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Abstract

In this work, we shall propose a new micro-mechanical constitutive model for the estimation of

effective elastic-plastic behaviors of heterogeneous rocks. A bi-potential based incremental varia-

tional (BIV) approach is developed in order to take into account non-uniform local strain fields of

constituents. The studied materials are composed of a non-associated and pressure sensitive plastic

matrix, elastic inclusions and/or voids. For clarity, the local behavior of matrix is first described by an

elastic perfectly-plastic model. Based on the bi-potential theory to dealing with non-associated plastic

flow, the solid matrix is considered as pertaining to implicit standard materials (ISMs). The effective

incremental bi-potential and macroscopic stress tensor are then estimated through an extension of the

incremental variational method initially established for generalized standard materials(GSMs). The

accuracy of the BIV model is verified by comparing the model’s predictions with the reference results

obtained from direct finite element simulations. Furthermore, by assuming that the general formula-

tion obtained for the perfectly plastic matrix remains valid for each loading increment, the BIV model

is extended to considering that the solid matrix exhibits an isotropic hardening by using an explicit

algorithm. The accuracy of the extended BIV model is also validated by a series of comparisons with

the reference solutions obtained by direct finite element simulations for both inclusion-reinforced

composites and porous materials. Both local and macroscopic responses are compared. As an exam-

ple of application, the extended BIV model is finally applied to estimating the mechanical responses

of typical claystone and sandstone under different loading paths.
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1. Introduction1

Rocks are usually regarded as typical composites, which are used in a very wide range of engineer-2

ing constructions. These materials contain different kinds of heterogeneities at different scales. Pores3

and inclusions are two main families of heterogeneities. Furthermore, these materials are composed4

of several mineral phases of different properties. The mineral compositions may significantly vary5

in space, for instance with geological depth. Laboratory studies have shown that the macroscopic6

physical and mechanical properties of these materials are affected by heterogeneities and mineral7

compositions. So far, different kinds of macroscopic models, mainly elastic-plastic and damage mod-8

els have been developed. Directly fitted from laboratory tests, these models are able to correctly9

reproduce the main features of mechanical behaviors of those materials. However, they are not able10

to properly consider the effect of heterogeneities and mineralogical compositions on the macroscopic11

mechanical responses.12

Based on linear homogenization techniques, micro-mechanical models have first been established13

during the last decades for modeling induced damage in brittle rocks (Zhu et al., 2008, 2016, Zhao14

et al., 2018, Zhang et al., 2019). Important advances have also been obtained on micro-mechanical15

modeling of plastic deformation in ductile and porous rocks by using nonlinear homogenization meth-16

ods. For instance, clayey rocks have been characterized as composites constituted of a plastic clay17

matrix in which calcite and quartz grains are embedded (Guéry et al., 2008, Jiang et al., 2009). In18

some multi-scale models, the microstructure of clayey rocks has further been enriched by consider-19

ing the clay matrix as a porous material at the microscopic scale (Shen et al., 2012). The effective20

inelastic behavior of the porous clay matrix has been estimated by using the Hill incremental method21

(Hill, 1965). As for metallic composite materials, it was found that the use of the original Hill’s incre-22

mental method produced too stiff mechanical behaviors (Suquet, 1996, Chaboche et al., 2005). The23

main reason is the fact that uniform local strain fields are assumed in constituents of composites in the24

Hill’s method. In order to improve the numerical performance of this method, artificial techniques,25

such as isotropization of tangent elastic-plastic stiffness tensor, have been proposed. This correction26

technique has also been applied to clayey rocks (Guéry et al., 2008, Jiang and Shao, 2009, Shen et al.,27

2012). However, all those correction techniques are generally not based on any physical background.28

Meanwhile, advanced nonlinear homogenization techniques have been developed for composite29

materials considering non-uniform local fields in constituent phases (Castañeda, 1991, 1992, 2002,30

Lahellec and Suquet, 2007a,b, 2013, Boudet et al., 2016, Brassart et al., 2011, 2012, Danas and31

Castañeda, 2012), just to mention some representative ones. In particular, variational principles based32
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on the use of a ”linear comparison composite (LCC)” were proposed for the mean field homoge-33

nization method of nonlinear elastic composites (Castañeda, 1991, 1992, 2002), and used to generate34

improved bounds and more generate estimates for the nonlinear elastic-plastic composites (Castañeda35

and Suquet, 1997, Danas and Castañeda, 2012). By extending these previous works, a new incremen-36

tal variational method has been established (Lahellec and Suquet, 2007a,b) for modeling effective37

nonlinear properties of viscoelastic composites without local threshold or hardening. In this new38

method, equivalent interval variables (EIV) are introduced to capture the non-uniform local plastic39

strain fields. Further, the same authors have proposed a rate variational model (RVP) by considering40

a non-uniform field of plastic strain rate (Lahellec and Suquet, 2013). More recently, the EIV method41

has been extended to modeling elastic-(visco)plastic composites with local threshold and isotropic42

and/or linear kinematic hardening (Boudet et al., 2016). On the other hand, based on the variational43

principle established in Ortiz and Stainier (1999), alternative incremental variational models have44

been proposed in Brassart et al. (2011, 2012) for studying elastic-(visco)plastic composites with lo-45

cal isotropic hardening. The EIV method has further been extended to the description of geological46

materials with a pressure-dependent Drucker-Prager plastic matrix (Zhao et al., 2019). However, all47

these previous models have been developed in the scope of Generalized Standard Materials (GSMs)48

(Halphen and Nguyen, 1975) with an associated plastic flow rule.49

Extensive experimental results have clearly shown that for most rocks, a non-associated plastic50

flow rule is required for correctly modeling the coupling between shear and volumetric strains. These51

materials cannot be considered as Generalized Standard Materials. As a first approximation, the52

microstructure of these materials at a selected relevant length scale, for instance micrometer, can be53

characterized by the representative unit cell shown in Figure 1. Several sets of elastic inclusions54

(mineral grains in rocks) are embedded in a plastic matrix (clay matrix in clayey rocks). The local55

behavior of the matrix is generally described by a non-associated and pressure sensitive plastic model.56

The incremental variational methods developed for the GSMs cannot be directly used to estimate the57

effective mechanical behaviors of rocks.58

In order to generalize the incremental variational principles to heterogeneous rocks, the idea here59

is first to transform these non-GSMs into a class of implicit standard materials (ISMs). This is done60

with the help of the bi-potential theory initially developed for macroscopic elastic and plastic behav-61

iors of non-GSMs (De Saxcé and Feng, 1991, De Saxcé and Bousshine, 1998, De Saxcé, 1995). This62

theory has been successfully used for modeling soils and rock-like materials with non-associated plas-63

tic models (Bodovillé and De Saxcé, 2001, Bodovillé, 2001, Hjiaj et al., 2003, Berga, 2012). More-64
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Figure 1: Representative volume element (RVE) of heterogeneous rocks at a selected length scale

over, the bi-potential theory is naturally suitable for developing a variational approach of constitutive65

modeling.66

With the help of the bi-potential theory, the aim of this work is to develop a new incremental67

variational method for estimating the effective elastic-plastic behavior of heterogeneous rocks com-68

posed of a non-associated and pressure sensitive plastic matrix. This is based on the construction of69

an incremental elastic-plastic bi-potential for ISMs by using an implicit time-discretization scheme.70

On the other hand, ductile and porous heterogeneous rocks generally exhibit plastic hardening.71

For instance, in the case of an isotropic hardening, the internal friction or cohesion can evolve during72

plastic deformation. In the case of heterogeneous rocks idealized in Figure 1, plastic hardening oc-73

curs in the plastic matrix. This mechanism should be taken into account. However, the formulation74

of an incremental variational model for materials with a pressure-sensitive plastic matrix with plastic75

hardening may becomes mathematically very complex. By taking the incremental nature of the ap-76

proach, a simplified explicit method is proposed in this paper. The new bi-potential base incremental77

variational model (BIV) is first developed by considering a perfectly plastic matrix. Then at the end78

of each loading increment, the plastic properties are updated but frozen for next loading increment.79

The plastic matrix is then considered as a material without hardening during the current increment.80

The proposed new BIV model is validated by comparing model’s predictions and numerical results81

issued from direct finite element simulations for both perfectly plastic and plastic with hardening82

cases. Finally, the new BIV model is applied to estimating the effective mechanical responses of83

typical claystone and porous sandstone in various loading paths.84

Throughout this paper, the following notions of tensorial products of any second order tensors A85

and B will be used: (A ⊗ B)i jkl = Ai jBkl and A : B = Ai jBi j. Fourth order tensors are denoted by86

blackboard bold characters, and one can define (C : B)kl = Ci jklBkl. The symbol ‖A‖ =
√

A : A is87

used to denote the norm of any second order tensor A. With the second order identity tensor δ, usually88

used fourth order isotropic identity tensor I and fourth order hydrostatic projects J are expressed in89
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the components form as Ii jkl = 1
2

(
δikδ jl + δilδ jk

)
and Ji jkl = 1

3δi jδkl, respectively. The fourth order90

deviatoric projects K = I − J is then obtained. Moreover, the fourth-order tensors J and K have the91

properties: J : J = J, K : K = K, J : K = K : J =0.92

2. Bi-potential theory for non-associated plastic flow rule93

2.1. Generalized standard materials (GSM)94

A large class of solid materials can be described by using a generalized framework based on95

the existence of two convex potentials conjugating one to the other V(ε̇) and W(σ) satisfying the96

Fenchel’s inequality (Fenchel, 1949)97

∀ (σ, ε̇) W(σ) + V(ε̇) ≥σ : ε̇ (1)

where σ is the Cauchy stress tensor and ε̇ is the strain rate tensor. A pair of (σ, ε̇) is said to be98

extremal if the equality is achieved, that is:99

W(σ) + V(ε̇) =σ : ε̇ (2)

Then, any extremal pair is characterized by the following relations:100

∀σ′ W(σ′) −W(σ) ≥
(
σ′−σ

)
: ε̇ (3a)

∀ε̇′ V(ε̇′) − V(ε̇) ≥ σ :
(
ε̇′ − ε̇

)
(3b)

Therefore, σ and ε̇ are expressed by the sub-differential mappings101

σ =
∂V
∂ε̇

(ε̇), ε̇ =
∂W
∂σ

(σ) (4)

These relations constitute the normality rule. Different kinds of constitutive equations, such as plastic102

laws, visco-plastic law and plastic hardening laws can generally and conveniently be constructed with103

Eq.(4). The class of materials governed by the two convex potentials are called generalized standard104

materials (GSMs) (Halphen and Nguyen, 1975).105

2.2. Implicit standard material106

However, the mechanical behavior of a large number of materials cannot be integrated within the107

above framework. For example, for most heterogeneous rocks, one of the constituent phase exhibits108

a plastic or viscoplastic behavior which is generally described by a non-associated flow rule. The109

normality rule is then not verified. Conventional approaches for modeling the non-associated plastic110
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deformation are based on the choice of two independent functions of stress tensor, the plastic yield111

function to determine yield locus and the plastic potential function giving the plastic strain evolution112

law. However, this type of approaches loses the good property of convexity (De Saxcé, 1995, Berga,113

2012). The bi-potential theory proposed by De Saxcé and Feng (1991) provides a convenient math-114

ematical frame for dealing with non-associated plastic materials. It allows keeping the key-concept115

of normality and convexity. This theory generalizes the Fenchel’s inequality to materials and systems116

with non-standard behaviour. To find the concept of normal dissipation, the constitutive laws are for-117

mulated under an implicit form. For the sake of clarity, the basic notion of implicit standard materials118

(ISMs) is here recalled (De Saxcé and Feng, 1991).119

For describing the behaviour of ISMs, a bi-potential b(σ, ε̇) is first introduced. It is a scalar-120

valued function, convex with respect to σ when ε̇ keeps constant, and convex with respect to ε̇ when121

σ remains constant. The bi-potential function should also verify the following inequality122

∀ (σ, ε̇) b(σ, ε̇) ≥σ : ε̇ (5)

If and only if the pair (σ, ε̇) is obtained at the extreme value, implying that (σ, ε̇) satisfies the consti-123

tutive relation of the material, one has124

b(σ, ε̇) =σ : ε̇ (6)

Then, any extremal pair is characterized by the following relations:125

∀σ′ b(σ′, ε̇) − b(σ, ε̇) ≥
(
σ′−σ

)
: ε̇ (7a)

∀ε̇′ b(σ, ε̇′) − b(σ, ε̇) ≥ σ :
(
ε̇′ − ε̇

)
(7b)

Accordingly, σ and ε̇ are related by the subnormality laws126

σ =
∂b
∂ε̇

(σ, ε̇), ε̇ =
∂σb
∂σ

(σ, ε̇) (8)

These relations provide a multi-valued constitutive relationship between σ and ε̇, which is now im-127

plicit in the sense of the implicit function theorem. It is noted that GSMs can be considered as128

particular cases of ISMs with separable bi-potentials:129

b(σ, ε̇) = W(σ) + V(ε̇) (9)

2.3. Incremental elastic-plastic bi-potential130

We consider now the local elastic-plastic behavior of the solid matrix in heterogeneous rocks. For131

the sake of clarity, the behavior of matrix is described by an elastic perfectly plastic non-associated132
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model. Under the assumption of isothermal conditions and small strains, the total strain tensor ε is133

decomposed into an elastic part εe and a plastic one εp
134

ε = εe + εp (10)

In view of applying the incremental variational method to determining the effective mechanical be-135

havior of heterogeneous rocks, it is needed to derive an incremental elastic-plastic bi-potential for136

the plastic matrix. To this end, the general forms of the elastic and plastic bi-potentials are first sep-137

arately formulated. Then the incremental elastic-plastic bi-potential is established by using a time-138

discretization scheme.139

2.3.1. Elastic bi-potential140

In the elastic regime, the bi-potential conforms to the characteristics of GSMs. Moreover, the141

elastic laws can be derived from the strain energy density function V( ε− εp) and the complementary142

energy density function W(σ). Therefore, the elastic bi-potential be is a separate function with the143

following expression144

be(ε, εp, σ) = V(ε − εp) + W( σ) (11)

which satisfies the implicit standard laws145

σ =
∂be

∂ε
(ε, εp, σ) = −

∂be

∂εp (ε, εp, σ) and ε =
∂be

∂σ
(ε, εp, σ) + εp (12)

2.3.2. Plastic bi-potential146

Under the plastic state, the non-associated plastic model falls into the category of ISMs. By virtue147

of (5) the plastic bi-potential function is first defined by the condition:148

∀ (σ, ε̇p) bp(σ, ε̇p) ≥σ : ε̇p (13)

Similarly, if and only if the pair (σ, ε̇p) reaches the extreme value, one gets:149

bp(σ, ε̇p) =σ : ε̇p (14)

Then σ and ε̇p are related by subnormality laws:150

σ =
∂bp

∂ε̇p
(σ, ε̇p), ε̇p =

∂bp

∂σ
(σ, ε̇p) (15)
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2.3.3. Incremental elastic-plastic bi-potential151

Combining Eqs. (12) and (15), the constitutive relations of the plastic phase under consideration

can be expressed as a system of two coupled equations, one of them being a differential equation in

time:

σ =
∂be

∂ε
(ε, εp,σ) (16a)

∂be

∂εp
(ε, εp,σ) +

∂bp

∂ε̇p (σ, ε̇p) = 0 (16b)

Based on the previous work by Ortiz and Stainier (1999), the time derivative ε̇p is approximated by152

a difference quotient after the use of an implicit Eular-Scheme. The whole time period (whole loading153

history) of study [0,T ] is accordingly divided into the time steps (loading steps) t0 = 0, t1, ..., tn, tn+1, ..., tN =154

T . The time increment between tn and tn+1 (loading increment) is denoted by ∆t. For the sake of sim-155

plifying the notations, its dependence on n is omitted. By using this time-discretization scheme, the156

system of differential equations (16) is transformed to the following discretized system:157

σn+1 =
∂be

∂ ε

(
εn+1, ε

p
n+1,σn+1

)
,

∂be

∂εp

(
εn+1, ε

p
n+1,σn+1

)
+
∂bp

∂ε̇p

(
σn+1,

εp
n+1 − ε

p
n

∆t

)
= 0 (17)

The values of local fields at time tn+1 (εn+1, ε
p
n+1,σn+1) are unknown, while their values at time tn158

(εn, ε
p
n ,σn) are assumed to be all known. We introduce here the following incremental bi-potential J,159

a scalar-valued function of variables ε, εpand σ :160

J (ε, εp,σ) = be(ε, εp,σ) + ∆tbp

(
σ,
εp − εp

n

∆t

)
(18)

Again, for the sake of abbreviation, the subscripts n + 1 are omitted. Notice that the second relation161

in (17) is the Euler-Lagrange equation of the variational problem for the minimization of incremental162

bi-potential with respect to εp. This leads to the following condensed incremental bi-potential:163

π∆ (ε,σ) = inf
εp

J (ε,σ, εp) (19)

After that, the local stress field σ can be derived from this sole bi-potential164

σ =
∂π∆

∂ ε
(ε,σ) (20)

3. Bi-potential based incremental variational method for homogenization of heterogeneous rocks165

In this section, a bi-potential theory based incremental variational method (BIV) is developed for166

the estimation of effective elastic-plastic behavior of heterogenous rocks in the framework of implicit167

standard materials (ISMs) and with the help of the bi-potential theory defined above.168
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3.1. Representative Volume Element (RVE) and constituents properties169

As already shown in Figure 1, the Representative Volume Element (RVE) of rocks at the selected170

length scale (micrometer) is composed of an isotropic elastic-plastic solid matrix in which elastic in-171

clusions (mineral grains) or pores are randomly embedded. The RVE occupies the domain Ω ⊂ Rndim172

(ndim = 1, 2, 3) with the external boundary Ω ⊂ Rndim−1. The solid matrix occupies the sub-domain173

Ωm ⊂ Rndim . The elastic property of the matrix is characterized by the elastic stiffness tensor Cm
174

and the plastic behavior is described by a non-associated plastic model with Drucker-Prager yield175

criterion. The rth phase of inclusions occupies the sub-domain Ωi,r ⊂ Rndim , r = 1, ...,N, and is char-176

acterized by the elastic stiffness tensor Ci,r. The phase of pores is here treated as a special inclusion177

phase with a vanished elastic stiffness.178

For the convenience of the subsequent formulation, the total volume of the RVE is denoted as VΩ,179

the volume of matrix as VΩm , and the volume occupied by the rth inclusion phase as VΩi,r . Accordingly,180

the volume fractions of the constituents are given by:181

f m =
VΩm

VΩ

; f i,r =
VΩi,r

VΩ

, r = 1, ...,N; (21)

Further, the operator 〈·〉 denotes a volume average over the whole RVE, 〈·〉m is a volume average over182

the matrix, and 〈·〉i,r is a volume average over the rth inclusion phase. That is183

〈·〉 =
1

VΩ

∫
VΩ

(·) dVΩ = f m 〈·〉m +

N∑
r=1

f i,r 〈·〉i,r (22)

with184

〈·〉m =
1

VΩm

∫
VΩm

(·) dVΩm; 〈·〉i,r =
1

VΩi,r

∫
V

Ωi,r

(·) dVΩi,r (23)

3.1.1. Incremental bi-potential of the elastic and non-associated Drucker-Prager perfectly plastic185

matrix186

By assuming that the elastic behaviour is independent of irreversible process, the elastic bi-187

potential bm
e (ε, εp,σ) at any point x ∈ Ωm is written as:188

bm
e (ε, εp,σ) =

1
2

(ε − εp) : Cm : (ε − εp) +
1
2
σ : Sm : σ (24)

where the isotropic elastic stiffness tensor is expressed as Cm = 3kmJ + 2µmK, with km and µm being189

the bulk modulus and shear modulus of the matrix respectively. Sm = [Cm]−1 is the elastic compliance190

tensor.191

The Drucker-Prager plastic yield function is illustrated in Figure 2 and is written as:192

F (σ) = σeq + 3κ (σm − c) ≤ 0 (25)
9



where σeq =

√
3
2 s : s is the equivalent stress (with s = σ : K), and σm = 1

3σ : δ the mean stress. The193

parameter c and κ respectively represent the hydrostatic tensile strength and friction coefficient. It is194

noted that κ is related to the friction angle φ as follows:195

tan φ = 3κ (26)

Figure 2: Drucker-Prager yield surface and non-associated plastic flow rule

The non-associated plastic flow rule is defined by the following plastic potential:196

G(σ) = σeq + 3χσm (27)

where χ denotes the plastic dilatancy coefficient, which depends on the dilatancy angle ψ:197

tanψ = 3χ (28)

Further, for any stress state located on the regular part of the yield surface, it is assumed that the198

plastic dilatancy coefficient χ is equal or less than the friction coefficient, i.e., χ ≤ κ (Hjiaj et al.,199

2003). The corresponding rate form of plastic strain εp is defined by the non-associated flow rule:200

ε̇p = γ̇p∂G

∂σ
= γ̇p

(
3
2

s
σeq

+ χδ

)
(29)

where γp is a non-negative internal variable acting as the plastic multiplier. For convenience, the201

plastic strain tensor is decomposed into a spherical part and a deviatoric part:202

εp = α + β, α = εp : K, β = εp : J =
1
3

trεpδ = βδ (30)
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One thus obtains:203

γ̇p =

√
2
3
α̇ : α̇ = α̇eq, α̇ = K : ε̇p, β̇ =

1
3

trε̇p = χα̇eq (31)

Again for convenience we introduce204

H(ε̇p) = χα̇eq − β̇ (32)

Considering now a stress state at the apex point (σeq = 0, σm = c) of the Drucker-Prager yield205

surface, F (σ) is not differentiable, and the plastic strain rate tensor is not unique. In this case, one206

gets H(ε̇p) ≤ 0 (see Figure 2). It is obviously noticed from Eq. (31) that H(ε̇p) = 0 for the points207

on the regular part of the yield surface. Therefore, the plastic flow rule (29) is completed by the208

admissibility condition of the plastic strain rate for all the cases209

H(ε̇p) ≤ 0 (33)

According to Hjiaj et al. (2003), the plastic bi-potential for the non-associated Drucker-Prager210

plastic flow without strain hardening takes the following form:211

bm
p (σ, ε̇p) =


3cβ̇ + 3 (χ − κ) (σm − c) α̇eq if F (σ) ≤ 0 andH(ε̇p) ≤ 0

+∞ otherwise

(34)

The proof that the function (34) is a bi-potential has been given in Hjiaj et al. (2003).It is noted that212

the above express is defined for the regular stress points. In this case, the function (34) can be further213

rewritten as214

bm
p (σ, ε̇p) = bm

p (σ, α̇) =


[
3σm (χ − κ) + 3cκ

]︸                  ︷︷                  ︸
σy

α̇eq = σyα̇eq if F (σ) ≤ 0 andH(ε̇p) = 0

+∞ otherwise

(35)

Remark 1. The second part of the first line in the right hand side of Eq. (35) contains a mixed term of215

stress and plastic strain rate. When χ = κ, the mixed term disappears and the bi-potential bm
p (σ, α̇)216

reduces to the plastic dissipation potential ϕm (α̇) for GSMs.217

bm
p (σ, α̇) = ϕm (α̇) =


3cκα̇eq if f (σ) ≤ 0 andH(ε̇p) = 0

+∞ otherwise
(36)

Inserting the elastic bi-potential (24) and plastic bi-potential(35) into Eq.(19), one finally obtains218

the local incremental bi-potential πm
∆

of the elastic non-associated perfectly plastic matrix:219

πm
∆ (ε,σ) = inf

εp
Jm (ε,σ, εp) = inf

εp

(
bm

e (ε, εp,σ) + ∆tbm
p

(
σ,
εp − εp

n

∆t

))
(37)
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3.1.2. Behavior of elastic inclusion220

At any point inside the rth linear elastic inclusion phase, i.e., x ∈ Ωi,r, the elastic bi-potential bi,r
e221

is the convex function of local strain field ε and stress field σ. Accordingly, the local incremental222

bi-potential πi,r
∆

of the rth elastic inclusion phase is expressed as:223

πi,r
∆

= bi,r
e (ε,σ) =

1
2
ε : Ci,r : ε +

1
2
σ : Si,r : σ (38)

3.2. Effective behavior of heterogeneous rocks224

We consider that the RVE of heterogeneous rocks is subjected to a macroscopic strain ε (t), and225

for definiteness, to the periodic kinematic boundary conditions on its boundary ∂Ω at time step tn+1.226

Due to the time-discretization scheme adopted, the local problem to be solved is formulated as fol-227

lows:228 

divσn+1 = 0

σn+1 = ∂π∆

∂εn+1
(εn+1,σn+1)

〈ε (t)〉 = ε (t) + BC on ∂Ω


for

(
x, t

)
∈ Ω × [0,T ] (39)

The condensed incremental bi-potential π∆

(
x, ε,σ

)
in the RVE is here defined as:229

π∆ =


πm

∆
if x ∈ Ωm

πi,r
∆

if x ∈ Ωi,r

(40)

Finally, the macroscopic stress σ̄ can be derived from the effective incremental bi-potential of the230

RVE:231

σ̄n+1 =
∂Π∆

∂ε̄
(ε̄n+1, σ̄n+1) (41)

The effective incremental bi-potential Π∆ is here determined by using the variational principle:232

Π∆ (ε̄n+1, σ̄n+1) = inf
〈ε〉=ε̄n+1

〈π∆〉 = inf
〈ε〉=εn+1

 f m
〈
inf
εp

Jm (ε, εp, σ)
〉

m
+

N∑
r=1

f i,r
〈
bi,r

e (ε,σ)
〉

i,r

 (42)

The effective incremental bi-potential of the RVE is not only related to the macroscopic strain ε̄,233

but also to the average value of local stress filed σ on the RVE. With this single effective bi-potential234

in hand, according to Eq. (41), the macroscopic stress is the conjugated force associated with the235

macroscopic strain, which is consistent with the classical thermodynamic framework. Moreover, the236

macroscopic stress defined here also coincides with the volumetric average of the local stress field237
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over the RVE. Accordingly, the problem of computing the overall response of the heterogeneous238

materials comes to solving the variational problem (42) at each time step, which itself involves a local239

optimization problem (37) with respect to the internal variables (plastic strain) εp at every position240

x ∈ Ωm. Instead of searching a computationally-costly full-field numerical solution, an approximated241

solutions is found in Section 4 by using the variational procedure initially proposed in Lahellec and242

Suquet (2007b) for GSMs.243

4. Optimization of the effective incremental bi-potential244

The main steps for the estimation of the effective incremental bi-potential through a variational245

procedure are presented in this section.246

4.1. Approximation of local incremental bi-potential of the elastic perfectly-plastic matrix247

The first step is to approximate the local incremental bi-potential Jm given in (37). It is noticed that248

the elastic bi-potential given in (24) includes the plastic volumetric strain β. For ease of calculation249

and taking advantage of the main results obtained in Lahellec and Suquet (2007b), the elastic bi-250

potential (24) is approximated and the plastic bi-potential (35) is linearized as follows.251

• Approximation of local elastic bi-potential be(ε, εp,σ) (see detailed process in Appendix A)252

bm
e (ε, εp,σ) ' bapp

e (ε,α) =
1
2
σ : Sm : σ+

1
2

(
ε − α−

〈
βn

〉
m − α − αnχδ

)
: Cm :

(
ε − α−

〈
βn

〉
m − α − αnχδ

)
(43)

• For the plastic bi-potential bp (σ, α̇) here we use the same variational linearization procedure253

and take the same quadratic form as those used in Lahellec and Suquet (2007b) and Boudet et al.254

(2016), i.e. η0
∆t (α − α̃n) : (α − α̃n). In this expression, the scalar variable η0 and second-order255

tensor α̃n are uniform in the elastic-plastic matrix.256

With the above simplifications in hand, the local incremental bi-potential Jm in (37) can be ap-257

proximated as258 

Jm (ε, εp,σ) ' Jm
0 (ε,α) + ∆Jm (σ,α)

Jm
0 (ε,α) = 1

2

(
ε − α −

〈
βn

〉
m − α − αnχδ

)
: Cm :

(
ε − α −

〈
βn

〉
m − α − αnχδ

)
+

η0
∆t (α − α̃n) : (α − α̃n)

∆Jm (σ,α) = 1
2σ : Sm : σ + σy (α − αn)eq −

η0
∆t (α − α̃n) : (α − α̃n)

(44)

where Jm
0 is the linearized local incremental potential in the matrix phase.259
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4.2. Estimation of the effective incremental bi-potential Π∆

(
ε̄, σ̄m

)
260

The effective incremental bi-potential of the RVE is determined by calculating the volumetric261

average of the two terms of the local incremental bi-potential given in Eq. (44):262

Π∆ (ε̄, σ̄) = inf
〈ε〉=ε̄

 f m
〈
inf
α

(
Jm

0 (ε,α) + ∆Jm (σ,α)
)〉

m
+

N∑
r=1

f i,r
〈
bi,r

e (ε,σ)
〉

i,r

 (45)

The secant function ηsct

(
α̇eq,σ

)
of the matrix phase is defined as (Lahellec and Suquet, 2007b):263

ηsct

(
α̇eq,σ

)
=

1
3α̇eq

∂bm
p

∂α̇eq
(σ,α) =

σy

3α̇eq
(46)

and Eq. (45) satisfies264

Πm
∆ (ε̄, σ̄) ≤ inf

〈 ε〉=ε̄

 f m

[〈
inf
α

Jm
0 (ε,α)

〉
m

+

〈
sup
α

∆Jm (σ,α)
〉

m

]
+

N∑
r=1

f i,r
〈
bi,r

e (ε,σ)
〉

i,r

 (47)

Note that the local optimization problem in Eq. (47) is solved with respect to the internal variable α265

only instead of the set of variables (α,β) as defined in Eq.(37) at every point x ⊂ Ωm. This largely de-266

duces the complexity of the local optimization problem. The estimate (47) of the effective bi-potential267

Π∆ (ε̄, σ̄) with the non-associated perfectly plastic matrix has the similar form as that pertained to268

nonlinear viscoelastic composites without hardening studied in Lahellec and Suquet (2007b).269

According to previous studies (Castañeda and Willis, 1999, Castañeda, 2002, Lahellec and Suquet,270

2007b), sharper estimates of Π∆ (ε̄, σ̄) can be obtained by requiring only the stationarity of ∆Jm
271

instead of its supremum with respect to α. Therefore, one gets:272

Π∆ (ε̄, σ̄) ' inf
〈 ε〉=ε̄

 f m
[〈

inf
α

Jm
0 (ε,α)

〉
m

+

〈
stat
α

∆Jm (σ,α)
〉

m

]
+

N∑
r=1

f i,r
〈
bi,r

e (ε,σ)
〉

i,r

 (48)

It is worth noticing that the difference function in the increment potential ∆Jm is generally non-273

quadratic. In order to determine the stationarity of ∆Jm with respect to α, we rewrite the plastic274

bi-potential in the following form:275

bm
p (σ, α̇) = Y(σ,

(α − αn)2
eq

∆t2 ) (49)

The concavity of Y ensures that 〈Y (σ, a)〉m ≤ Y 〈(σ, a)〉m for any field a
(
x
)
. One then gets the276

following order relation:277

〈∆Jm (σ,α)〉m ≤
〈
∆J̃m (σ,α)

〉
m

=
1
2
〈σ〉m : Sm : 〈σ〉m+∆tY

〈σ, (α − αn)2
eq

∆t2

〉
m

−〈η0

∆t
(α − α̃n) : (α − α̃n)

〉
m

(50)
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The stationarity of
〈
∆J̃m (σ,α)

〉
m

with respect to α yields278

2ηp
(α − αn)

∆t
= 2η0

(α − α̃n)
∆t

(51)

The coefficient ηp is the secant viscosity associated with the plastic material without hardening and279

given by:280

ηp = ηsct

(
α̇, 〈σ〉m

)
=

〈
σy

〉
m

3α̇
, with α̇ =

√
2
3
〈α̇ : α̇〉m (52)

It is noticed that (51) can be rewritten in the following form:281

α=
αn − θα̃n

1 − θ
, with θ =

η0

ηp
(53)

With this relation, the last term in (48) can be evaluated and Π∆ (ε̄, σ̄) can be further estimated as282

follows:283

Π∆ (ε̄, σ̄) ' Π0 (ε̄) + ∆Πm (σ̄) (54)

with

Π0 (ε̄) = inf
〈ε〉=ε̄

 f m
〈
inf
α

Jm
0 (ε,α)

〉
m

+
1
2

N∑
r=1

f i,r 〈ε〉i,r : Ci,r : 〈ε〉i,r

 (55a)

∆Πm (σ̄) = f m

(
1
2
〈σ〉m : Sm : 〈σ〉m +

〈
ηpθ

∆t (θ − 1)
(αn − α̃n) : (αn − α̃n)

〉
m

)
+

1
2

N∑
r=1

f i,r 〈σ〉i,r : Si,r : 〈σ〉i,r

(55b)

By using the stationarity condition of (54) over α̃n and θ, one gets:284

θ = 1 ±

√
〈(αn − α̃n) : (αn − α̃n)〉m
〈(α − α̃n) : (α − α̃n)〉m

(56)

α̃n =
〈αn〉m + ( θ − 1) 〈α〉m

θ
(57)

It is noticed that in the aforementioned calculations, the sign ’-’ is adopted in Eq. (56), which corre-285

sponds to solving the problem (47) with an infimum and therefore to a rigorous lower bound for the286

effective bi-potential Π∆.287

With the help of minimization of Jm
0 (ε,α) with respect to α, one finally obtains (the detailed288

calculation is given in Appendix B):289

α =

(
Cm +

2θη
∆t

K
)−1

:
[
K : Cm : ε +

2θη
∆t
α̃n

]
= dK : ε+eα̃n (58a)

where d =
µ

ηθa
t +µ

, e =
ηθa

t
ηθa

t +µ
. η denotes the uniform total secant viscosity taken at α̇ of the non-290

associated plastic matrix without hardening:291

η
(
α̇, 〈σ〉m

)
= −

κ (〈σm〉m − c)

α̇
(59)
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4.3. Estimation of the effective potential Π0 (ε̄) of homogenized material292

The last step of formulation is the estimation of the effective potential Π0 (ε̄) of the homogenized293

equivalent material (HEM) in order to estimate the macroscopic elastic-plastic behavior of the hetero-294

geneous rocks. This is based on the choice of a thermoelastic linear comparison composite (LCC).295

Substituting the result found in (58a) for the expression of Jm
0 (ε,α) in (44) and making use of Eq.296

(53), one defines the local increment potential πm
0 (ε) of the LCC as follows:297

πm
0 (ε) = inf

α
Jm

0 (ε,α) =
1
2
ε : Cm

0 : ε + ρm
0 : ε+ζm

0 (60)

The tensors Cm
0 and ρm

0 as well as the scalar coefficient ζm
0 are all uniform in the matrix phase and298

given by:299 

Cm
0 = 3kmJ + 2µm

0 K, with µm
0 = (1 − d)2 µm +

θηp

∆t d2

ρm
0 = 2

[ θηp

∆t d (e − 1) − µm (1−d)
]
α̃n − 3km

(〈
βn

〉
m + α − αnχδ

)
ζm

0 =
[
e2µm +

θηp

∆t (e − 1)2
]
α̃n : α̃n + 9

2km
(〈
βn

〉
m + α − αnχ

)2

(61)

The quantities θ, α̃n and η are defined in Eqs. (56), (57) and (59), respectively. Further, the effective300

potential Π0 (ε̄) defined in Eq. (55a) can be written as301

Π0 (ε̄) =
1
2
ε̄ : C̄ : ε̄ + ρ̄ : ε̄+ζ̄ (62)

The effective tensors C̄ and ρ̄ as well as the scalar variable ζ̄ are expressed in Appendix C.302

By using the expression of Π0 (ε̄) (Eq. (62)) in (55a), the macroscopic stress tensor σ̄ of the HEM303

as that defined in Eq. (41) can be approximated by the following differentiation procedure:304

σ̄ =
∂Π∆

∂ε̄
(ε̄, σ̄) =

dΠ0

dε̄
(ε̄) = f m 〈σ〉m +

N∑
r=1

f i,r 〈σ〉i,r (63)

with

〈σ〉m = Cm
0 : 〈ε〉m + ρ0 (64a)

〈σ〉i,r = Ci,r : 〈ε〉i,r (64b)

5. Fluctuations of local fields and computational aspects305

5.1. Fluctuations of local fields in matrix306

In order to assess the accuracy of the BIV model, not only the macroscopic responses of the307

HEM but also the representative fluctuations of local fields should be investigated. In this study, we308
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shall evaluate the fluctuations of local stress and plastic strain fields in the matrix. The fluctuations309

of interest contain the first- and second-order moments of the these fields. Following Idiart and310

Castañeda (2007) the quadratic fluctuation of the local stress in the matrix is defined as311

Fm
σ ≡ 〈σ − 〈σ〉m〉m ⊗ 〈σ − 〈 σ〉m〉m = 〈σ ⊗ σ〉m − 〈 σ〉m ⊗ 〈σ〉m (65)

where 〈σ〉m and 〈σ ⊗ σ〉m represent the first and second-order moment of local stress field over the312

matrix. 〈σ〉m can be obtained from the relation (64a). However it is generally difficult to calculate313

〈σ ⊗ σ〉m. In order to amend this issue, here we adopt the following expression proposed in (Agoras314

et al., 2016):315 √
Fm
σ :: K=

√
〈s : s〉m − 〈s〉m : 〈s〉m =

√
2
3

(
σ

2
−

(
σ̄m

eq

)2
)

(66)

with σ̄(m)
eq =

√
3
2 〈s〉m : 〈s〉m and σ =

√
3
2 〈s : s〉m for the evaluation of 〈s〉m and 〈s : s〉m. Together with316

Eq. (B.9), one further obtains317

σ = 3ηα̇ (67)

The calculation of the denominator α̇ is given in Section 5.3. One can notice that it is easy to obtain318

the fluctuation of local stress field (66) with the help of Eqs. (64a) and (67).319

Similarly, the fluctuation of the local plastic strain field in the matrix is defined as:320

Fm
εp ≡ 〈εp − 〈εp〉m〉m ⊗ 〈 ε

p − 〈εp〉m〉m = 〈εp ⊗ εp〉m − 〈 ε
p〉m ⊗ 〈 ε

p〉m (68)

where 〈εp〉m and 〈εp ⊗ εp〉m represent the first and second-order moments of local plastic strain field321

over the matrix. For the ease of calculation, we provide the result for the standard derivation of the322

plastic strain filed in the matrix phase, that is:323 √
Fm
εp :: K=

√
〈α : α〉m − 〈α〉m : 〈α〉m =

√
3
2

(
α

2
−

(
ᾱm

eq

)2
)

(69)

with ᾱm
eq =

√
2
3 〈α〉m : 〈α〉m and α =

√
2
3 〈α : α〉m, being the first- and second-order moment of α.324

5.2. Computation of the first and second-order moment of α325

The calculation of θ, α̃n and
√
Fm
εp :: K from Eqs.(56), (57) and (69) needs the determination of326

the first- and second-order moment of α in the plastic matrix. The first moment is given by:327

〈α〉m = 〈dK : ε+eα̃n〉m (70)

Since the quantities d, e and α̃n are uniform in the matrix phase, one thus obtains328

〈α〉m = dK : 〈ε〉m + e : α̃n (71)
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Similarly, the second-order moment of α is calculated by:329

〈α : α〉m = d2K :: 〈ε ⊗ ε〉m + 2deα̃n : 〈ε〉m + e2α̃n : α̃n (72)

The first and second terms at the right hand side of Eq. (72) are related to the second- and first-order330

moments of ε in the matrix phase and can be obtained from Eqs.(C.6) and (C.3), respectively.331

5.3. Computation of the second-order moment of α̇332

To calculate η from Eq. (59), the denominator α̇ related to the second-order moment of α̇ should333

be first determined by:334

α̇ =

√
2
3
〈α̇ : α̇〉m =

1
∆t

√
2
3
〈(α − αn) : (α − αn)〉m (73)

It is noticed that it is generally difficult to calculate 〈(α − αn) : (α − αn)〉m due to the inaccessibility335

of the term 〈α : αn〉m. However, thanks to Eq. (57), α̇ can be alternatively calculated by the following336

relation when θ , 1:337

α̇ =

[
θ

∆t (1 − θ)

] √
2
3
〈(αn − α̃n) : (αn − α̃n)〉m (74)

=

[
θ

∆t (1 − θ)

] √
2
3

(〈αn : αn〉m − 2 〈αn〉m : α̃n + α̃n : α̃n)

where the first- and second-order moments of α are already determined from (71) and (72) respec-338

tively.339

6. Implementation and numerical assessment of the BIV model340

6.1. Local implementation algorithm of BIV model341

The numerical implantation algorithm of the proposed BIV model is now presented. This al-342

gorithm is developed as a user-defined subroutine for the determination of mechanical behavior of343

a macroscopic material point in a standard computation code. The material point is subjected to a344

macroscopic strain increment ∆ε̄ (∆ε̄ = ˙̄ε∆t) such that ε̄n+1 = ε̄n + ∆ε̄ at tn+1. The numerical algo-345

rithm is here used to calculate the macroscopic stress increment using the proposed BIV model. The346

flowchart of the computational procedure is summarized in Algorithm 1:347
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Algorithm 1: Flowchart of the local implementation algorithm of BIV
Input: ˙̄ε,∆t, σ̄n, ε̄n, 〈αn〉m ,

〈
βn

〉
m , 〈αn : αn〉m, θn, ηn

Output: σ̄n+1, ε̄n+1, 〈αn+1〉m ,
〈
βn+1

〉
m , 〈αn+1 : αn+1〉m, θn+1, ηn+1

1 ε̄n+1 = ε̄n + ˙̄ε∆t,
2 Initialize ηn+1 = ηn, θn+1 = θn

3 Calculate Am
n+1, Ai,r

n+1, am
n+1, ai,r

n+1, Cm
0,n+1, ρm

0n+1,
4 Calculate first order moment of strain field 〈εn+1〉

trial
m = Am

n+1 : ε̄ + am
n+1,

〈εn+1〉
trial
i,r = Ai,r

n+1 : ε̄ + ai,r
n+1,

5 Elastic prediction: 〈σn+1〉
trial
m = Cm : (〈εn+1〉

trial
m − 〈αn〉m −

〈
βn

〉
m)

6 if f (〈σn+1〉
trial
m ) < 0 then

7 〈εn+1〉m = 〈εn+1〉
trial
m ; 〈εn+1〉i,r = 〈εn+1〉

trial
i,r 〈αn+1〉m = 0;

〈
βn+1

〉
m =

0; 〈αn+1 : αn+1〉m = 0
8 else
9 (For clarity, the subscript n+1 will be omitted in the f or loop)

10 for j = 1 . . .miter, do
11 Calculate Cm

0, j, ρ
m
0, j, ς

m
0, j and C̄ j with Eqs. (61) and (C.2a)

12 Calculate Am
j , Ai,r

j , am
j , ai,r

j (with Eq.(C.7) for two-phases composite).
13 Calculate first moment of strain field 〈ε〉m, j = Am

j : ε̄ + am
j and

〈ε〉i,r, j = Ai,r
j : ε̄ + ai,r

j with Eqs.(C.3) and (C.4) ;
14 Calculate 〈σ〉m, j and 〈σ〉i,r, j by using Eq.(64);
15 Calculate effective internal variable α̃n, j and 〈α〉m, j with Eqs.(57) and (71);
16 Calculate second moment of strain field K :: 〈ε ⊗ ε〉m, j and 〈α : α〉m, j with

Eqs.(C.6) and (72);

17 Calculate α̇ j and 〈β〉 j with Eqs.(74) and (A.1)
18 Calculate θ j and η j with Eqs.(56) and (59);

19 if |δθ j|
θ j

< ε and |
δη j|
η j

< ε, then

20 Return;
21 else
22 j = j + 1

23 σ̄n+1 = 〈σn+1〉 = f m 〈σn+1〉m +
∑N

r=1 f i,r 〈σn+1〉i,r;

348

6.2. Comparisons with direct FEM simulations349

The purpose of this section is to verify the accuracy of the BIV model by comparing its pre-350

diction with the reference solutions obtained by direct finite element method (FEM) simulations on351

the unit cell for two kinds of materials. The first one is a composite material with a non-associated352

Drucker-Prager plastic matrix and elastic inclusions (Figure 3(b)), while the second one is a porous353

material with non-associated Drucker-Prager plastic matrix and pores. In this section and section 7,354

the effective properties of the LCC as well as the field fluctuations are evaluated by using the Hashin-355

Shtrikman bounds, i.e., the HS lower bound for the inclusion-reinforced material and the upper bound356
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for the porous material, more details are given in Appendix C. The microstructure of studied mate-357

rials is represented by a periodic assembly of 3D unit cells with spherical inclusion or pore. Taking358

advantage of axial symmetry, the actual hexagonal unit cell is simplified in to a cylinder one and359

only half an axial symmetry plain is considered in the finite element calculations, as illustrated in360

Figure 3. FEM computations are performed using ABAQUS 6.14 using quadratic CAX6 elements361

for inclusion phase and CAX8 elements for matrix phase. Since the focus here is on the modelling of362

non-associated plastic matrix, we assume the interfaces between the inclusions and matrix are perfect363

for the inclusion-reinforced material, implying the interface effects are not taken into account here.364

Note that FEM predictions are labeled “FEM” in the figures. The first- and second-order moments365

of the local fields are computed from direct volume averaging of the local fields in the unit cell (Yan366

et al., 2007).367
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Figure 3: Approximation of 3D hexagonal periodic array with spherical inclusion/pore by axi-symmetric cylinder unit

cell

For the inclusion-reinforced material, the input parameters for each constituent phase are listed368

in Tables 1 and 2. Uniaxial and triaxial compression tests are investigated. The unit cell is first369

subjected to a confining stress (or hydrostatic stress) and then to a differential stress by increasing370

the axial strain in the z direction. During the differential stress stage, the lateral displacement Ū2371

is kept uniform along the boundary to satisfy the uniform strain boundary condition. The boundary372
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conditions are illustrated in Figure 3(b) and summarized as follows373 

U3 (r,H) = Ū3, 0 < r < L

U2 (L, z) = Ū2, 0 < z < H

U3 (r, 0) = 0, 0 < r < L

U2 (0, z) = 0, 0 < z < H

(75)

Table 1: Parameters of solid matrix for composite

Em (MPa) νm κ c(MPa) χm

3000 0.3 0.227 30 0.083

Table 2: Parameters of elastic inclusion

Ei (MPa) νi

98000 0.15

The parameters for the matrix phase in the porous material are the same as those for the inclusion-374

reinforce composite and listed in Table 1. The boundary conditions on the unit cell are given below375

and illustrated in Figure 3(c).376



U3 (r,H) = Ū3, 0 < r < L

U2 (L, z) = Ū2, 0 < z < H

U3 (r, 0) = 0, R < r < L

U2 (0, z) = 0, R < z < H

(76)
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(a) Inclusion-reinforced material
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Figure 4: Macroscopic stress-strain curves for two kinds of heterogeneous materials with non-associated Drucker-Prager

perfectly plastic matrix and inclusions/pores ( f i = 15%) in triaxial compression tests with different confining stresses

In Figure 4, one shows the macroscopic stress-strain curves for both the inclusion-reinforced377

composite and porous material under uniaxial and triaxial compression tests with different confining378

stresses, respectively obtained by the proposed BIV model and the direct finite element simulations.379

One can observe that the model’s predictions coincide very well with the FEM solutions for the all380

cases considered.381

An example of uniaxial compression test with an unloading-reloading cycle is also studied for the382

inclusion-reinforced composite with f i = 15%. The obtained results are presented in Figure 5. One383

can see the BIV model well reproduces the results given by the FEM simulations.384
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Figure 5: Macroscopic stress-strain curves in uniaxial compression test with an unloading-reloading cycle for the

inclusion-reinforced composite with a volume fraction of inclusion of f i = 15%

22



7. Extension to rocks with isotropic plastic hardening385

As mentioned that ductile and porous rocks usually exhibit plastic hardening. In the case of386

materials considered here, the plastic hardening occurs in the matrix phase. In the context of a387

Drucker-Prager plastic criterion, the plastic hardening may leads to an increase of the internal fric-388

tion coefficient and hydrostatic tensile strength (related to internal cohesion). However, due to the389

strong dissymmetry of strength between compression and tension in most rocks, the tensile strength390

is generally small and not affected by the plastic deformation process. The plastic hardening gener-391

ally enhances the shear strength through the evolution of the internal frictional coefficient. Therefore,392

with the assumption of an isotropic plastic hardening, the internal frictional coefficient of the matrix393

κ is here assumed to increase during plastic process according to the following law:394

κ(γp) = κm − (κm − κ0) e−b1γ
p

(77)

where κ0 and κm denote the initial threshold and the asymptotic value of the frictional coefficient395

respectively, while b1 is a parameter controlling the plastic hardening rate.396

On the other hand, the plastic dilatancy coefficient χ can also evolve with the plastic deforma-397

tion history, translating the transition from plastic compressibility to dilatancy. Therefore, we here398

consider that χ is also a function of γp through the following relation399

χ(γp) = χm(1 − e−b2γ
p
) (78)

where χm is the asymptotic value of the plastic dilatancy coefficient, and b2 is a parameter controlling400

its evolution.401

In order to fully account for this kind of plastic hardening law in the proposed BIV model, the402

thermodynamics formulation presented above should be modified by considering the evolution of403

elastic domain during plastic deformation process. However, due to the fact that the plastic hardening404

is described by the evolution of the friction coefficient, the evolution measurement of elastic domain405

cannot be represented by a constant force variable but by a function of mean stress. This render the406

mathematical treatment of the BIV model very complicated. In order to avoid this complex mathe-407

matical difficulty and provide a pragmatical model being easy to be implemented, we shall propose a408

heuristic extension of the BIV model formulated above for materials without plastic hardening. Ac-409

cording to the theoretical formulation presented in Sections 3 and 4, when the values κ, c and χ are410

constant, the average secant viscosity function of solid matrix η is given in Eq.(59). We here assume411

that this result remains applicable for the solid matrix where the values of κ and χ are step by step412
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updated at each loading increment. Therefore, we propose an explicit incremental hardening scheme.413

The average secant viscosity function and the plastic dilatancy coefficient χ at the loading increment414

n + 1 is approximated as follows (for the sake of simplicity, the increment number n + 1 is omitted in415

the following equations):416

η = −
κ
(〈
γ

p
n
〉

m
)

(〈σm〉m − c)

α̇
(79)

χ
(〈
γp

n
〉

m

)
= χm(1 − e−b2〈γ

p
n〉m) (80)

In these relations,
〈
γ

p
n
〉

m is the average value of equivalent plastic shear strain in the solid matrix417

γp calculated by Eq.(A.2) at the end of the loading increment n and its value if frozen during the418

current increment n + 1. Accordingly, the values of frictional coefficient κ and plastic dilatancy419

coefficient χ are also frozen to those calculated at the end of the previous increment such as κ
(〈
γ

p
n
〉

m
)

420

and χ
(〈
γ

p
n
〉

m
)
. Therefore, the solid matrix is treated as a perfectly plastic material during the current421

loading increment.422

7.1. Comparisons with direct FEM simulations423

The accuracy of the heuristically extended BIV model for materials with an isotropic hardening424

is now checked by comparing the model’s predictions with direct FEM simulations for both local425

and macroscopic responses. Two kinds of materials are again studied: inclusion-reinforced com-426

posites and porous materials. Conventional triaxial compression tests are considered. The boundary427

conditions for the two materials are the same as those presented in Section 6.2. The following in-428

put parameters are selected for the isotropic hardening law: κ0 = 1 × 10−5, κm = 0.227, b1 = 140,429

χm = 0.083 and b2 = 70.430

7.1.1. Inclusion-reinforced composites431

Two volume fractions of elastic inclusions are considered: f i = 5% and f i = 15%. In Figure 6,432

one shows the macroscopic stress-strain curves in the uniaxial compression test, respectively obtained433

by the BIV model and FEM simulations. It can be seen that there is a good agreement between these434

two results. In Figure 7, we emphasize the volume strain evolution ε̄v as a function of axial strain ε̄33435

with different values of the maximum dilatancy coefficient χm and for f i = 15%. It is noticed that the436

proposed BIV model is able to well reproduce the volume compressibility-dilatancy transition which437

is an important property of rocks. More precisely, the volumetric dilatancy is enhanced when the438

value of χm increases. The results due to the BIV model well coincident with the FEM simulations.439
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Figure 6: Macroscopic stress-strain curves in uniaxial compression test for an inclusion-reinforced composite with two

volume fractions of inclusions ( f i = 5% and f i = 15%)
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Figure 7: Evolution of macroscopic volumetric strain in uniaxial compression test for different values of plastic dilatancy

coefficient χ for an inclusion-reinforced composite with a volume fraction of inclusions of f i = 15%

Moreover, the proposed BIV model is also able to capture another important property of geolog-440

ical materials, which is the influence of confining stress on the macroscopic behavior. This is clearly441

illustrated in Figure 8. The stress-strain curves are presented for the uniaxial compression test and442

two triaxial compression tests respectively with a different confining stress of 10MPa and 20MPa.443

Again, the BIV predictions are in good agreement with the FEM solutions.444
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Figure 8: Macroscopic stress-strain curves in uniaxial and triaxial compression tests with two different confining stresses

two for an inclusion-reinforced composite with c(2) = 15%

In order to further assess the accuracy of the BIV model, the evolution of local stresses during the445

loading history is also investigated for the case of uniaxial compression test and of an inclusion vol-446

ume fraction of f i = 15%. For instance, the evolutions of average stress respectively in the inclusion447

and matrix phases are presented in Figure 9(a). In Figure 9(b), one presents the evolutions of the dif-448

ferent denominators σ̄m
eq andσ, respectively related to the first-order and second-order moments of the449

local stress field over the plastic matrix. Lastly, in Figure 9(c), the evolution of the stress fluctuation450 √
Fm
σ :: K in the matrix is presented. It is observed that the BIV model provides an accurate prediction451

for the evolution of average stress within the matrix, while a less accurate prediction regarding the452

average stress in the inclusion phase (Figure 9(a)). The BIV results are also in good agreement with453

the FEM solutions for the stress moments σ̄m
eq and σ (Figure 9(b)). Lastly, although the BIV model454

overestimates the stress fluctuation within the matrix, it is still able to reproduce the good evolution455

trend of FEM solutions (Figure 9(c)).456

26



0 1 2 3 4 5
0

10

20

30

40

50

60

(a) Evolution of average stress in constituent phases ver-

sus macroscopic axial strain

0 1 2 3 4 5
0

5

10

15

20

25

30

(b) First and second moments of stress over matrix

(c) Fluctuations of stress over matrix

Figure 9: Local stress responses in uniaxial compression test for an inclusion-reinforced composite with f i = 15%

On the other hand, the evolution of the local plastic strain is also studied. In Figure 10(a), one can457

find a quite good agreement between the BIV result and FEM solution for the first-order moment of458

local plastic strain field over the matrix ᾱm
eq. However, it seems that the BIV model underestimates the459

second-order moment of plastic strain in the matrix α. The fluctuation of plastic strain field is shown460

in Figure 10(b). The BIV model is able to capture the trend of the FEM solution although there exist461

some scatters between them.462
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(a) First and second moments of plastic strain over ma-

trix

(b) Fluctuation of plastic strain over matrix

Figure 10: Local plastic strain responses in uniaxial compression test of an inclusion-reinforced composite with f i = 15%

7.1.2. Porous material463

The macroscopic stress-strain curves in uniaxial compression test with two values of porosity f i =464

15% and 5% are presented in Figure 11. There is a good agreement between the BIV predictions and465

FEM results. Furthermore, the stress-strain curves in triaxial compression tests with three different466

confining stresses are presented in Figure 12 for a porosity of f i = 15%. Once more, the BIV model467

correctly captures the effect of confining stress and well reproduces the FEM solutions.468

-3 -2 -1 0 1 2 3 4 5

5

10

15

20

30

Figure 11: Macroscopic stress-strain curves in uniaxial compression test for a porous material with two different values

of porosity ( f i = 5% and f i = 15%)
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Figure 12: Macroscopic stress-strain curves in triaxial compression tests with three different confining stresses for a

porous material with a porosity of f i = 15%

As for the inclusion-reinforced composite, the local stress and strain responses of porous material469

are also investigated for the case of uniaxial compression test and with a porosity of f i = 15%. In470

Figure 13(a), the evolutions of the first and second-order moments of local stress field over the matrix,471

σ̄m
eq and σ, are depicted. The evolution of the stress fluctuations is given in Figure 13(b). One can472

find a similar trend as that already obtained in Figure 9 for the inclusion-reinforced composite. The473

evolutions of the moments and fluctuations of local plastic strain field over the matrix are shown in474

Figure 14. As shown in Figure 14(a), although the BIV model qualitatively reproduces the trend of475

the FEM solutions, it slightly underestimates the denominators ᾱm
eq and α. Compared with Figures476

14(b) and 10(b), the fluctuations of the plastic strain field are now better captured by the BIV model477

for the porous material than for the inclusion-reinforced composite.478
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(a) First- and second-order moments of stress over ma-
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(b) Fluctuations of stress over matrix

Figure 13: Local stress responses in uniaxial compression test for a porous material with a porosity f i = 15%
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Figure 14: Local plastic strain responses in uniaxial compression test for a porous material with a porosity of f i = 15%

7.2. Application examples479

In this section, two application examples are presented to show the ability of the extended bi-480

potential based incremental variational model to reproduce experimental responses of two typical481

rocks: the Callovo-Oxfordian claystone and Vosges sandstone.482

7.2.1. Application to Callovo-Oxfordian claystone483

The Callovo-Oxfordian claystone has been extensively investigated in France as a potential geo-484

logical barrier for the underground disposal of nuclear waste (Armand et al., 2016). It is a sedimentary485

rock with complex multi-scale structures (Robinet, 2008). At the micrometer scale, this clayey rock486

is composed of a quasi-continuous clay matrix in which mineral grains, mainly quartz and calcite487

grains, are embedded. The clay matrix can exhibit important plastic deformation (Guéry et al., 2008,488

2010). For the sake of simplicity, the behavior of clay matrix is here described by an isotropic elastic-489

plastic model. The linear Drucker-Prager criterion is adopted together with an isotropic hardening490

law and a non-associated plastic flow rule. On the other hand, for the range of stresses considered in491

the application, the mechanical behavior of the quartz and calcite grains can be reasonably described492

by a linear elastic model. Furthermore, as the elastic properties of calcite and quartz are quite similar,493

for the sake of simplicity, they are seen a single phase of elastic inclusions.494

The preliminary challenge of the application of the micro-mechanical model is the identification495

of local parameters for each constituent phase. To this end, the local mechanical behavior should496

be determined. This direct identification method is so far not possible because relevant data on me-497

chanical responses at the microscopic scale are not fully available. Here an indirect identification498
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procedure is employed here. The elastic coefficients of the effective elastic inclusion phase are taken499

as the volumetric average values of the quartz and calcite grains (Jiang et al., 2009). Note that the500

elastic coefficients of quartz and calcite grains elastic properties of calcite and quartz grains are well501

known and can be obtained from existing data(Lide, 2004). It is easily to obtain the Young’s mod-502

ulus and Poisson’s ratio of the effective elastic inclusion are equal to Ei = 98GPa and νi = 0.15.503

However, the elastic coefficients of the clay matrix are not available from direct experimental mea-504

surement. They are calibrated here by an inverse homogenization procedure (Guéry et al., 2008), from505

the macroscopic elastic coefficients obtained in triaxial compression tests on the samples with known506

mineralogical compositions (Chiarelli, 2000). We calculate the typical values of Young’s modulus507

Em = 3GPa and Poisson’s ratio νm = 0.3. On the other hand, the values of plastic parameters of508

clay matrix are fitted by a numerical optimization of macroscopic stress-strain curves obtained by509

convention laboratory tests (conventional triaxial compression tests, proportional compression tests,510

lateral extension test, etc.) for a chosen mineralogical composition similar to that proposed in (Guéry511

et al., 2008, Shen et al., 2012). The obtained values are then fixed and applied to samples with dif-512

ferent mineralogical compositions. The obtained plastic parameters values are given as: κ0 = 10−5,513

κm = 0.283, b1 = 250, χm = 0.05, b2 = 50, c = 20MPa.514

The mechanical responses of the claystone are now studied using the proposed BIV model in515

triaxial compression tests, proportional compression tests and lateral extension tests. It is noteworthy516

that these tests were performed on samples coming from different geological depths ranging from517

415.4m to 482.4m, with different mineral compositions. However, a sole set of parameters is used for518

the modeling of different tests on different samples.519

In Figure 15, the stress-strain curves of claystone in triaxial compression tests are presented. One520

observes a good agreement between model’s predictions and experimental data. The BIV model is521

able to well reproduce the main features of the claystone mechanical behavior in this loading path,522

such as the volume compressibility-dilatancy and confining stress sensitivity. The impact of miner-523

alogical compositions is also correctly taken into account. Further, in Figure 15(a), the numerical524

results respectively provided by the associated and non-associated plastic model are compared. It is525

clear that the non-associated model gives a better prediction than the associated one.526
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(a) Depth 466.8m, f m = 51%, f i = 49%,σ̄22 = 0 MPa
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(b) Depth 451.5m, f m = 49%, f i = 51%,σ̄22 = 5

MPa
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(c) Depth 451.4m, f m = 47%, f i = 53%,σ̄22 = 10
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Figure 15: Comparison of stress-strain curves between experimental data and numerical results in triaxial compression

tests on Callovo-Oxfordian claystone samples with different mineralogical compositions

For providing a complementary validation of the BIV model, proportional compression and lateral527

extension tests are also studied. In a proportional compression test, the axial stress σ̄33 and confining528

stress σ̄11 are simultaneously increased with a constant ratio k = σ̄33
σ̄11

. In a lateral extension test, the529

sample is first subjected to a hydrostatic stress state to a desired value, and then the lateral stress530

σ̄11 is progressively decreased while the axial stress σ̄33 is kept constant. The comparisons between531

numerical predictions and experimental data for these two kinds of tests are shown in Figure 16 and532

17, respectively. Again, one gets a good general agreement and the BIV model correctly reproduces533

the main characteristics of mechanical responses of the claystone in these two loading paths.534
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(a) Depth 469.0m, f m = 44%, f i = 56%, k = 4.8
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(b) Depth 482.4m, f m = 54%, f i = 46%, k = 4.8
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(c) Depth 456.8m, f m = 42%, f i = 58%, k = 5.8
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(d) Depth 482.4m, f m = 54%, f i = 46%, k = 9.2

Figure 16: Comparisons of mechanical responses between experimental data and numerical results in proportional com-

pression tests on Callovo-Oxfordian claystone with different mineralogical compositions
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(a) Depth 469.0m, f m = 44%, f i = 56%
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(b) Depth 482.3m, f m = 45%, f i = 55%
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(c) Depth 456.6m, f m = 46%, f i = 54%

Figure 17: Comparisons of mechanical responses between experimental data and numerical results in lateral extension

tests with an initial confining stress of 60MPa on Callovo-Oxfordian claystone with different mineralogical compositions

7.2.2. Application to Vosges sandstone535

The Vosges sandstone is here studied as a typical porous rock. Its microstructure and macro-536

scopic behaviors have been investigated in a number of previous studies, for instance (Khazraei, 1996,537

Bésuelle et al., 2000). The average porosity is about 20% and the solid matrix is composed of nearly538

93% quartz grains with a few percent of feldspar and white mica. As a first approximation, the sand-539

stone can be considered as an isotropic material. The mechanical strength of the sandstone strongly540

depends on confining pressure. In this study, the solid matrix is described by a non-associated plastic541

model based on the Drucker-Prager criterion. The elastic and plastic parameters of solid matrix are542

not directly measured but also indirectly estimated. The elastic coefficients can be easily identified by543

an inverse homogenization procedure from measured macroscopic values and the known porosity of544

sample. The plastic parameters are again fitted from a numerical optimization procedure of macro-545

scopic stress-strain curves for a given porosity. The obtained values of parameters are given in Table546
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3.547

Table 3: Parameters of solid matrix for porous Vosges sandstone

Em (GPa) νm κ0 κm c(MPa) b1 χm b2

40 0.25 10−5 0.433 40 900 0.333 500

In Figure 18, we first present the stress-strain curves in conventional triaxial compression tests548

with four different confining stresses from 5MPa to 40MPa. Like the claystone, there is a good549

agreement between model’s predictions and experimental data. The effect of confining stress on550

macroscopic response is well captured. However, the mechanical strength of sandstone is slightly551

overestimated by the model for the test with a low confining stress of 5MPa. This is due to the fact552

that the linear Drucker-Prager criterion used for the solid matrix is not well adopted in the zone of553

low mean stress and tensile stress. The use of a curved yield surface for the solid matrix, for example554

the Mises-Schleicher criterion, would improve numerical results. In Figure 18(b), one can see that the555

non-associated model provides a better prediction of lateral strain that the associated model. However,556

unlike the result of claystone shown in Figure 15(a), the non-associated flow rule coefficient has no557

influence on the peak strength of porous sandstone.558
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(a) Confining pressure σ̄22 = 5MPa
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(b) Confining pressure σ̄22 = 10MPa
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(c) Confining pressure σ̄22 = 20MPa
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(d) Confining pressure σ̄22 = 40MPa

Figure 18: Comparisons of mechanical responses between experimental data and numerical results in triaxial compression

tests on Vosges sandstone

The mechanical responses of Vosges sandstone in proportional compression and lateral extension559

tests are presented in Figures 19 and 20 respectively. Once more, it is found that the proposed BIV560

model well reproduce experimental data for these loading paths. In particular, as shown in Figure 19,561

the transition from volumetric compressibility to dilatancy is well reproduced by the BIV model due562

to the non-associated plastic flow rule used for the solid matrix.563
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Figure 19: Comparison of stress-strain curves between experimental data and numerical results for proportional compres-

sion tests on Vosges sandstone
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Figure 20: Comparison of mechanical response between experimental data and numerical results for lateral extension test

on Vosges sandstone with an initial confining pressure of 60MPa and axial stress of 90MPa

8. Concluding remarks564

In this paper, we have developed a new incremental variational framework for the estimation of565

effective elastic-plastic properties of a class of heterogeneous rocks by using the bi-potential theory.566

These materials are considered as implicit standard materials (ISMs). In particular, a bi-potential567

based incremental variational model (BIV) has been formulated for those rocks with a non-associated568

plastic matrix described by a Drucker-Prager type yield function and an isotropic hardening law.569

The BIV model has first been formulated by considering an elastic perfectly plastic matrix phase.570

With the help of the bi-potential theory, we have determined the local incremental elastic and plastic571

bi-potentials of the matrix. We have also introduced an appropriate optimization method for the572

37



estimation of the effective incremental bi-potential and macroscopic stress. The accuracy of BIV573

model has been demonstrated through the comparisons with direct finite element simulations for both574

inclusion-reinforced composites and porous materials.575

A heuristic extension of the BIV model has then been proposed in view of estimating effective576

behaviors of heterogeneous rocks exhibiting an isotropic plastic hardening. This has been done by577

assuming that the general incremental variational formulation obtained the perfectly plastic matrix re-578

mains applicable at each loading increment if the plastic hardening variables and functions are frozen.579

The plastic hardening has been taken into account by updating the values of the frozen hardening func-580

tions at each loading increment. The efficiency of the heuristically extended BIV model has also been581

confirmed by the comparisons with direct finite element simulations for both inclusion-reinforced582

composites and porous materials. It has been found that the BIV model was able to provide a good583

estimation of the fluctuations of local stress and plastic strain fields. However, the average stress584

in the inclusion phase was underestimated for the inclusion-reinforced composites while the stress585

fluctuation in the matrix phase is overestimated for both materials. Therefore, some improvement586

remains needed, for example, by using a second-order comparison composite for the estimation of587

incremental bi-potential of the plastic matrix.588

Finally, the BIV model has been applied to studying the mechanical behavior of two typical ge-589

ological materials, the Callovo-Oxifordian claystone and Vosges sandstone, under different loading590

paths. In a general way, the numerical results are in good agreement with experimental data. The591

main features of mechanical behaviors of two materials are correctly reproduced by the BIV model,592

such as influence of confining stress and volume compressibility-dilatancy transition.593

In this work, we have focused on the short-term mechanical behavior of dry materials. In future,594

the BIV model is expected to be extended to the time-dependent behavior and to saturated and un-595

saturated materials. Moreover, it is acknowledged that the interfaces between the inclusions and the596

matrix play a non-negligible role in rocks plastic deformation and damage. The effects of interface597

will be also taken into account in our future work.598
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Appendix A. Approximation of the local elastic bi-potential (24)604

Inspired by Boudet et al. (2016), we assume that the volumetric plastic strain field β and the inter-605

nal variable field γp are constant values in the solid matrix, denoted by 〈β〉m and 〈γp〉m , respectively.606

For the local stress state situated on the regular part of Drucker-Prager yield surface, the evolution of607

〈β〉m and 〈γp〉m can be expressed as follows by taking into account Eq. (31):608

〈β〉m =
〈
βn

〉
m + α̇∆tχδ (A.1)

〈γp〉m =
〈
γp

n
〉

m + α̇∆t (A.2)

where
〈
βn

〉
m and

〈
γ

p
n
〉

m are the volume average values of fields β and γ over the matrix phase at the609

step n, and610

α̇ =
1
∆t

√
2
3
〈(α − αn) : (α − αn)〉m =

1
∆t
α − αn (A.3)

Accordingly, one gets:611

bm
e (ε, εp, σ) ' bapp

e (ε,α) =
1
2
σ : Sm : σ+

1
2

(
ε − α−

〈
βn

〉
m − α − αnχδ

)
: Cm :

(
ε − α−

〈
βn

〉
m − α − αnχδ

)
(A.4)

Appendix B. Minimization of J m
0

(ε, α)612

By making use of the minimization of Jm
0 (ε,α) w.r.t. α, and after taking into account the relation613

(44) of Jm
0 , one gets,614

∂Jm
0

∂α
= −K : Cm :

(
ε − α − 〈β〉m

)
− Cm :

(
ε − α − 〈β〉m

) ∂ 〈β〉m
∂α

+ 2
ηpθ

∆t
(α − α̃n) = 0 (B.1)

It is noticed that Eq. (53) in its field form can be rewritten as:615

θ (α − α̃n) = (α − αn) ∀x ∈ Ωm (B.2)

Considering the expression (A.1) and (B.2), one obtains616

∂ 〈β〉m
∂α

=
2χθ

3∆tα̇
δ ⊗ ( α − α̃n) (B.3)

then617

−Cm :
(
ε − α − 〈β〉m

)
:
∂ 〈β〉m
∂ α

= 2
ηcpθ

∆t
(α − α̃n) (B.4)

with618

ηcp =
−3χσm

3α̇
, σm =

1
3
Cm :

(
ε − α − 〈 β〉m

)
: δ (B.5)
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For ease of calculation, we assume that ηcp takes its average value in the matrix phase, i.e.:619

ηcp =
−3χ 〈σm〉m

3α̇
(B.6)

Substituting Eqs. (B.2) and (B.4) into (B.1), ont gets:620

∂Jm
0

∂α
= −K : Cm :

(
ε − α − 〈β〉m

)
+ 2

ηθ

∆t
(α − α̃n) = 0 (B.7)

with621

η = ηp + ηih + ηcp =

〈
σy

〉
m
− 3χ 〈σm〉m

3α̇
= −

κ (〈σm〉m − c)

α̇
(B.8)

or equivalently, the local deviatoric stress of matrix phase becomes:622

s = K : Cm :
(
ε − α − 〈β〉m

)
= 2

η

∆t
(α − αn) = 2

ηθ

∆t
(α − α̃n) (B.9)

Finally, from (B.7), one gets623

α =

(
Cm +

2θη
M t

K
)−1

:
[
K : Cm : ε +

2θη
∆t
α̃n

]
(B.10)

Appendix C. Effective behavior and field statistics of RVE624

The effective potential Π0 (ε̄) is written as625

Π0 (ε̄) =
1
2
ε̄ : C̄ : ε̄ + ρ̄ : ε̄+ζ̄ (C.1)

where

C̄ = f mCm
0 : Am +

N∑
r=1

f i,rCi,r : Ai,r (C.2a)

ρ̄ = f mρm
0 : Am (C.2b)

ζ̄ = f m (
ζm

0 + ρm
0 : am)

(C.2c)

The average of the local strain filed in the matrix can be related to the macroscopic strain by two strain626

concentration tensors Am, am, i.e., (Willis, 1981)627

〈ε〉m = Am : ε̄ + am (C.3)

and similarly, the average of local strain filed in the rth inclusion phase can also be described by:628

〈ε〉i,r = Ai,r : ε̄ + ai,r (C.4)
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Note that the fourth-order tensors Am and Ai,r can be identified to those computed for the composites629

in the purely elastic case. However, the expressions of second-order tensors am and ai,r should be630

calculated by the volume averaging in each phase.631

The second-order moment of strain filed ε in the matrix phase can be obtained from the effective632

free energy Π0 (ε̄) and by using the relations (Castañeda, 2002, Lahellec and Suquet, 2007b):633

〈ε ⊗ ε〉m =
2
f m

∂Π0

∂Cm
0

(C.5)

Note that Cm
0 can be expressed by two effective moduli as Cm

0 = 3km J+2µm
0 K. Then the deviatoric634

part of this second order moment gives (Huang et al., 2015, Lahellec and Suquet, 2007a)635

K :: 〈ε ⊗ ε〉m =
1
f m

∂Π0

∂µm
0

(C.6)

In order to take advantage of the explicit expression of the tensors Am , Ai,r, am and ai,r , a two-phase636

material, one phase of elastic inclusion (r = N = 1) and another phase of elastic-plastic matrix, is con-637

sidered for validation and application. In this case, the fourth order concentration tensors associated638

to the Hashin-Shtrikman (HS) estimates are adopted (Hashin, 1962)639

Am = I+
1
f m

(
Cm

0 − C
i,r
)−T

:
(
C̄ − 〈C〉

)T
(C.7a)

Ai,r = I+
1
f i,r

(
Ci,r − Cm

0

)−T
:
(
C̄ − 〈C〉

)T
(C.7b)

am =
(
Cm

0 − C
i,r
)−1

: (I − Am)T : ρm
0 (C.7c)

ai,r = −
(
Ci,r − Cm

0

)−1
:
(
I − Ai,r

)T : ρm
0 (C.7d)

where 〈C〉 = f mCm
0 + f i,r Ci,r.640
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Robinet, J. C., 2008. Minéralogie, porosité et diffusion des solutés dans l’argilite du callovo-oxfordien de bure (meuse,717
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