one consists to impose the new
constraint on theAe adding the coulomb gaugẽDAe = 0.
This gauge can be write such that−GTAe = 0. As the size of
GT is the product of the node number by edge number, and to
ensure the solution one potential must fixed. Consequently, the
system becomes well-defined by adding this gauge condition.
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In the case of non-gauged formulation, Z. Ren [10] clarified
the coulomb gauge are weakly imposed with the algorithm of
conjugate gradient (CG).

B. eddy current problem

Many formulations can be used to compute the eddy current
(H-formulation,T-Ω formulation andA-ϕ formulation). In
this paper, the potential vector introduced in the magnetostatic
case is kept. Then we present only theA-ϕ formulation. In
Maxwell-Ampere equation, the current density represents the
eddy current. In this conditions, with the help of the electrical
scalar potential the equation (3) becomes

curl
1

µ
curlA + σ(

∂A

∂t
+ gradϕ) = 0 (4)

Moreover, theconservationof the eddy current must verified.

divσ(
∂A

∂t
+ gradϕ) = 0 (5)

The discretisation can be carried out with the same scheme
which present in the previous paragraph.

CTMν
ff
CAe + Mσ

ee
(
∂Ae

∂t
+ Gϕn) = 0

GTMσ
ee(

∂Ae

∂t
+ Gϕn) = 0

(6)

whereMσ
ee

is the material matrix including the conductivity
and the metric information. This system is singular; indeedthe
number of these unknowns is the sum of the nodes and edges,
and the rank of the system matrix is equal to the number
of edge. A gauge condition must be applied to obtain the
uniqueness of the solution. Although, the auto-gauged of the
CG is not proved forA-ϕ formulation.

III. I TERATIVE METHODS

In the previous section, we have to solve a system of linear
equations

Ax = b, (7)

whereA ∈ IRN×N is symmetric semi-definite,x andb ∈ IRN .
Two cases can be distinguished:

1) The case whereA is nonsingular and consequently
positive definite.

2) The case whereA is singular.
Many resultsare known about the first case [7], where the
CG is a successful iterative method.
We are interested by the second case whereA is singular,
here, the system (7) has a solution if, and only if,b is in the
range ofA. In that case the solution is not unique. Indeed,
Let x ∈ IRN be a solution of (7), then̂x = x + y is a solution
for everyy in the Kernel space ofA.

An important class of iterative methods available for solving
the system (7) are the so-called Krylov subspace methods.
An iterative scheme for solving linear systems (7) is calleda
Krylov subspace method if it produces approximate solutions
of the form

xk ∈ x0 + Kk(A, r0), k = 1, 2, . . . (8)

wherex0 is an arbitrary initial guess with the corresponding
residual vectorr0 = b−Ax0 andKk(A, r0) is thekth Krylov
subspace defined by

Kk(A, r0) = span{r0, Ar0, . . . , A
k−1r0} (9)

There are two main steps in designing a Krylov subspace
method. The first step is the construction of suitable vectors
v1, v2, . . . , vk that spanKk(A, r0). Then, setting

Vk = [v1, v2, . . . , vk] (10)

we parameterize thekth iteration (8) as follows :

xk = x0 + Vkzk, where zk ∈ IRk (11)

Therefore, as a second step, it remains to specify the
choice of zk in (11). Various strategies in the above two
steps lead to various Krylov subspace methods. WhenA

is nonsymmetric, there are Krylov subspace type iterative
solvers based on biorthogonality, such as the BICG method
[4] and its modified versions such as the CGS [13], Bicg-stab
[15] and QMR [5] methods. There are also methods based on
minimizing the residualr = b − Ax, such as the Generalized
Conjugate Residual (GCR) method [3] and the Generalized
Minimum Residual (GMRES) method [11].

This paper is devoted to a symmetric systems. We present
some Krylov subspace type iterative methods adapted for this
case. The CG is the most popular one.It is effective for
systems of the form (7) whereA is symmetric positive definite.
The CG algorithm can be derived from the Lanczos process
who construct a basis vectors{vj} for Kk(A, r0) and the
vectorzk is chosen such as the residualrk verifies the Galerkin
condition

rk ⊥ Kk(A, r0) ⇔ V T
k rk = 0. (12)

The Lanczos process iteratively computes vectorsvk as
follows: v0 = 0, β1v1 = r0 whereβ1 = ‖r0‖,

αk = vT
k Avk, βk+1vk+1 = Avk − αkvk − βkvk−1

with βk+1 ≧ 0 chosen so that‖vk+1‖ = 1. The Lanczos
process transforms a symmetric matrixA to a symmetric
tridiagonal matrix :

Tk :=




α1 β2 0 · · · 0

β2 α2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . βk

0 · · · 0 βk αk




.

In exact arithmetic, the process terminates afterm ≤ N steps,
i.e. βk 6= 0 for k = 1, . . . , m andβm+1 = 0. So from now on
we can assume thatβk 6= 0, k = 1, . . . , m.
After the kth step, we have

AVk = VkTk + βk+1vk+1e
(k)
k

T

V T
k Vk = I = [e

(k)
1 , . . . , e

(k)
k ], V T

k vk+1 = 0
(13)
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then V T
k AVk = Tk and V T

k r0 = β1e
(k)
1 .

So, (11) becomesrk = r0−AVkzk. And with the choice (12),
we have

V T
k rk = V T

k r0 − Vk
T AVkzk = 0

and finally we obtain

Tkzk = β1e
(k)
1 .

The CG attempt to solve this system by applying the
Cholesky decomposition toTk. If A is positive definite then
so isTk, and hence the Cholesky decomposition

Tk = LkDLT
k

exists. HereDk is diagonal with positive element, andLk

is unit lower bidiagonal. IfA is an indefinite symmetric
matrix, then the Cholesky factorisation ofTk can still be
tried, often with success, but it does not always exist and can
no longer be relied upon numerically, and the CG became
instable numerically. Otherwise, CG may breakdown when
αk = vT

k Avk = 0 while vk 6= 0, here the algorithm is
stopping prematurely. This is also the case when the matrixA

is singular.
Because of the problems cited above, the CG is impracticable
for singular systems.That is why we propose the use of the
following methods which turn out more stable numerically.

MINRES (Minimum Residual Method [9]), SQMR (Sym-
metric quasi-minimal residual method [6]) and MRTR (Min-
imized Residual method based on the three-term recurrence
formula of CG type [1]) are Krylov subspace methods for
solving large symmetric systems, these methods are well
adapted for the indefinite systems. they are based on the
Lanczos process to construct a basis ofKk(A, r0).
MINRES, SQMR and MRTR replace the Galerkin condition
by the residual minimisation :

‖rk‖2 = min
x∈x0+Kk(A,r0)

‖b − Ax‖2

By using (11) and (13), we can write

rk = b − Axk = b − Ax0 − AVkzk = r0 − Vk+1T̃kzk

= β1v1 − Vk+1T̃kzk = Vk+1(β1e
k+1
1 − T̃kzk)

⇒ ‖rk‖2 = ‖β1e
k+1
1 − T̃kzk‖2

SinceVk+1 has orthonormal columns. With‖.‖2 the related
Euklidean norms and

T̃k =

[
Tk

0 · · · 0 βk+1

]

Therefore, MINRES and SQMR characterize thekth approxi-
mate solution asxk = x0 +Vkzk, wherezk ∈ IRk is a solution
of the least-squares problem

‖rk‖2 = ‖β1e
k+1
1 − T̃kzk‖2 = min

y∈IRk

‖β1e
k+1
1 − T̃ky‖2

Next, for solving this problem, we use a QR-decomposition
of T̃k by means of plane rotations called Givens rotations.

Let us note that the SQMR is an adaptation of the generale
nonsymmetric QMR method to exploit the symmetric of the

matrix A. In the implementation of the nonsymmetric QMR,
zk is chosen as the solution of the least-squares problem

‖β1e
k+1
1 − T̃kzk‖2 = min

y∈IRk

‖β1e
k+1
1 − T̃ky‖2

even if Vk+1 is not orthonormal in the nonsymmetric case.
This is called aquasi-minimisation residual property.

In the MRTR, the Lanczos process is implemented differ-
ently than the classical one. And the residual minimizationis
used to determine the parameters of the residual, see [1].

When the system is singular, the CG method and methods
based on biorthogonality may diverge whenTk is singular.
An otherwise, for methods based on minimizing the residual,
as shown in [12], the coefficientssk and ck of the Givens
rotation matrix verify‖rk‖2 = |sk|‖rk−1‖2 with ck + sk = 1;
andsk = 1 is equivalent todet(Tk) = 0.
So, at thekth step, there will be stagnation of the residual
norm associated with the solutionxk if and only if sk = 1
(Tk singular). Therefore, in exact arithmetic, the residual is
expected to decrease monotonically without divergence and
stagne ifTk is singular.

The convergence rate of all these methods is determined by
the spectrum of eigenvalues of the matrixA. An acceleration
of the convergence rate can often be achieved by replacing the
system (7) by the preconditioned system.

M−1Ax = M−1b

The matrixM must be chosen nonsingular and in such a way
that the systemMz = y is much easier to solve than the
original system for every vectory on the right hand side of
the equation, and also, so that the matrixM−1A has a more
’favorable’ spectrum of eigenvalues thanA.

Let us note that both CG and MINRES require a symmetric
positive definite preconditioners while with MRTR and SQMR
one can use symmetric indefinite preconditioners for symmet-
ric but indefinite systems.

There are several technique to construct a preconditioners
for the symmetric system. The incomplete Cholesky decom-
position (IC) [7] is a good choice ifA is symmetric definite
positive. But whenA is semi-definite or indefinite, IC may
not exist. The SSOR is also a good choice and exist if the
diagonal ofA is nonzero.

IV. A PPLICATIONS

As example of magnetostatic problem, we propose to study
with A formulation a Three-phase transformer which the mesh
is presented on the figure (1.a). A current density is appliedin
only one winding. To ensure the divergence free a facet tree
technique is used [8]. The flux density in the iron core is shown
on the figure (1.b). In the case of non-gauged formulation,
we obtain a singular system which have 49558 unknowns.
We solve this system with CG, MINRES, SQMR and MRTR.
In figure (2.a), we remark that all these methods converge
up to the 5000 iterations where the residual norme is around
10−10, and after that, the CG method diverge while the SQMR,
MINRES and MRTR stay with there convergence level. In
figure 2.b, the SSOR preconditioner is introduced; we can see
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the convergence acceleration for all methods up to the 200
iterations. In this figure we can see that their behaviour is the
same as in the case without preconditioner.

Fig. 1. (a): Mesh of the transformer (b): The flux density in the iron
core of the transformer
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Fig. 2. (a):Without preconditioner (b): SSOR preconditioner

As example of eddy current problem, the Workshop No8
(Non Destructive Testing problem) is modeled with theA-ϕ
formulation. The mesh and eddy current density are presented
respectively on figures (3.a) and (3.b)

Fig. 3. (a): Mesh of NDT problem (b):Current Density in the conductor

Here we solve a singular system with 212545 unknowns.
Without preconditioner, the CG method does not converge
even after 5000 iterations. The MRTR, SQMR and MINRES
converge slowly, and reaches10−6 at the 5000 iterations
(figure 4.a). With SSOR preconditioner, the convergence of
all these methods accelerate to about 200 iterations with
‖rk‖
‖r0‖

≃ 0, 5 10−13, and after that, the CG method diverge
while other methods stagne, see figure (4.b).
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Fig. 4. (a):Without preconditioner (b): SSOR preconditioner

We note that in this two examples, the MRTR, MINRES 
and SQMR methods have the same behaviour, and give the 
same result xMR. However, the solution xCG associated to the 
minimal residual of CG, is different than xMR, and xMR − 
xCG is in the Kernel of the system matrix.

V. CONCLUSION

In the case of the singular systems which have the right 
hand side in the range of the matrix; there exist several 
solutions. The minimization principle of MINRES, SQMR and 
MRTR guarantees a regular and smoother convergence than 
CG. This result is still available when we add a preconditioner 
to accelerate the convergence. These methods become more 
interesting than the CG method.
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